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1 Introduction

Suppose we need a water supply system in which it is necessary to have
various amounts of water exiting. This can be modelled as a network of
conductors. The forward problem finds the outflowing currents, given the
diameters 1 (conductances) of each of the pipes. These are computed using
the pressures (potentials) at each of the nodes and Ohm’s Law. The inverse
problem is to find the conductances, given the currents together with (n−1)2

additional parameters. We consider a variation of conductor networks in the
plane, as in Curtis and Morrow 2; however, only square networks will be
considered here. We define a network Ωn that has n2 nodes and 2n(n − 1)
interior edges; in addition, each node will have a boundary edge. These
boundary nodes and edges can be thought of three dimensionally, as sprinkler
heads in an actual sprinkler system. There will also be an incoming current,
denoted with a dotted line, at one of the interior nodes. Figure 1 shows the
n = 3 case, Ω3.

1As a convention, we will use the electricity analog quantities, in parentheses here, in

the rest of the paper.
2“Determining the Resistors in a Network”, 1990
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Let E denote the set of edges and let (Ω, γ) be a network of pipes where
γ : E → R+, and δ : E → R+, where R+ denotes the positve real numbers.
For each horizontal edge ε, γ(ε) is the conductance of ε, and for each vertical
edge ε, γ(ε) is the conductance of ε.

2 Forward Problem

In order to begin, we need a numbering scheme. For any network, we have
n2 interior nodes denoted Ni. Starting in the upper left corner, we begin
with node N1 and continue across the top to node Nn. Node Nn+1 starts
the second row and so on, until finally, we reach node Nn2 in the lower
right corner. Each of these nodes is connected to a boundary conductor of
conductance 1 and we denote Bi to be the boundary node at the head of
the ith boundary conductor. We let γi be the conductance of the interior
horizontal edges and δj be the conductance of the interior vertical edges. Like
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the nodes, they are numbered left to right.
We set the conductance at each boundary edge to 1 and the potential

at each boundary node to 0; consequently, the interior potential and the
boundary current are equal, by Ohm’s Law. Our numbering scheme and
given conditions are illustrated in Figure 2. The potentials at each boundary
node are equal to 0. We also show a unit incoming current at node 5, denoted
with parentheses.
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There is a system of n2 equations obtained by applying Kirchhoff’s Law
to each interior node. In matrix form this can be expressed as Ku = b,
where we define a matrix K, which organizes the given conductances from
the system of equations. The diagonal entry is the sum of all the neighboring
conductances, the row number of an entry corresponds to the node number
and the column numbers represent relationships between nodes. For example,
k1,7 = 0 means that with respect to node one, node seven is not connected and
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k3,2 = −γ2 means that node three is connected to node two with a conductor
of conductance γ2, where the minus sign is a consequence of Ohm’s Law.
Using the equation Ku = b we can solve for the potentials at each interior

node, given the conductance of each interior edge. We define u to be the
vector of interior potentials and b to be the vector of boundary potentials
with the incoming current. Assume a unit incoming current at node 5. Once
we solve for the potentials at the interior nodes, we have the outflowing
currents since the boundary conductances are 1 and the boundary potentials
are 0. In the case of Ω3, Kirchhoff’s Law at node 5 gives

1(u5 − 0) + δ2(u5 − u2) + γ3(u5 − u4) + γ4(u5 − u6) + δ5(u5 − u8) = 1

The fifth line of the matrix K is:

0 −δ2 0 −γ3 1 + δ2 + γ3 + γ4 + δ5 −γ4 0 −δ5 0

Continuing this way, the matrix is:



















































1 + γ1 + δ1 −γ1 0 −δ1 0 0 0 0 0

−γ1 1 + γ2 + δ2 −γ2 0 −δ2 0 0 0 0

0 −γ2 1 + γ2 + δ3 0 0 −δ3 0 0 0

−δ1 0 0 1 + δ1 + γ3 −γ3 0 −δ4 0 0

+δ4

0 −δ2 0 −γ3 1 + δ2 + γ3 −γ4 0 −δ5 0

+γ4 + δ5

0 0 −δ3 0 −γ4 1 + δ3 + γ4 0 0 −δ6
+δ6

0 0 0 −δ4 0 0 1 + δ4 + γ5 −γ5 0

0 0 0 0 −δ5 0 −γ5 1 + δ5 + γ5 −γ6

+γ6

0 0 0 0 0 −δ6 0 −γ6 1 + δ6 + γ6



















































Notice that the matrix K is symmetric and banded. Using K, we can
solve the forward problem for any set of conductances by solving for u in the
equation Ku = b. This can be solved using a computer program 3.

3See attached Fortran program, AMATRIX
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3 Inverse Problem

In the forward problem, we are given conductances and define potentials on
the boundary. From that, we determine the interior potentials and hence, the
outflowing currents. For the inverse problem, we begin with known current
flows and boundary potentials, and wish to recover the conductances which
satisfy these conditions. In the 2 × 2 case, (see Figure 3) it appears that
we have four outflowing currents and four conductances, thus completely
determining the solution. However, there are really only three equations
that are given since the fourth current can be determined by the other three.
Therefore, even in the simplest case we only have three equations and four
unknowns, giving us one degree of freedom.
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Figure 3

For any Ωn, we will always have n
2
−1 independent equations from Kirch-

hoff’s Law at the interior nodes, rather than n2 giving us one more degree of
freedom than anticipated. The number of degrees of freedom in any system
is (n − 1)2. We define a matrix M , which organizes the potentials in order
to compute the conductances. We would like to solve the equation Mx = b

where x is the vector of unknown conductances and b is the same as in the
forward problem. For this type of network, we need to recover more con-
ductances than there are boundary currents; therefore M will not be square.
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For instance, in the 3× 3 case, we are given nine currents in order to recover
twelve conductances, giving a 9 × 12 matrix M .

4 Method for Solving the Inverse Problem

The basic idea behind the inverse algorithm is to first determine Kirchhoff’s
equations for each interior node in the network. Then we use these equations
to create the matrix M , choose (n − 1)2 valid parameters and reduce the
matrix for these parameters. The values for each of the γi and δj’s can be
easily read off the reduced matrix. We illustrate this with the following cases.

4.1 The 2× 2 Case

In order to solve the inverse problem, we again begin with Kirchhoff’s Law
and the resulting equations for each node. For example, in the 2 × 2 case,
(see Figure 3) we have the following equations:

u1 + γ1(u1 − u2) + δ1(u1 − u3) = 1 (1)

u2 + γ1(u2 − u1) + δ2(u2 − u4) = 0 (2)

u3 + δ1(u3 − u1) + γ2(u3 − u4) = 0 (3)

u4 + δ2(u4 − u2) + γ2(u4 − u3) = 0 (4)

Writing these in matrix form in terms of γ’s and δ’s, we have:











u1 − u2 u1 − u3 0 0
u2 − u1 0 u2 − u4 0
0 u3 − u1 0 u3 − u4
0 0 u4 − u2 u4 − u3





















γ1
δ1
δ2
γ2











=











1− u1
−u2
−u3
−u4











Rewriting this in augmented form and reducing by Gauss-Jordan elimi-
nation, yields:
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u1 − u2 0 0 u3 − u4
... u2 + u4

0 u3 − u1 0 u3 − u4
... −u3

0 0 u2 − u4 u3 − u4
... u4

0 0 0 0
... 0



















Notice that one row is reduced to all zeros, leaving one of the conductors
as a parameter. Given potentials at each node, the equations determined by
the matrix to recover the γ’s and δ’s are

γ1 =
(

u1 + u4

u1 − u2

)

− γ2

(

u3 − u4

u1 − u2

)

(5)

δ1 =
(

u4

u2 − u4

)

− γ2

(

u3 − u4

u2 − u4

)

(6)

δ2 =
(

−u3

u3 − u1

)

− γ2

(

u3 − u4

u3 − u1

)

(7)

where γ2 is the parameter.

4.2 The 3× 3 Case

A similar solution will be obtained for the 3 × 3 case. For this case, we
begin with nine equations and need to recover twelve conductances. Again,
there are only eight independent equations since the ninth potential can be
obtained from the others. This leaves four parameters in the inverse solution.
This solution is found by putting the Kirchhoff equations in an augmented
matrix and solving the system. We choose values for the parameters, δ1, δ3, δ4,
and δ6. Then, the remaining conductances are defined by the following equa-
tions:

γ1 =
(

−u1

u1 − u2

)

− δ1

(

u1 − u4

u1 − u2

)

(8)

γ2 =
(

u3

u2 − u3

)

+ δ3

(

u3 − u6

u2 − u3

)

(9)
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γ3 =
(

−u4

u4 − u5

)

− δ1

(

u4 − u1

u4 − u5

)

− δ4

(

u4 − u7

u4 − u5

)

(10)

γ4 =
(

u6

u5 − u6

)

− δ3

(

u3 − u6

u5 − u6

)

− δ6

(

u9 − u6

u5 − u6

)

(11)

γ5 =
(

−u7

u7 − u8

)

+ δ4

(

u4 − u7

u7 − u8

)

(12)

γ6 =
(

u9

u8 − u9

)

+ δ6

(

u6 − u9

u8 − u9

)

(13)

δ2 =
(

−u1 − u2 − u3

u2 − u5

)

− δ1

(

u1 − u4

u2 − u5

)

− δ3

(

u3 − u6

u2 − u5

)

(14)

δ5 =
(

u7 + u8 + u9

u5 − u8

)

− δ4

(

u4 − u7

u5 − u8

)

− δ6

(

u6 − u9

u5 − u8

)

(15)

There are a number of options in choosing the parameters. It is advan-
tageous to choose parameters with some symmetry within the network, as
in the above case. However, there are some restrictions based on Kirchhoff’s
Law. For instance, we can’t choose the center four conductors (shown in
Figure 4 as double lines) to be the parameters because once three have been
chosen, the fourth is automatically determined. Also, it can be seen on the
diagram that none of the other conductances can be found by Kirchhoff’s
Law. In order to determine a conductance, all of the neighboring conduc-
tances must be previously determined. For instance, if we want to find γ1,
we either need to know δ1, or we need to know γ2 and δ2 simultaneously,
which we don’t have in either case.
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5 Characterization of the Inverse Solution

Since we have a solution involving one or more parameters, it appears that
we have an infinite set of solutions; however, we must be cautious because
each γi and δj must be positive, thus greatly reducing our set of possible
solutions. Another factor that must be considered is the direction of current
flow within the network. Depending upon which case we have we can get
completely different sets of solutions. For any of the inverse problems, there
is no one unique solution, but rather a unique solution for any given set of
parameters.

5.1 The 2 × 2 Case

The 2 × 2 case is the simplest network to consider. Here, there are three
cases.
Case I: (see Figure 5)

u1 > u2

u1 > u3

u2 > u4

u3 > u4

Case II: (see Figure 6)
u1 > u2

u1 > u3

u3 > u4

u4 > u2

and Case III: (see Figure 7)
u1 > u2

u1 > u3

u2 > u4

u4 > u3

The flow patterns are indicated by the arrows.
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Notice that the current flow is away from the node in which there is an
source current. This will always occur for any size network. To explain
this, suppose that there was one current flow into node N1 and one flowing
out. For this to happen, the currents must flow in a clockwise manner. The
inequality which describes this is: u1 > u2 > u4 > u3 > u1; a contradiction
since we can’t have u1 > u1. Therefore, the current flow at a node with an
incoming current will always be away from the node, making it the node with
the highest potential.
When we analyze the equations (1) through (4), in (γ1, γ2, δ1, δ2)–space,

we find that for each case there is a unique line-segment in which the possible
sets of γ’s and δ’s lie in order to satisfy the given currents.
For instance, in Case I we must determine a set of inequalities to limit

the parameter values. Beginning with equations (5) through (7) and knowing
that γi and δj, for all i and j, must always be positive, we find that

(

u2 + u4

u3 − u4

)

> γ2 (16)
(

−u3

u3 − u4

)

< γ2 (17)
(

u4

u3 − u4

)

> γ2 (18)
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This situation reduces to the following simple inequality:

0 < γ2 <

(

u4

u3 − u4

)

(19)

It would be more convienient to have the equations in terms of an ar-
bitrary parameter t, so now we reparametrize. Using (19), we can find the
endpoints of the line segment solution set in (γ1, γ2, δ1, δ2)– space by first
letting γ2 = 0 and then letting γ2 =

u4

u3−u4
. This gives us the points

(

u2 + u4

u1 − u2
,

−u3

u3 − u1
,

u4

u2 − u4
, 0
)

and
(

u1

u1 − u2
,
−u3 − u4

u3 − u1
, 0 ,

u4

u3 − u4

)

.

To reparametrize a line, we need a point and a direction vector. Finding
the midpoint of these two points and subtracting the first point from the
midpoint gives us this vector:

(

−u4

2(u1 − u2)
,

−u4

2(u3 − u1)
,

−u4

2(u2 − u4)
,

u4

2(u3 − u4)

)

Since we have a point and a vector, the new parametrization can easily
be determined. It is:

γ1 =
2u2 + u4

2(u1 − u2)
− t

(

−u4

2(u1 − u2)

)

(20)

γ2 =
u4

2(u3 − u4)
+ t

(

u4

2(u3 − u4)

)

(21)

δ1 =
−2u3 − u4

2(u3 − u1)
− t

(

u4

2(u3 − u1)

)

(22)

δ2 =
u4

2(u2 − u4)
− t

(

u4

2(u2 − u4)

)

(23)
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where
2u3 + u4

−u4
< t < 1.

Similar equations and inequalities occur for Case II and Case III and are
determined in the same manner.
Now that we have the solution set, we can do a variety of different things.

For instance, if we are given a set of conductances and we wish to know if they
fall within the solution set, we simply have to check if the given conductances
satisfy the equations for the parametrized line. We can also minimize the
diameters of the pipes by using basic calculus. Say, for instance, we want to
minimize d = γ21 + γ22 + δ21 + δ22 we simply substitute the equations for each
γ and δ in terms of t, take the derivitive, set it equal to 0 and solve for t.

5.2 The 3 × 3 Case

We use the same method to characterize the 3 × 3 case. Suppose we have a
unit current entering at node N5. Then there are a great number of possible
current flows that we could consider. However, we know that the current
flow must be away from the source node, which leaves a choice of Case I, II,
or III from the 2× 2 system in each of the four corners. Therefore, there are
eighty-one different current flow patterns to choose from, although many are
the same because of symmetry and some are not possible. We will discuss a
typical case where the following inequalites hold: (see Figure 8)

u1 < u2 u3 < u2
u1 < u4 u2 < u5
u3 < u6 u4 < u5
u6 < u5 u7 < u4
u8 < u5 u9 < u6
u7 < u8 u9 < u8

12
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Referring back to equations (8) through (15), the previous inequalities,
and the conditions that γi > 0 and δj > 0, for all i and j, we can generate
the following inequalities:

(

u1

u4 − u1

)

> δ1 (24)
(

u3

u6 − u3

)

> δ3 (25)
(

u4

u1 − u4

)

− δ4

(

u7 − u4

u1 − u4

)

< δ1 (26)
(

u6

u3 − u6

)

− δ6

(

u9 − u6

u3 − u6

)

< δ3 (27)
(

u9

u6 − u9

)

> δ6 (28)
(

u1 + u2 + u3

u4 − u1

)

− δ3

(

u6 − u3

u4 − u1

)

> δ1 (29)
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(

u7 + u8 + u9

u4 − u7

)

− δ6

(

u6 − u9

u4 − u7

)

> δ4 (30)
(

u7

u4 − u7

)

> δ4 (31)

These inequalities can be reduced even further. Notice that the left side
of (26) is always negative; therefore, this inequality is unnecessary since
we must have δ1 > 0. This is also the case for (27). Next we want to
compare (24), (25), and (29). Substituting both 0 and equation (25) into (29)
gives us the following:

(

u1 + u2 + u3

u4 − u1

)

> δ1 and (32)
(

u1 + u2

u4 − u1

)

> δ1. (33)

All other values of δ3 will fall in between these two values. However, these
are both larger than the value in (24), therefore, we need not be concerned
with (29). A similar argument follows for (28), (30), and (31).
The list of inequalities reduces to the following:

0 < δ1 <

(

u1

u4 − u1

)

(34)

0 < δ3 <

(

u3

u6 − u3

)

(35)

0 < δ4 <

(

u7

u4 − u7

)

(36)

0 < δ6 <

(

u9

u6 − u9

)

. (37)

For the 3×3 case, the solution lies in (γ1, γ2, γ3, γ4, γ5, γ6, δ1, δ2, δ3, δ4, δ5, δ6)–
space in R12. The above inequalities produce a 4-dimensional rectangular
solution space in R12; therefore, the possible sets of γi and δj’s lie inside this
region.
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6 Stability

We are capable of recovering conductances given desired outflowing currents.
We are interested in how accurately we can obtain the conductances when
we start with a small percentage error in the given currents. We choose
arbitrary current flows for a 3 × 3 case that are accurate to six digits. We
then change the currents by .001, .0001, and .00001 respectively. This causes
the percentchange to fluctuate between each of the cases, therefore we also
calculate the conditional number, defined as

(

∆current
current

∆conductance
conductance

)

.

This is shown in Table I.

Node number Current Maximum % Maximum% Maximum% Conditional
changed error (.001) error (.0001) error (.00001) number
1 .014595 21.25 2.15 .213 .322
2 .082171 1.50 .20 .020 .813
3 .031176 46.07 4.69 .469 .070
4 .105790 13.70 1.37 .137 .069
5 .376551 .65 .07 .006 .409
6 .221985 5.87 .59 .059 .077
7 .018848 82.46 8.35 .836 .064
8 .091263 3.06 .30 .030 .359
9 .057621 18.08 1.86 .186 .096

Table I

Notice that the greatest maximum errors occur at the corner nodes, and
the smallest maximum error occurs at the center node. Thus, the further
away we get from the center the larger the error. When we make a change
of .001 in one of the nodes, the percent errors are much too big. Changes
of .0001 are respectable unless the desired current flow is fairly small as in
node 7. A change of .00001 gives an acceptable error although the percent
changes for this case are between .0005% and .836%, which is a difficult task
to accomplish. Therefore, in order for the inverse solutions to be accurate
we have a rather small margin of error in our given current flows.
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7 Conclusion

The cases we covered in depth are specific, however, these methods can be
generalized to other cases and bigger networks. Although as the network
size increases, there are exponentially more possible flow patterns. We also
looked briefly at cases where the source current occured at various nodes.
these cases were more complicated due to the asymmetry of the network.
we also considered multiple currents; however, this wasn’t pursued because
there was little variation from the single source network.
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