Theory of Equivalent Networks
 and
 Some of its Applications

David V. Ingerman

1992

1 Introduction

We consider the following network Ω. The nodes of Ω are the points in 3D space. The set of nodes is denoted by Ω_{n}. We define some subset Ω_{b} of Ω_{n} as boundary nodes, so that cardinality of $\Omega_{b} \mathrm{~N}_{b}=$ $\operatorname{card} \Omega_{b} \geq 2$. All other nodes of Ω_{n} are called interior. The set of interior nodes is denoted by $\Omega_{i} . \mathrm{N}_{i}=\operatorname{card} \Omega_{i} \geq 0$.

$$
\begin{aligned}
& \Omega_{n}=\Omega_{b} \cup \Omega_{i} . \\
& \Omega_{b} \cap \Omega_{i}=\emptyset . \\
& \mathrm{N}=\operatorname{card\Omega _{n}}=\mathrm{N}_{b}+\mathrm{N}_{i} .
\end{aligned}
$$

For two different nodes p and q belonging to Ω_{n} the number $\gamma(p q)$ is called conductance of $p q$. The function γ, called conductivity, is a non-negative real function. Two nodes p and q are called neighbors if $\gamma(p q)>0$. The set of all neighbors of node p is called $N(p)$. If p and q are neighbors $p q$ is called an edge or a conductor.

A network of conductors is a network with defined set of boundary nodes and conductivity function. Below we will call a network of conductors just a network.

For a node p belonging to $\Omega_{n} u(p)$ denotes the potential at p. A function $u: \Omega_{n} \rightarrow \mathrm{R}$ gives the current from node p to $q \in N(p)$ by

Ohm's Law

$$
I(p q)=\gamma(p q)(u(p)-u(q)) .
$$

For $q \notin N(p)$

$$
I(p q)=I(q p)=0
$$

For a boundary node q

$$
I(q)=\sum_{p \in N(q)} I(q p)
$$

is called a boundary current.
A function u is called γ-harmonic function, if for each interior node p

$$
\sum_{q \in N(p)} I(p q)=0
$$

According to Kirchoff's Law, if a function ϕ is defined at the boundary nodes, the network Ω will acquire a unique γ-harmonic function u with $u(p)=\phi(p)$ for all boundary nodes p.

For a network Ω with a conductivity function on it the linear $\operatorname{map} \Lambda: \phi \rightarrow I_{\phi}$ is defined by $\Lambda \phi=I_{\phi}$, where ϕ is a vector of boundary potentials I_{ϕ} is the corresponding vector of boundary currents. This map is called Dirichlet-to-Neumann map. ¿From the maximum principle and Kirchoff's and Ohm's Laws it can be proved that any Λ has following properties (See [1])

- it is symmetric
- all non-diagonal entries are non-positive
- total of all entries in each row equals 0 .

2 Plane equivalent of a network

Definition 2.1 The Kirchoff matrix of the network Ω is a square NxN matrix $K(\Omega)=\left\{k_{i j}\right\}$ where

$$
k_{i j}=-\gamma\left(p_{i} p_{j}\right) \quad \text { if } \quad i \neq j
$$

and

$$
k_{i i}=\sum_{q \in N\left(p_{i}\right)} \gamma\left(p_{i} q\right) .
$$

The matrix $K(\Omega)$ contains all information about conductivity function of network Ω. We denote the set of Kirchoff matrices by \mathcal{K}. A matrix $M=\left\{m_{i j}\right\}$ belongs to \mathcal{K} if

$$
\begin{aligned}
& m_{i j}=m_{j i} \leq 0 \quad \text { if } \quad i \neq j, \\
& m_{i i}>0, \\
& \sum_{j=1}^{N} m_{i j}=0 .
\end{aligned}
$$

By this definition the set of Dirichlet-to-Neumann maps belongs to \mathcal{K}.

If $\bar{\Omega}$ is a network with no interior nodes, by Kirchoff's and Ohm's Laws

$$
K(\bar{\Omega}) \phi=I_{\phi},
$$

therefore,

$$
K(\bar{\Omega})=\Lambda(\bar{\Omega}) .
$$

This proves the next statements.
Statement 2.2 The set of Dirichlet-to-Neumann maps equals \mathcal{K}.

Statement 2.3 For any $\Lambda \in \mathcal{K}$ there exists unique network Ω with no interior nodes such that Λ represents the Dirichlet-toNeumann map for Ω.

Statement 2.4 The map from networks with no interior nodes to Dirichlet-to-Neumann maps is $1 \leftrightarrow 1$.

Definition 2.5 A plane equivalent of network Ω is a network $\bar{\Omega}$ with no interior nodes which has the same Dirichlet-to-Neumann map as Ω.

Theorem 2.6 Any resistor network has unique plane equivalent.
Definition 2.7 Two networks are equivalent if they have the same plane equivalent.

For a network Ω with a conductivity function on it the linear map $\Phi: \phi \rightarrow u_{\phi}$ is defined by $\Phi \phi=u_{\phi}$, where ϕ is a vector of boundary potentials and u_{ϕ} is the corresponding vector of potentials on nodes of Ω. Φ is represented by an NxN_{b} matrix.

We number nodes of a network Ω so that boundary nodes go first. That is,

$$
p_{i} \in \Omega_{b} \Leftrightarrow i \leq \mathrm{N}_{b}
$$

and

$$
p_{i} \in \Omega_{i} \Leftrightarrow i>\mathrm{N}_{b} .
$$

We write $\mathrm{K}(\Omega)$ and $\Phi(\Omega)$ in block form,

$$
\Phi(\Omega)=\begin{array}{|c|}
\hline I \\
\hline \Phi_{\Omega} \\
\hline
\end{array} \text { and } \quad K(\Omega)=\begin{array}{|c|c|}
\hline K^{\prime} & M^{T} \\
\hline M & \Xi \\
\hline
\end{array}
$$

where I is the identity matrix. Now using Kirchoff's and Ohm's Laws we obtain that

where 0 is a zero matrix. Since Ξ is non-singular, we can obtain that

$$
\begin{equation*}
\Lambda(\Omega)=K(\bar{\Omega})=K^{\prime}-M^{T} \Xi^{-1} M \tag{2}
\end{equation*}
$$

This equation expresses the Dirichlet-to-Neumann map of a network in terms of blocks of this network's Kirchoff matrix.

3 Blocks in Dirichlet-to-Neumann maps

We consider a network Ω with Dirichlet-to-Neumann map Λ. We write the Kirchoff matrix of Ω in block form,

$$
K(\Omega)=\begin{array}{|c|c|}
\hline K^{\prime} & M^{T} \\
\hline M & \Xi \\
\hline
\end{array}
$$

Let A be a n by n square submatrix of K^{\prime} corresponding to rows i_{1}, \ldots, i_{n} and columns j_{1}, \ldots, j_{n}. Let C be the $\mathrm{N}_{i} \mathrm{x} n$ matrix formed by choosing columns j_{1}, \ldots, j_{n} of block M. Let B be the $n \mathrm{xN}_{i}$ matrix
formed by choosing rows i_{1}, \ldots, i_{n} of block $M^{T} . \Lambda_{A}$ is the submatrix of Λ corresponding to rows i_{1}, \ldots, i_{n} and columns j_{1}, \ldots, j_{n}.

By formula (2)

$$
\Lambda_{A}=A-B \Xi^{-1} C
$$

Now we have that

A	B
C	Ξ

I	0			
$-\Xi^{-1} C$	I		Λ_{A}	B
:---:	:---:			
0	Ξ			

If

$$
W=\begin{array}{|l|l|}
\hline A & B \\
\hline C & \Xi \\
\hline
\end{array}
$$

we obtain that

$$
\begin{equation*}
|W|=\left|\Lambda_{A}\right||\Xi| . \tag{3}
\end{equation*}
$$

Taking A to be an entry of K^{\prime} we can find any entry of Λ in terms of two determinants of blocks of $K(\Omega)$.

$$
\lambda_{i j}=\left|\begin{array}{|c|c|}
\hline k_{i j}^{\prime} & m_{i}^{T} \\
\hline m_{j} & \Xi \\
\hline
\end{array}\right| /|\Xi| .
$$

Since Ξ is positive definite we have that

$$
\operatorname{sign}\left|\Lambda_{A}\right|=\operatorname{sign}|W| .
$$

4 Theorem about elimination of a subnetwork

Definition 4.1 A network $\hat{\Omega}=\left\{\hat{\Omega}_{n}, \hat{\Omega}_{b}, \hat{\gamma}\right\}$ is a subnetwork of $\Omega=\left\{\Omega_{n}, \Omega_{b}, \gamma\right\}$ if

$$
\hat{\Omega}_{i} \subset \Omega_{i} .
$$

$$
\begin{aligned}
& \hat{\Omega}_{b}=\left(\cup_{p \in \hat{\Omega}_{i}} N(p)\right) \backslash \hat{\Omega}_{i} \\
& p, q \in \hat{\Omega}_{n} \Rightarrow \hat{\gamma}(p q)=\gamma(p q)
\end{aligned}
$$

Any subnetwork is defined by its set of interior nodes. The Kirchoff matrix \hat{K} of $\hat{\Omega}$ is a principal submatrix of K.

Definition 4.2 Elimination of a subnetwork $\hat{\Omega}$ from a network Ω is a transformation of Ω to Ψ denoted by $\Omega \ominus \hat{\Omega}$ if

$$
\begin{aligned}
& \Psi_{b}=\Omega_{b} \\
& \Psi_{i}=\Omega_{i} \backslash \hat{\Omega}_{i} . \\
& \gamma_{\Psi}(p q)=\gamma_{\Omega}(p q) \\
& \gamma_{\Psi}(p q)=\gamma_{\hat{\Omega}}(p q)
\end{aligned} \quad \text { if } \quad \text { if } \quad p \notin \hat{\Omega}_{n} .
$$

where $\gamma_{\hat{\Omega}}$ is the conductivity function on the plane equivalent of $\hat{\Omega}$. In other words to eliminate some subnetwork from a network is to replace this subnetwork with its plane equivalent.

We number the nodes so that the boundary nodes of Ω go first and interior nodes of $\hat{\Omega}$ go last. That is,

$$
p_{i} \in \Omega_{b} \Leftrightarrow i \leq \operatorname{card} \Omega_{b}
$$

and

$$
p_{i} \in \hat{\Omega}_{i} \Leftrightarrow i>\operatorname{card} \Omega-\operatorname{card} \hat{\Omega}_{i}
$$

Now we have that

$K(\Omega)=$| K^{\prime} | P^{T} | U^{T} |
| :---: | :---: | :---: |
| P | S | R^{T} |
| U | R | C |

Taking into account that C is non-singular and using Definition 4.2 and formula (2) we can obtain that if $\Psi=\Omega \ominus \hat{\Omega}$ then

$$
K(\Psi)=\begin{array}{|c|c|}
\hline K^{\prime}-U^{T} C^{-1} U & P^{T}-U^{T} C^{-1} R \\
\hline P-R^{T} C^{-1} U & S-R^{T} C^{-1} R \\
\hline
\end{array}
$$

We define linear maps $\Phi(\Omega)$ and $\Phi(\Psi)$ as it was done in Section 2 .
Solving equation (1) we obtain that

$$
\Phi_{\Psi}=-\left(S-R^{T} C^{-1} R\right)^{-1}\left(P-R^{T} C^{-1} U\right)
$$

and

The non-singularity of $S-R^{T} C^{-1} R$ follows from (3). Now it is easy to show that

$$
\Lambda(\Psi)=\Lambda(\Omega)
$$

We proved the following theorem.
Theorem 4.4 Suppose $\Psi=\Omega \ominus \hat{\Omega}$ where $\hat{\Omega}$ is a subnetwork of Ω. Then Ψ and Ω are equivalent. That is $\Lambda(\Psi)=\Lambda(\Omega)$. The matrix $\Phi(\Psi)$ is an upper part of $\Phi(\Omega)$. Therefore,

$$
I_{\Psi}(p q)=I_{\Omega}(p q) \quad \text { if } \quad p, q \notin \Psi_{N} .
$$

In other words, elimination of a subnetwork does not affect potentials and currents outside of it.

5 Recoverable networks

We will say that we know the shape of a network if we know all neighbors for each node of this network.

Definition 5.1 A network is recoverable if there does not exist a network with the same shape, same plane equivalent (or Dirichlet-to-Neumann map), and different conductivity function.

A network is non-recoverable if it is not recoverable.
By Definition 5.1 two recoverable networks with the same shape have different plane equivalents.

Statement 5.2 All subnetworks of a recoverable network are recoverable.

Elimination of node p is an elimination of a subnetwork $\hat{\Omega}$ such that $\hat{\Omega}_{i}=p$.

Elimination of a subnetwork $\hat{\Omega}$ from Ω results in the same network as elimination of all interior nodes of $\hat{\Omega}$ in any order. Elimination of some set S of interior nodes of Ω results in the same network as elimination of the subnetwork $\hat{\Omega}$ if $\hat{\Omega}_{i}=S$.

By Theorem 4.4 elimination of an interior node p of a network Ω does not affect plane equivalent of any subnetwork $\hat{\Omega}$ of Ω if $p \in \hat{\Omega}_{i}$.

6 Chain elimination

We consider a network $\Omega=\left\{\Omega_{n}, \Omega_{b}, \gamma\right\}$ with $\Omega_{b} \neq \Omega_{n}$. We will eliminate interior nodes of Ω one by one. The network obtained after $j^{\text {th }}$ elimination is called Ω^{j}. Let

$$
E^{j}=\Omega_{n} \backslash \Omega_{n}^{j}
$$

Let $\hat{\Omega}^{j}$ be the subnetwork of Ω with $\hat{\Omega}_{i}^{j}=E^{j}$. Then

$$
\Omega^{j}=\Omega \ominus \hat{\Omega}^{j}
$$

By Theorem 4.4

$$
\Lambda(\Omega)=\Lambda\left(\Omega^{j}\right)
$$

Let $\Psi^{j}=\left\{\Omega_{n}, \Psi_{b}^{j}, \gamma\right\}$ where

$$
\Psi_{b}^{j}=\Omega_{n} \backslash E^{j}
$$

$\Psi^{\mathrm{N}_{i}}=\Omega$. By formula (2) we obtain that

$$
\begin{gathered}
K\left(\Omega \ominus \hat{\Omega}^{j}\right)=K\left(\Omega^{j}\right)=\Lambda\left(\Psi^{j}\right) \\
K(\Omega)=\Lambda\left(\Psi^{0}\right)
\end{gathered}
$$

7 Specific comments

Formula (2) gives a direct algorithm for finding the Dirichlet-toNeumann map for any network with known conductivity function. For networks with two boundary nodes this formula represents the generalized parallel and series laws of electrical circuit theory.

