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1 Introduction

We consider the following network Ω. The nodes of Ω are the points
in 3D space. The set of nodes is denoted by Ωn. We define some
subset Ωb of Ωn as boundary nodes, so that cardinality of Ωb Nb =
cardΩb ≥ 2. All other nodes of Ωn are called interior. The set of
interior nodes is denoted by Ωi. Ni = cardΩi ≥ 0.

Ωn = Ωb ∪ Ωi.
Ωb ∩ Ωi = ø.
N = cardΩn = Nb + Ni.

For two different nodes p and q belonging to Ωn the number γ(pq)
is called conductance of pq. The function γ, called conductivity, is a
non-negative real function. Two nodes p and q are called neighbors
if γ(pq) > 0. The set of all neighbors of node p is called N(p). If p
and q are neighbors pq is called an edge or a conductor.

A network of conductors is a network with defined set of boundary
nodes and conductivity function. Below we will call a network of
conductors just a network.

For a node p belonging to Ωn u(p) denotes the potential at p. A
function u: Ωn → R gives the current from node p to q ∈ N(p) by
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Ohm’s Law
I(pq) = γ(pq)(u(p)− u(q)).

For q /∈ N(p)
I(pq) = I(qp) = 0.

For a boundary node q

I(q) =
∑

p∈N(q)

I(qp)

is called a boundary current.
A function u is called γ-harmonic function, if for each interior

node p
∑

q∈N(p)

I(pq) = 0.

According to Kirchoff’s Law, if a function φ is defined at the bound-
ary nodes, the network Ω will acquire a unique γ-harmonic function
u with u(p) = φ(p) for all boundary nodes p.

For a network Ω with a conductivity function on it the linear
map Λ: φ→ Iφ is defined by Λφ = Iφ, where φ is a vector of bound-
ary potentials Iφ is the corresponding vector of boundary currents.
This map is called Dirichlet-to-Neumann map. ¿From the maximum
principle and Kirchoff’s and Ohm’s Laws it can be proved that any
Λ has following properties (See [1])

• it is symmetric

• all non-diagonal entries are non-positive

• total of all entries in each row equals 0.

2 Plane equivalent of a network

Definition 2.1 The Kirchoff matrix of the network Ω is a square
NxN matrix K(Ω) = {kij} where

kij = −γ(pipj) if i 6= j
and

kii =
∑

q∈N(pi) γ(piq).
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The matrix K(Ω) contains all information about conductivity func-
tion of network Ω. We denote the set of Kirchoff matrices by K. A
matrix M = {mij} belongs to K if

mij = mji ≤ 0 if i 6= j,
mii > 0,
∑N

j=1mij = 0.

By this definition the set of Dirichlet-to-Neumann maps belongs to
K.

If Ω̄ is a network with no interior nodes, by Kirchoff’s and Ohm’s
Laws

K(Ω̄)φ = Iφ,

therefore,
K(Ω̄) = Λ(Ω̄).

This proves the next statements.
Statement 2.2 The set of Dirichlet-to-Neumann maps equals

K.
Statement 2.3 For any Λ ∈ K there exists unique network

Ω with no interior nodes such that Λ represents the Dirichlet-to-
Neumann map for Ω.

Statement 2.4 The map from networks with no interior nodes
to Dirichlet-to-Neumann maps is 1 ↔ 1.

Definition 2.5 A plane equivalent of network Ω is a network
Ω̄ with no interior nodes which has the same Dirichlet-to-Neumann
map as Ω.

Theorem 2.6 Any resistor network has unique plane equivalent.
Definition 2.7 Two networks are equivalent if they have the

same plane equivalent.
For a network Ω with a conductivity function on it the linear map

Φ: φ→ uφ is defined by Φφ = uφ, where φ is a vector of boundary
potentials and uφ is the corresponding vector of potentials on nodes
of Ω. Φ is represented by an NxNb matrix.

We number nodes of a network Ω so that boundary nodes go first.
That is,

pi ∈ Ωb ⇔ i ≤ Nb

and
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pi ∈ Ωi ⇔ i > Nb.

We write K(Ω) and Φ(Ω) in block form,

Φ(Ω) = I and K(Ω) = K ′ MT

ΦΩ M Ξ

where I is the identity matrix. Now using Kirchoff’s and Ohm’s
Laws we obtain that

K ′ MT I = Λ(Ω)

M Ξ ΦΩ 0
(1)

where 0 is a zero matrix. Since Ξ is non-singular, we can obtain
that

Λ(Ω) = K(Ω̄) = K ′ −MTΞ−1M. (2)

This equation expresses the Dirichlet-to-Neumann map of a network
in terms of blocks of this network’s Kirchoff matrix.

3 Blocks in Dirichlet-to-Neumann maps

We consider a network Ω with Dirichlet-to-Neumann map Λ. We
write the Kirchoff matrix of Ω in block form,

K(Ω) = K ′ MT

M Ξ

Let A be a n by n square submatrix of K ′ corresponding to rows
i1, ..., in and columns j1, ..., jn. Let C be the Nixn matrix formed
by choosing columns j1, ..., jn of block M. Let B be the nxNi matrix
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formed by choosing rows i1, ..., in of block MT . ΛA is the submatrix
of Λ corresponding to rows i1, ..., in and columns j1, ..., jn.

By formula (2)
ΛA = A−BΞ−1C.

Now we have that

A B I 0 = ΛA B

C Ξ −Ξ−1C I 0 Ξ

If

W = A B

C Ξ

we obtain that
|W | = |ΛA||Ξ|. (3)

Taking A to be an entry of K ′ we can find any entry of Λ in terms
of two determinants of blocks of K(Ω).

λij = k′ij mT
i /|Ξ|.

mj Ξ

Since Ξ is positive definite we have that

sign|ΛA| = sign|W |.

4 Theorem about elimination of a subnetwork

Definition 4.1 A network Ω̂ = {Ω̂n, Ω̂b, γ̂} is a subnetwork of
Ω = {Ωn,Ωb, γ} if

Ω̂i ⊂ Ωi.
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Ω̂b = (∪p∈Ω̂i
N(p))\Ω̂i.

p, q ∈ Ω̂n ⇒ γ̂(pq) = γ(pq).

Any subnetwork is defined by its set of interior nodes. The Kirchoff
matrix K̂ of Ω̂ is a principal submatrix of K.

Definition 4.2 Elimination of a subnetwork Ω̂ from a network
Ω is a transformation of Ω to Ψ denoted by Ωª Ω̂ if

Ψb = Ωb

Ψi = Ωi\Ω̂i.

γΨ(pq) = γΩ(pq) if p /∈ Ω̂n.

γΨ(pq) = γ ˆ̄Ω
(pq) if p, q ∈ Ω̂b.

where γ ˆ̄Ω
is the conductivity function on the plane equivalent of Ω̂.

In other words to eliminate some subnetwork from a network is to
replace this subnetwork with its plane equivalent.

We number the nodes so that the boundary nodes of Ω go first
and interior nodes of Ω̂ go last. That is,

pi ∈ Ωb ⇔ i ≤ cardΩb

and
pi ∈ Ω̂i ⇔ i > cardΩ− cardΩ̂i

Now we have that

K ′ P T UT

K(Ω) = P S RT

U R C

Taking into account that C is non-singular and using Definition 4.2
and formula (2) we can obtain that if Ψ = Ωª Ω̂ then
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K(Ψ) = K ′ − UTC−1U P T − UTC−1R = Λ({Ψn,Ψn, γΨ})

P −RTC−1U S −RTC−1R

We define linear maps Φ(Ω) and Φ(Ψ) as it was done in Section 2.
Solving equation (1) we obtain that

ΦΨ = −(S −RTC−1R)−1(P −RTC−1U)

and

I

Φ(Ω) = ΦΨ = Φ(Ψ)

−C−1(T +RΦΨ) −C−1(T +RΦΨ)

The non-singularity of S−RTC−1R follows from (3). Now it is easy
to show that

Λ(Ψ) = Λ(Ω).

We proved the following theorem.
Theorem 4.4 Suppose Ψ = Ω ª Ω̂ where Ω̂ is a subnetwork

of Ω. Then Ψ and Ω are equivalent. That is Λ(Ψ) = Λ(Ω). The
matrix Φ(Ψ) is an upper part of Φ(Ω). Therefore,

IΨ(pq) = IΩ(pq) if p, q /∈ ΨN .

In other words, elimination of a subnetwork does not affect poten-
tials and currents outside of it.

5 Recoverable networks

We will say that we know the shape of a network if we know all
neighbors for each node of this network.

Definition 5.1 A network is recoverable if there does not exist a
network with the same shape, same plane equivalent (or Dirichlet-
to-Neumann map), and different conductivity function.
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A network is non-recoverable if it is not recoverable.
By Definition 5.1 two recoverable networks with the same shape

have different plane equivalents.
Statement 5.2 All subnetworks of a recoverable network are

recoverable.
Elimination of node p is an elimination of a subnetwork Ω̂ such

that Ω̂i = p.
Elimination of a subnetwork Ω̂ from Ω results in the same network

as elimination of all interior nodes of Ω̂ in any order. Elimination
of some set S of interior nodes of Ω results in the same network as
elimination of the subnetwork Ω̂ if Ω̂i = S.

By Theorem 4.4 elimination of an interior node p of a network Ω
does not affect plane equivalent of any subnetwork Ω̂ of Ω if p ∈ Ω̂i.

6 Chain elimination

We consider a network Ω = {Ωn,Ωb, γ} with Ωb 6= Ωn. We will
eliminate interior nodes of Ω one by one. The network obtained
after jth elimination is called Ωj. Let

Ej = Ωn\Ω
j
n.

Let Ω̂j be the subnetwork of Ω with Ω̂j
i = Ej. Then

Ωj = Ωª Ω̂j.

By Theorem 4.4
Λ(Ω) = Λ(Ωj).

Let Ψj = {Ωn,Ψ
j
b, γ} where

Ψj
b = Ωn\E

j.

ΨNi = Ω. By formula (2) we obtain that

K(Ωª Ω̂j) = K(Ωj) = Λ(Ψj).

K(Ω) = Λ(Ψ0).
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7 Specific comments

Formula (2) gives a direct algorithm for finding the Dirichlet-to-
Neumann map for any network with known conductivity function.
For networks with two boundary nodes this formula represents the
generalized parallel and series laws of electrical circuit theory.
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