Theory of Equivalent Networks and Some of its Applications

David V. Ingerman

1992

1 Introduction

We consider the following network Ω . The nodes of Ω are the points in 3D space. The set of nodes is denoted by Ω_n . We define some subset Ω_b of Ω_n as *boundary* nodes, so that cardinality of Ω_b N_b = $card\Omega_b \geq 2$. All other nodes of Ω_n are called *interior*. The set of interior nodes is denoted by Ω_i . N_i = $card\Omega_i \geq 0$.

 $\begin{aligned} \Omega_n &= \Omega_b \cup \Omega_i. \\ \Omega_b \cap \Omega_i &= \emptyset. \\ \mathbf{N} &= card\Omega_n = \mathbf{N}_b + \mathbf{N}_i. \end{aligned}$

For two different nodes p and q belonging to Ω_n the number $\gamma(pq)$ is called *conductance* of pq. The function γ , called *conductivity*, is a non-negative real function. Two nodes p and q are called *neighbors* if $\gamma(pq) > 0$. The set of all neighbors of node p is called N(p). If p and q are neighbors pq is called an *edge* or a *conductor*.

A *network of conductors* is a network with defined set of boundary nodes and conductivity function. Below we will call a network of conductors just a network.

For a node p belonging to $\Omega_n u(p)$ denotes the potential at p. A function $u: \Omega_n \to \mathbb{R}$ gives the *current* from node p to $q \in N(p)$ by

Ohm's Law

$$I(pq) = \gamma(pq)(u(p) - u(q)).$$

For $q \notin N(p)$

$$I(pq) = I(qp) = 0.$$

For a boundary node q

$$I(q) = \sum_{p \in N(q)} I(qp)$$

is called a *boundary current*.

A function u is called γ -harmonic function, if for each interior node p

$$\sum_{q \in N(p)} I(pq) = 0.$$

According to *Kirchoff's Law*, if a function ϕ is defined at the boundary nodes, the network Ω will acquire a unique γ -harmonic function u with $u(p) = \phi(p)$ for all boundary nodes p.

For a network Ω with a conductivity function on it the linear map $\Lambda: \phi \to I_{\phi}$ is defined by $\Lambda \phi = I_{\phi}$, where ϕ is a vector of boundary potentials I_{ϕ} is the corresponding vector of boundary currents. This map is called Dirichlet-to-Neumann map. ¿From the maximum principle and Kirchoff's and Ohm's Laws it can be proved that any Λ has following properties (See [1])

- it is symmetric
- all non-diagonal entries are non-positive
- total of all entries in each row equals 0.

2 Plane equivalent of a network

Definition 2.1 The *Kirchoff matrix* of the network Ω is a square NxN matrix $K(\Omega) = \{k_{ij}\}$ where

$$k_{ij} = -\gamma(p_i p_j)$$
 if $i \neq j$

and

$$k_{ii} = \sum_{q \in N(p_i)} \gamma(p_i q).$$

The matrix $K(\Omega)$ contains all information about conductivity function of network Ω . We denote the set of Kirchoff matrices by \mathcal{K} . A matrix $M = \{m_{ij}\}$ belongs to \mathcal{K} if

$$m_{ij} = m_{ji} \le 0 \qquad \text{if} \qquad i \ne j,$$

$$m_{ii} > 0,$$

$$\sum_{j=1}^{N} m_{ij} = 0.$$

By this definition the set of Dirichlet-to-Neumann maps belongs to \mathcal{K} .

If Ω is a network with no interior nodes, by Kirchoff's and Ohm's Laws

$$K(\bar{\Omega})\phi = I_{\phi},$$

therefore,

$$K(\bar{\Omega}) = \Lambda(\bar{\Omega}).$$

This proves the next statements.

Statement 2.2 The set of Dirichlet-to-Neumann maps *equals* \mathcal{K} .

Statement 2.3 For any $\Lambda \in \mathcal{K}$ there exists unique network Ω with no interior nodes such that Λ represents the Dirichlet-to-Neumann map for Ω .

Statement 2.4 The map from networks with no interior nodes to Dirichlet-to-Neumann maps is $1 \leftrightarrow 1$.

Definition 2.5 A plane equivalent of network Ω is a network $\overline{\Omega}$ with no interior nodes which has the same Dirichlet-to-Neumann map as Ω .

Theorem 2.6 Any resistor network has unique plane equivalent.

Definition 2.7 Two networks are *equivalent* if they have the same plane equivalent.

For a network Ω with a conductivity function on it the linear map $\Phi: \phi \to u_{\phi}$ is defined by $\Phi \phi = u_{\phi}$, where ϕ is a vector of boundary potentials and u_{ϕ} is the corresponding vector of potentials on nodes of Ω . Φ is represented by an NxN_b matrix.

We number nodes of a network Ω so that boundary nodes go first. That is,

$$p_i \in \Omega_b \Leftrightarrow i \leq \mathcal{N}_b$$

and

$$p_i \in \Omega_i \Leftrightarrow i > \mathcal{N}_b$$

We write $K(\Omega)$ and $\Phi(\Omega)$ in block form,

$$\Phi(\Omega) = \begin{bmatrix} I \\ \Phi_{\Omega} \end{bmatrix} \text{ and } K(\Omega) = \begin{bmatrix} K' & M^T \\ M & \Xi \end{bmatrix}$$

where I is the identity matrix. Now using Kirchoff's and Ohm's Laws we obtain that

$$\begin{array}{c|cccc}
K' & M^T \\
\hline
M & \Xi \\
\end{array} & \hline
\Phi_{\Omega} \\
\end{array} = \boxed{\Lambda(\Omega)} \\
0
\end{array}$$
(1)

where θ is a zero matrix. Since Ξ is non-singular, we can obtain that

$$\Lambda(\Omega) = K(\bar{\Omega}) = K' - M^T \Xi^{-1} M.$$
(2)

This equation expresses the Dirichlet-to-Neumann map of a network in terms of blocks of this network's Kirchoff matrix.

3 Blocks in Dirichlet-to-Neumann maps

We consider a network Ω with Dirichlet-to-Neumann map Λ . We write the Kirchoff matrix of Ω in block form,

$$K(\Omega) = \begin{array}{c|c} K' & M^T \\ \hline M & \Xi \end{array}$$

Let A be a n by n square submatrix of K' corresponding to rows $i_1, ..., i_n$ and columns $j_1, ..., j_n$. Let C be the $N_i \ge n$ matrix formed by choosing columns $j_1, ..., j_n$ of block M. Let B be the $n \ge N_i$ matrix

formed by choosing rows $i_1, ..., i_n$ of block M^T . Λ_A is the submatrix of Λ corresponding to rows $i_1, ..., i_n$ and columns $j_1, ..., j_n$.

By formula (2)

$$\Lambda_A = A - B \Xi^{-1} C.$$

Now we have that

A	В	Ι	0	=	Λ_A	В
С	[I]	$-\Xi^{-1}C$	Ι		0	[1]

If

$$W = \begin{bmatrix} A & B \\ C & \Xi \end{bmatrix}$$

we obtain that

$$|W| = |\Lambda_A||\Xi|. \tag{3}$$

Taking A to be an entry of K' we can find any entry of Λ in terms of two determinants of blocks of $K(\Omega)$.

$$\lambda_{ij} = \begin{vmatrix} k_{ij}' & m_i^T \\ m_j & \Xi \end{vmatrix} / |\Xi|.$$

Since Ξ is positive definite we have that

$$sign|\Lambda_A| = sign|W|.$$

4 Theorem about elimination of a subnetwork

Definition 4.1 A network $\hat{\Omega} = {\hat{\Omega}_n, \hat{\Omega}_b, \hat{\gamma}}$ is a *subnetwork* of $\Omega = {\Omega_n, \Omega_b, \gamma}$ if

 $\hat{\Omega}_i \subset \Omega_i.$

$$\hat{\Omega}_b = (\bigcup_{p \in \hat{\Omega}_i} N(p)) \setminus \hat{\Omega}_i.$$

$$p, q \in \hat{\Omega}_n \Rightarrow \hat{\gamma}(pq) = \gamma(pq).$$

Any subnetwork is defined by its set of interior nodes. The Kirchoff matrix \hat{K} of $\hat{\Omega}$ is a principal submatrix of K.

Definition 4.2 *Elimination* of a subnetwork $\hat{\Omega}$ from a network Ω is a transformation of Ω to Ψ denoted by $\Omega \ominus \hat{\Omega}$ if

$\Psi_b = \Omega_b$		
$\Psi_i = \Omega_i \backslash \hat{\Omega}_i.$		
$\gamma_{\Psi}(pq) = \gamma_{\Omega}(pq)$	if	$p \notin \hat{\Omega}_n$.
$\gamma_{\Psi}(pq) = \gamma_{\hat{\bar{\Omega}}}(pq)$	if	$p,q\in\hat{\Omega}_b.$

where $\gamma_{\hat{\Omega}}$ is the conductivity function on the plane equivalent of $\hat{\Omega}$. In other words to eliminate some subnetwork from a network is to replace this subnetwork with its plane equivalent.

We number the nodes so that the boundary nodes of Ω go first and interior nodes of $\hat{\Omega}$ go last. That is,

 $p_i \in \Omega_b \Leftrightarrow i \leq card\Omega_b$

and

$$p_i \in \hat{\Omega}_i \Leftrightarrow i > card\Omega - card\hat{\Omega}_i$$

Now we have that

	K'	P^T	U^T
$K(\Omega) =$	Р	S	R^T
	U	R	C

Taking into account that C is non-singular and using Definition 4.2 and formula (2) we can obtain that if $\Psi = \Omega \ominus \hat{\Omega}$ then

$$K(\Psi) = \begin{bmatrix} K' - U^T C^{-1} U & P^T - U^T C^{-1} R \\ P - R^T C^{-1} U & S - R^T C^{-1} R \end{bmatrix} = \Lambda(\{\Psi_n, \Psi_n, \gamma_{\Psi}\})$$

We define linear maps $\Phi(\Omega)$ and $\Phi(\Psi)$ as it was done in Section 2. Solving equation (1) we obtain that

$$\Phi_{\Psi} = -(S - R^T C^{-1} R)^{-1} (P - R^T C^{-1} U)$$

and

$$\Phi(\Omega) = \begin{bmatrix} I \\ \Phi_{\Psi} \\ -C^{-1}(T + R\Phi_{\Psi}) \end{bmatrix} = \begin{bmatrix} \Phi(\Psi) \\ -C^{-1}(T + R\Phi_{\Psi}) \end{bmatrix}$$

The non-singularity of $S - R^T C^{-1} R$ follows from (3). Now it is easy to show that

$$\Lambda(\Psi) = \Lambda(\Omega).$$

We proved the following theorem.

Theorem 4.4 Suppose $\Psi = \Omega \ominus \hat{\Omega}$ where $\hat{\Omega}$ is a subnetwork of Ω . Then Ψ and Ω are equivalent. That is $\Lambda(\Psi) = \Lambda(\Omega)$. The matrix $\Phi(\Psi)$ is an upper part of $\Phi(\Omega)$. Therefore,

$$I_{\Psi}(pq) = I_{\Omega}(pq)$$
 if $p, q \notin \Psi_N$.

In other words, elimination of a subnetwork does not affect potentials and currents outside of it.

5 Recoverable networks

We will say that we know the *shape* of a network if we know all neighbors for each node of this network.

Definition 5.1 A network is *recoverable* if there does not exist a network with the same shape, same plane equivalent (or Dirichlet-to-Neumann map), and different conductivity function.

A network is *non-recoverable* if it is not recoverable.

By Definition 5.1 two recoverable networks with the same shape have different plane equivalents.

Statement 5.2 All subnetworks of a recoverable network are recoverable.

Elimination of node p is an elimination of a subnetwork $\hat{\Omega}$ such that $\hat{\Omega}_i = p$.

Elimination of a subnetwork $\hat{\Omega}$ from Ω results in the same network as elimination of all interior nodes of $\hat{\Omega}$ in any order. Elimination of some set S of interior nodes of Ω results in the same network as elimination of the subnetwork $\hat{\Omega}$ if $\hat{\Omega}_i = S$.

By Theorem 4.4 elimination of an interior node p of a network Ω does not affect plane equivalent of any subnetwork $\hat{\Omega}$ of Ω if $p \in \hat{\Omega}_i$.

6 Chain elimination

We consider a network $\Omega = \{\Omega_n, \Omega_b, \gamma\}$ with $\Omega_b \neq \Omega_n$. We will eliminate interior nodes of Ω one by one. The network obtained after j^{th} elimination is called Ω^j . Let

$$E^j = \Omega_n \backslash \Omega_n^j.$$

Let $\hat{\Omega}^j$ be the subnetwork of Ω with $\hat{\Omega}^j_i = E^j$. Then

$$\Omega^j = \Omega \ominus \hat{\Omega}^j.$$

By Theorem 4.4

 $\Lambda(\Omega) = \Lambda(\Omega^j).$

Let $\Psi^j = \{\Omega_n, \Psi^j_b, \gamma\}$ where

$$\Psi_h^j = \Omega_n \backslash E^j.$$

 $\Psi^{N_i} = \Omega$. By formula (2) we obtain that

$$K(\Omega \ominus \hat{\Omega}^{j}) = K(\Omega^{j}) = \Lambda(\Psi^{j}).$$
$$K(\Omega) = \Lambda(\Psi^{0}).$$

7 Specific comments

Formula (2) gives a direct algorithm for finding the Dirichlet-to-Neumann map for any network with known conductivity function. For networks with two boundary nodes this formula represents the generalized parallel and series laws of electrical circuit theory.