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Abstract

Methods for recovering the conductances of solar cross networks from their

Dirichlet-to-Neumann maps are discussed. Three algorithms are given for

the solution of this problem.

1 Terminology: what is a λ-matrix?

As in [2], consider a network Ωβ of conductors in square-lattice form (Figures 1
and 2).
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Figure 1: general, Ωβ Figure 2: square, Ω4;β
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The conductances β = {βi} give rise to an operator Λ (more precisely, Λβ),
the Dirichlet-to-Neumann operator for the network Ωβ ; if ~ϕ is a vector rep-
resenting the voltage potential at each boundary node of Ωβ , the vector of
currents Λβ ~ϕ represents the current flow at each boundary node, respectively.
The matrix representations of these Dirichlet-to-Neumann maps are known as
λ-matrices. When the network Ω is an n × n square network, as shown above,
it will be called Ωn;β , and the Dirichlet-to-Neumann map Λn;β , respectively.

In this paper I am primarily concerned with the cross network, a refinement
of the ordinary square-lattice conductor network, that differs only in that it is
composed of elements of four conductors of equal conductivity, arranged in a
Greek or solar cross. The Dirichlet-to-Neumann map for such a network Ω+

α

will be called Λ+
α , or simply Λ+, and the set of such maps, a subset of that for

ordinary networks, will be called the set of λ+-matrices.

2 Motivation: why solar crosses?

Unlike the ordinary square-lattice network, the cross network lends an easy
interpretation to the voltage potential at the exterior nodes, and of the con-
ductances of its conductors, as an approximation to the case of continuously
varying conductance in a two-dimensional domain: the potential at and cur-
rent through a node correspond to the total1 potential of, and flux through,
the face of an approximating block of constant conductivity, and the conduc-
tivity α to twice the constant conductivity density γ. Another type of element
with the same properties, and indeed equivalent to the cross as a module, is
that of a flattened tetrahedron whose edges all have the same conductivity,
i.e., 1

2
αcross = γ = 2αtetra. The lack of a central node, however, makes them

significantly more difficult to work with.
The cross network also gives special properties to the Λ+ map, as will be

discussed in the following sections.

From this point I shall discuss only square networks.

3 Forward and Inverse problems: α⇀
↽Λ+

α

3.1 Ordinary Derivations: α⇀
↽β⇀↽Λβ

⇀
↽Λ+

α

The forward problem, that of determining the Dirichlet-to-Neumann map Λ
from the known conductances {αi}

n2

i=1, proceeds directly, using techniques de-
tailed in [2], [3], [4], and with the knowledge of the conductance formula for

1
∫

edge
u dλ and

∫

edge

∂u
∂~n

dλ, respectively, where u is the potential function.
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conductors in series2,

αequivalent =
α1α2

α1 + α2

. (1)

Likewise the inverse problem, once solved using the methods described in [2]
for the square-lattice, can be further solved for all conductances αi by “peeling
off” crosses from the boundary: the conductance of each boundary conductor is
equal to that of every other conductance in its cross, and known crosses can be
removed, revealing a new boundary. A preferable3 method, however, is to use
the relationships generated by the fact that the network is of solar cross type
to generate a different algorithm, as in section 3.3.

3.2 Relations: k-corners and opposing sides

3.2.1 Corners

In [3] it is shown that if zero potentials and zero currents are imposed along the
North and West faces of a square network (Figure 3), the resulting potentials
in all nodes north and west of the diagonal must be zero; and this diagonal
demarcation line may be moved NW by removing the restrictions at the “end”
nodes, those furthest south and east respectively, or SE by imposing the same
condition of zero voltage and zero current at the northern nodes of the east face
and the western nodes of the south face.

Figure 3: a 4-corner relationship for Ω4;

2more commonly known for resistors in series, Requiv = R1 + R2; but conductance is the

inverse of resistance, so 1

αequiv
= 1

α1
+ 1

α2
.

3in the sense of fewer operations
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Known voltages placed at the other South-face boundary nodes may de-
termine voltages and currents through the rest of the network, including the
other (unrestricted) boundary nodes; in this manner, a “k-corner relationship”,
a linear system of the form

2k−1
∑

i=0

xiλm,j+i = 0, for all m /∈ {j, j + 1, ..., j + 2k − 1}. (2)

is produced from Λβ and k, where the indices j+ k and j+ k− 1 correspond to
the two “corner” nodes, and j and j + 2k − 1 to the “end” nodes.4

In [3] it is shown that (2) is over-determined5 when k < n, and under-
determined when k > n. In the case of the over-determined systems, it is
proved in [3] that although the system (2) is over-determined, it has a solution
~x = (x0, ..., x2k−1) dependent only on x0, ..., xk−1.

The 1-corner relationship for cross networks is particularly simple, stating
that

λm,j − λm,j+1 = 0 for all m /∈ {j, j + 1} (3)

and
λj,j − λj+1,j+1 = 0 (4)

where j is one of n, 2n, 3n, 4n.

Figure 4: the parallel-sides relationship for a 3× 3 network

4Of course, consider all indices as residues modulo 4n, e.g. 4n + 1 and 1 are equivalent

as indices. Also note that for every k there are exactly four possible choices of j: j =

n− k + 1, 2n− k + 1, 3n− k + 1, 4n− k + 1.
5xk, ..., x2k−1 in terms of x0, ..., xk−1.
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3.2.2 Remark

In the case of cross networks, this method discovers a relationship between Λ+
n;α

and Λ+
n−1;α|

Ω
+

n−1

: when k = n, the same coefficients {xi} will solve the two

equations

2k−1
∑

i=0

xiλ
+
n−1;m,j+i = 0, for all m /∈ {j, j + 1, ..., j + 2k − 1} (5)

and

2k−1
∑

i=0

χ(i)xiλ
+
n;m,j+i = 0, for all m /∈ {j, j + 1, ..., j + 2k − 1}, (6)

where χ(i) =
{

+1 if 0 < i < 2k − 1;
−1 if i = 0 or i = 2k − 1

.

3.2.3 Cone relations

In the case that n is odd, the following relationship is also possible. Specifying
voltage and current zero at all nodes on the north and south faces, as in Figure
4, the system

n
∑

i=1

xiλ
+
m,i+

3n
∑

i=2n+1

xi−nλ
+
m,i = 0 for all m ∈ {n+1, ..., 2n}∪{3n+1, ..., 4n}

(7)
uniquely determines ~x as a function of x1. The same relation can be found with
respect to two adjacent sides, as a special case of (2).

In any case (n even or odd), a relation similar to (7) holds: given any interior
node that is the center of a cross, it is possible to force the potential to be zero
at that node and all nodes whose heading6 θ, relative to the node in question,
satisfies −π

4
≤ θ ≤ π

4
or 3

4
π ≤ θ ≤ 5

4
π, by solving the (over-determined) system

2n−y+z
∑

i=2n−y−z

xi−2n+y−zλ
+
m,i +

4n−y−z
∑

i=2n+y+z

xi−2yλ
+
m,i = 0, (8)

for all m /∈ {2n− y − z, ..., 2n− y + z} ∪ {2n+ y + z, ..., 4n+ y − z}

for ~x in terms of x0, where (y, z) are the Cartesian coördinates of the cross
element in question, considering the south-western-most element as (0, 0). This
is exactly relation (7) when y = z = n−1

2
.

6where due east is considered to be heading zero, and proceeding counter-clockwise to 2π,

which is again due east.
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3.3 Specialized derivations: α← Λ+
α

The algorithm to find α proceeding inward from the corners is described in
detail in [2]; the only additions are as follows:

• The corner conductances are immediately evident, for example αSE =
λn,n − λn,n+1, from the 1-corner relationship.

• After finding the conductances for each ladder, the known “half” of the
conductance associated with a cross of known conductance must be “sub-
tracted” using (1) to find the next diagonal of crosses. Since only one leg
of a cross need be computed, only half of the information gained in the so-
lution to the general inverse problem need be employed; or, alternatively,
the redundant information can be used to give greater accuracy.

Using the corner method, n2 variables xj;k;i must be determined, and if all
of the corner relationships are used, the system can be redundantly over-solved
2 + 2

n times.
If the conductance of a specific element is all that is desired, relation (8)

may prove useful. The conductances of boundary elements can be solved for
directly, setting x0 = 1; α∗, the conductance in question, is given by

α∗ =

4n
∑

i=1

ϕiλ
+
m,i (9)

where ~ϕ is the boundary potential vector obtained from (8).

Figure 5: a cone relationship
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Once three adjacent boundary crosses are known, relation (8) can again
be used to find the conductance of the element neighboring the centermost of
the three elements; and in general, if the conductances of all crosses forming a
wedge, the tip of which is the “element in question”, are known, (8) can be used
to determine its conductance.

To solve the entire inverse problem in this fashion would require solving for

4
∑n/2

i=1(n − i)(2n − 2i + 1) variables; it is apparent that this method is useful
primarily for determining the conductance of single elements at or near the edge
of a large network.

3.3.1 Isolation

The method of “resistor isolation” given in [4] can also be applied to cross
networks, although unlike general square-lattice networks, a path of elements
with known conductances must join the element in question with the boundary
if its conductance is to be determined.

Figure 6: Landrum’s “resistor isolation”

In the general case, the method proceeds as follows: the conductor in ques-
tion, which I shall call I, has two nodes: a “top” node and a “bottom” node.
To all boundary nodes whose heading, relative to the “top” node satisfies
3π
4
≤ θ ≤ 5π

4
, assign the potential +1, and to all boundary nodes whose heading,

relative to the “bottom” node, satisfies −π
4
≤ θ ≤ π

4
, potential 0, and to all

of these boundary nodes assign current 0. This forces two wedges of constant
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potential, as shown in Figure 6. The system

2n
∑

i=2n−y−z

x2n−y−z+iλm,i +

2n+x+y+2
∑

i=2n−y+z+2

λm,i +

4n+y−z
∑

i=3n

xi−2z−2λm,i = 0, (10)

for all m ∈ {y − z + 1, ..., 2n− y − z − 1} ∪ {2n− y + z + 2, ..., 2n+ y + z + 2},

where (y, z) are the Cartesian coördinates of the bottom of I, with (0, 0) des-
ignating the south-western-most interior node, can be solved for ~x, and hence
for ~ϕ, the 4n-dimensional vector of potentials around the boundary. In [4] it is
shown that the current through I, which is equal to the total flux through the
“top” of the network, i.e.

5n−z
∑

i=2n+z+1

λi,jϕi (11)

is also equal to the conductance of I, by Ohm’s law.
Additional conductances are gained where the wedges of potential 0 and 1

join to the nodes whose potentials were determined by (10); since the potential
of the nodes in the wedge is fixed, and the potential at and current through the
boundary node is known, Ohm’s law will reveal the conductance of the joining
conductor. At least two conductances can be gained in such a fashion, raising
the total for this procedure to at least three conductances–although, as we are
warned in [4], accuracy rapidly drops as (y, z) is removed from (n−1

2
, n−1

2
).

Unfortunately, however, returning to the cross network, this information is
not sufficient to recover any cross that does not border on another element whose
conductance is known.

4 Characterization: Which Λ’s are Λ+’s?

Obviously, not all square-lattice networks are of solar cross type; but every cross
network generates a square-lattice network from which it is recoverable. The
question arises, then, how to tell the legal cross networks from illegal or ordinary
square-lattice networks. If the conductances are known, boundary crosses need
only be peeled off until none remain (legal) or a contradiction is reached (illegal).

Alternatively, the network can be subjected to the k-corner relationships
stated in section 3.2.1, in a partial solution of the inverse problem; if any con-
tradictions arise, e.g. if λn;m,n − λn;m,n+1 6= 0 for any m /∈ {n, n+ 1}, this Λ is
not a legal λ+-matrix.
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