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Abstract

A detailed algorithm is given for recovering circular networks with

m = 1, n = 4. The method is generalized for recovering circular

networks with m = 1, n ≥ 5. A less rigorous discussion gives modifi-

cations which allow for the recovery of networks with m = 2, n ≥ 6.

A conjecture is made conerning circular networks with m ≥ 3.

1. Introduction

We will examine circular networks of the form C1(m,n), made up ofm circles,
n rays, and a strictly positive real-valued function γ, called the conductivity,
which takes on one and only one value for each resistor in the network (see
Curtis, Mooers and Morrow [1]). In particular we will look at these networks
under the following circumstances. Potentials on the boundary are fixed at
zero, and the n boundary resistors have unit conductance. Some (perhaps
negative) amount of current flows into each interior node, and flows out of
each boundary node. In studying such networks, it is important to recall
Ohm’s Law (which defines current) and Kirchhoff’s Law (which states that
the total current flowing into a node, excluding source current, is zero).

Ohm’s Law. Let I denote the current flowing from node q to node p in
a circular network of form C1(m,n). Let u(p) denote the potential at p and
let u(q) denote the potential at q. Let γ(p, q) denote the conductance of the
resistor connecting nodes p and q. Then

I = γ(p, q)(u(q)− u(p)).
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Kirchhoff’s Law. Suppose there is source current Ip flowing into a
node p in a circular network of form C1(m,n). Let N(p) denote the set of
nodes q neighboring p (connected to p by a single resistor) and let γ(p, q),
u(p), and u(q) denote the same quantities as in the statement of Ohm’s Law.
Then

∑

q∈N(p)

γ(p, q)(u(p)− u(q)) = Ip.

Using Kirchhoff’s Law at each interior node, and accounting for the inte-
rior source currents, we create a system of mn+1 linear equations in mn+1
unknowns, which can be written as the matrix equation Ku = b (again, see
[1] for a more thorough exposition), where u is the vector of interior poten-
tials. After solving for u, the current flowing out at each boundary node
can be determined quite easily using Ohm’s Law. In fact, the current1 at a
boundary node will simply be the negative of the potential at that node’s in-
terior neighbor (since boundary potentials are 0 and boundary conductivities
are 1).
With i ranging from 1 to mn+1, we set up experiments (mn+1 of them)

in which unit source current flows into the ith interior node and zero source
current flows into the remaining mn interior nodes. Note that any source
current configuration is a linear combination of thesemn+1 configurations; so
in a sense, they are basis vectors for the space of source current arrangements,
and we will use them in precisely this way. We can solve for the currents
flowing out at the boundary in each of the mn + 1 cases, and construct an
n× (mn+1) matrix A such that Ai,j is the current flow at the ith boundary
node when there is a unit source current at the jth interior node and zero
source current at the other interior nodes. This matrix A maps interior
source currents to boundary currents in the following way: multiplying A on
the right by a vector of interior source currents yields a vector of boundary
currents. The inverse problem is, given the matrix A and the fixed boundary
information mentioned above, to recover the conductivity function γ of the
network.
We will discuss in detail the solution of the inverse problem in the case

m = 1, n = 4, and outline a generalization of the algorithm which can be

1The convention in this paper will be to take inflowing current as positive and outflowing

current as negative. When we speak simply of the current “at” a particular node, we are

referring to the inflowing current.
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applied to any network in which m = 1 and n ≥ 4. We will also examine
networks with m = 2 and describe a method for recovering the conductivity
of such networks for n ≥ 6. Many of these recoveries are not possible using
the Dirichlet-to-Neumann map Λ (detailed in [1]), which takes boundary
potentials to boundary currents in a network without interior source currents.

2. Recovery of a Network with One Circle and

Four Rays

We will examine networks of the form C1(1, 4) (see Figure 1 below), with one
circle and four rays. In Figure 1, parenthetical labels represent conductances
while the numbers lacking parentheses index the interior nodes. The four
boundary resistors have conductance 1, as shown, and the remaining eight
resistors have conductances γi (1 ≤ i ≤ 8) — the quantities we wish to
recover. In general u(p) will denote the potential at node p, where the interior
nodes are numbered as in the diagram. Boundary nodes have potential fixed
at zero. There are five interior nodes in this network, and thus our current-
to-current matrix A will be a 4× 5 matrix.

Characterization of K−1

Note that the presence of interior source currents does not alter the Kirchhoff
matrix K in the equation Ku = b; only the entries of b are changed. In
fact, the ith entry of b is the current flowing in at the ith interior node.
The five source current configurations used for constructing A (as discussed
previously) correspond to b = ej, 1 ≤ j ≤ 5, where ej is the jth column
of the 5 × 5 identity matrix. Solving Kuj = ej yields uj = K−1ej, so
K−1 = ( u1 u2 u3 u4 u5 ). This means that each column of K

−1 is a
column of interior potentials resulting from a certain configuration of interior
source currents. In particular, K−1

i,j is the potential at the ith interior node
due to a unit source current at the jth interior node and zero source current
elsewhere.
Recall that the current flow into a boundary node is simply the negative

of the potential at its interior neighbor, which means that K−1
i,j = −Ai,j for

1 ≤ i ≤ 4 and 1 ≤ j ≤ 5. Furthermore, K−1 is symmetric (because K is
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symmetric). So we can characterize K−1, in terms of A, as follows:

K−1 =

















−A1,1 −A1,2 −A1,3 −A1,4 −A1,5

−A2,1 −A2,2 −A2,3 −A2,4 −A2,5

−A3,1 −A3,2 −A3,3 −A3,4 −A3,5

−A4,1 −A4,2 −A4,3 −A4,4 −A4,5

−A1,5 −A2,5 −A3,5 −A4,5 ?

















,

where all but one entry of K−1 is known.
Multiplying K−1 on the right by a vector of interior source currents yields

a vector of interior potentials arising from those source currents. Because
K−1

5,5 is unknown, we cannot compute the potential at node 5 when there is
source current flowing in there; however, multiplying K−1 on the right by a
vector of currents

















i1
i2
i3
i4
0

















,

where i1, i2, i3, and i4 are any numbers, will yield a vector of potentials
arising from putting in a current of i1 at node 1, i2 at node 2, i3 at node 3,
i4 at node 4, and zero current into node 5. We capitalize on this idea for our
next result.

Setting Up Special Potential Arrangements

Lemma 1. Consider a circular network of form C1(1, 4), with nodes num-
bered as in Figure 1. There exist unique numbers x1, x2, and x3 such that
nodes 1, 4, and 5 each have unit potential when a source current of xi flows
in at node i (1 ≤ i ≤ 3) and zero source current flows in at nodes 4 and 5.
Furthermore, there exist unique numbers y2, y3, and y4 such that nodes 1, 2,
and 5 each have unit potential when a source current of yi flows in at node i

(2 ≤ i ≤ 4) and zero source current flows in at nodes 1 and 5.

Proof. We wish to show that the two potential arrangements shown below
(Configurations A and B) can be established by putting source currents at
the designated nodes. In the diagrams, source currents are written inside
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square brackets and potentials appear without them. Open circles drawn on
resistors indicate that no current is flowing there.

As stated earlier, multiplying K−1 on the right by a vector of interior
source currents yields a vector of interior potentials due to those source cur-
rents. So in seeking a way to set up Configuration A and Configuration B,
we are looking for unique solutions to the following matrix equations:

K−1

















x1

x2

x3

0
0

















=

















1
u(2)
u(3)
1
1

















, K−1

















0
y2

y3

y4

0

















=

















1
1

u(3)
u(4)
1

















,

whereK−1 is the matrix shown on page 4 (with one entry unknown). Because
we are not interested in the two non-unit potentials of each arrangement
(u(2) and u(3) in Configuration A, u(3) and u(4) in Configuration B), we
can eliminate those rows from the righthand side and from K−1. Moreover,
since two of our source currents are zero in each case (nodes 4 and 5 in
Configuration A, nodes 1 and 5 in configuration B), we can also eliminate
the zero entries from our two source current vectors, and the appropriate
columns (4 and 5 in Configuration A, 1 and 5 in Configuration B) from K−1.
We now have:







−A1,1 −A1,2 −A1,3

−A4,1 −A4,2 −A4,3

−A1,5 −A2,5 −A3,5













x1

x2

x3





 =







1
1
1





 , (1)







−A1,2 −A1,3 −A1,4

−A2,2 −A2,3 −A2,4

−A2,5 −A3,5 −A4,5













y2

y3

y4





 =







1
1
1





 . (2)

If we can show that the two 3 × 3 submatrices of K−1 shown above are
nonsingular, then the proof will be complete.
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Consider the first equation above (corresponding to Configuration A),
but with a column of 0’s, rather than 1’s, on the righthand side. We know
there is no source current at node 4, and that potentials are 0 at node 4 and
at three of its four neighbors (all but node 3); therefore by Kirchhoff’s Law,
node 3 must also have potential 0. Now we know that three neighbors of
node 5 (nodes 1, 3, 4), as well as node 5 itself, have potential 0. Since there
is no source current at node 5, Kirchhoff’s Law dictates that the potential
must be 0 at node 2 as well. We have now established that the potential is 0
at every node in the network, and thus no current can flow along any resistor.
Therefore the three source currents must be 0. By rotation, an analogous
argument can be applied to the second equation above (corresponding to
Configuration B). We have shown that these homogeneous systems have only
the trivial solution, which implies that the submatrices of K−1 are indeed
nonsingular, and the above equations have unique solutions. Q.E.D.

Recovering the Circular Conductances

We are now prepared to recover the circular conductances of the network,
utilizing Lemma 1. The following theorem gives explicit formulas for these
conductances.

Theorem 1. Consider a circular network of form C1(1, 4), with nodes
and conductances labelled as in Figure 1, and let x = ( x1 x2 x3 ) and
y = ( y2 y3 y4 ) be the solutions (1) and (2), respectively. Then γ1, γ2, γ3,
and γ4 are uniquely determined, and

γ1 =
x1 − 1

1 + x1A2,1 + x2A2,2 + x3A2,3

,

γ2 =
y2 − 1

1 + y2A3,2 + y3A3,3 + y4A3,4

,

γ3 =
−1

1 + x1A3,1 + x2A3,2 + x3A3,3

,

γ4 =
−1

1 + y2A4,2 + y3A4,3 + y4A4,4

.

6



Proof. Consider Configuration A. We know that a current of 1 flows out
at the boundary node neighboring node 1. Since no current flows between
nodes 1 and 3 or between nodes 1 and 5, the current flowing from node 1 to
node 2 must be x1 − 1. Ohm’s Law gives the equation

x1 − 1 = γ1(1− u(2)), (3)

where u(2) is the potential at node 2. This potential is the negative of the
current flow at the boundary node neighboring node 2, which is the second
row of

A

















x1

x2

x3

0
0

















.

So u(2) = −(x1A2,1 + x2A2,2 + x3A2,3), and we can solve for γ1. Doing so
yields the formula above.
Note that, in order to solve for γ1, we must divide by the quantity 1−u(2).

It would be worthwhile, then, to show that this quantity cannot be zero. If
the potential at node 2 were 1, then applying Kirchhoff’s Law to the center
node (node 5) would indicate that the potential at node 3 was also 1. But
if node 3 had potential 1, then Kirchhoff’s Law would be violated at node
4, which would have three neighbors with potential 1 and one neighbor with
potential 0. Since node 4 has potential 1 itself, and has no source current,
this situation would not be possible. Therefore by contradiction, node 2
cannot have potential 1, and we need not worry about dividing by zero to
recover γ1.
Solving for γ3 is done the same way, except for the absence of a source

current at node 4, which makes our equation

−1 = γ3(1− u(3)). (4)

We can easily evaluate u(3) just as we did u(2), and we have already shown
that it cannot equal 1, so we solve for γ3, obtaining the formula given in the
statement of Theorem 1.
Using Configuration B, we recover γ2 and γ4 in a manner analogous to

that used in the recovery of γ1 and γ3. Each conductance is expressed by an
explicit formula, which shows uniqueness of the solution. Q.E.D.

7



Recovering the Radial Conductances

Once the circular conductances are known, it is fairly easy to recover the
radial conductances. The following theorem gives an explicit formula for
them.

Theorem 2. Consider a circular network of form C1(1, 4), with nodes
numbered as in Figure 1, and let addition be modulo 4. For 1 ≤ i ≤ 4 and
1 ≤ j ≤ 4, let u(i) denote the potential at node i, let γ(i, j) denote the
conductance of the resistor connecting nodes i and j, and let xi denote the
source current put into the network at node i. Then for node p, 1 ≤ p ≤ 4,
γ(p, 5) is uniquely determined and

γ(p, 5) =
xp − u(p)− γ(p, p+ 1)(u(p)− u(p+ 1))− γ(p, p− 1)(u(p)− u(p− 1))

u(p)− u(5)

if and only if u(p) 6= u(5). Moreover, for each p, 1 ≤ p ≤ 4, there exists a
set of source currents xi, 1 ≤ i ≤ 4 (no source current at node 5), such that
the condition is satisfied and the above formula is correct.

Proof. The necessity of the condition u(p) 6= u(5) is obvious, since oth-
erwise the formula would be undefined and could not possibly represent a
conductance or any quantity for that matter.
The sufficiency of the condition is fairly easy to show, as well. We write

Kirchhoff’s Law at node p. Only one quantity in the equation, namely γ(p, 5)
is unknown. Moving everything else to the righthand side leaves us with the
formula above.
Now we must show that a vector x of source currents for nodes 1–4 can

be selected such that u(p) 6= u(5), or, in other words, such that there is a
nonzero current flowing between nodes p and 5. Our formula would still be
correct if source current were put in at node 5, but then we would not know
the value of u(5) (remember we are missing the last entry of K−1), and thus
would not be able to solve explicitly for γ(p, 5).
We seek a solution to the matrix equation

K−1

















x1

x2

x3

x4

0

















=

















u(1)
u(2)
u(3)
u(4)
u(5)

















, (5)
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where K−1 is the matrix shown on page 4, and where, on the righthand side,
u(p) 6= u(5), whichever number p happens to be.
Suppose we remove the last digit of the source current vector (the only

known digit, 0) and remove the last column from K−1. Next, suppose we
remove row r from K−1 and the rth entry from the potential vector on the
righthand side, where 1 ≤ r ≤ 4 and r 6= p. Solving this new equation is
equivalent, for our purposes, to solving (5), but now we can show that a
solution exists for any righthand side by showing the 4×4 submatrix of K−1

to be nonsingular.
We can show nonsingularity by showing that the homogeneous system

has only the trivial solution. Suppose all the potentials on the righthand
side are 0. Now all the nodes in the network, except one (a non-center, non-
boundary node), are known to have potential 0. That last node must also
have potential 0, because if it didn’t, current would flow between it and node
5, which would violate Kirchhoff’s Law at node 5 (since there is no source
current there). With all potentials 0, no current can flow anywhere in the
network, so all the source currents must also be 0.
The submatrix of K−1 is nonsingular, therefore we can set up an ar-

rangement of source currents such that, for each p (1 ≤ p ≤ 4), u(p) 6= u(5).
Therefore we can use the formula given in the statement of Theorem 2 to
solve for each of the radial conductances. The presence of an explicit formula
guarantees uniqueness, and the proof is complete. Q.E.D.

3. Networks with One Circle and Five or More

Rays

The method for solving networks of the form C1(1, n), for n ≥ 5, is analogous
to the one we just detailed for solving those of the form C1(1, 4). The idea
is to recover each circular conductance by setting three potentials equal,
thereby eliminating certain current flows, just as we did in Configuration A
and Configuration B. A network with more than four rays will require more
than two such configurations in order to find every circular conductance, but
by the symmetry of the network, proving that one such arrangement exists
is equivalent to proving that they all do.
Here is how, in general, we go about proving that we can set up the
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desired potential configurations. We begin with the equation

K−1x = u, (6)

where x is the vector of source currents and u is the vector of interior poten-
tials. We decide that only three entries of x will be nonzero (and those three
must not include the last entry, representing the center node), and then, like
before, we eliminate rows and columns of K−1, and the corresponding entries
of x and u, until we are left with a 3× 3 submatrix of K−1, a source current
vector of three elements, and a column of three 1’s on the righthand side.
Our only task now is to show that this submatrix of K−1 is nonsingular,

and we do so once again by proving that the homogeneous system has only
the trivial solution. The network has potential 0 at the center node, at two
adjacent nodes on the circle, and at every boundary node. Using Kirchhoff’s
Law (assuming no source current) at one of those two circle-residing nodes,
we show the potential to be 0 at the next node on the circle. We move to
that node and apply Kirchhoff’s Law again, then continue on around the
circle (either clockwise or counterclockwise, depending on which node we
begin with) until only one node remains whose potential is not known to be
0. Applying Kirchhoff’s Law at the center node makes the potential 0 at
this last node as well, and with all potentials 0, no current can flow, and all
source currents must be 0 as well. This method always leaves three nodes
on the circle at which Kirchhoff’s Law was not used, and it is at these three
nodes that the source currents are put in. If the three nodes which share the
same potential are numbered i, i+1, and n+1 (1 ≤ i ≤ n and node n+1 is
the center node), then the three nodes which possess source current will be
nodes i, i− 1, and i− 2, where addition (and subtraction) is modulo n.
The radial conductances are also recovered in a manner very similar to

the way they were recovered in the case of four rays. The formula given in
Theorem 2 is identical for higher values of n, except that the quantity u(5)
must be replaced with the quantity u(n + 1). Showing that a set of source
currents exists such that u(p) 6= u(n+1) is accomplished in exactly the same
fashion as before, except that the matrix equation is larger, and we reduce
K−1 to an n× n submatrix, rather than a 4× 4.
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4. Networks with Two Circles

The method used to recover the conductivity of networks of the form C1(1, n)
can be modified to work for networks of the form C1(2, n), with the condition
n ≥ 6 (it is probably impossible to recover a network with two circles and
less than six rays using the information we allow ourselves here; even if it is
possible, however, no such recovery is presented in this paper). We number
the nodes in these networks moving clockwise and inwards. So the outer
circle contains nodes 1 thru n, the inner circle contains nodes n+1 thru 2n,
and the center node is numbered 2n+ 1.
Once again, we recover all the circular resistors and then move inwards

to the adjoining set of rays. This time, however, we must recover two sets of
each. Surprisingly, the technique used for the inner level is almost identical
to that used for the outer level.
The first step is to recover the outer circular conductances. As with

single-circle networks, we find an arrangement of source currents which will
give certain nodes the same potential and thus eliminate current flow between
them. This time we select five nodes, rather than three, in the following way.
We take two neighboring nodes (connected by a single resistor) on the outer
circle. Then we take two neighboring nodes on the inner circle, exactly one
of which is connected by a radial resistor to one of the nodes we selected on
the outer circle. Finally we take the center node.
We break down (6) again, eliminating from K−1 columns where there

is no source current and rows where the potential is unimportant. We also
eliminate the appropiate entries of x and u, and we end up this time with
a 5 × 5 submatrix of K−1, a column of five source currents, and a column
of five 1’s. Our task, then, is to show that this system has a solution by
showing the indicated submatrix to be nonsingular.
For the following statements let addition be modulo n. If the nodes with

unit potential are numbers i− 1, i, i+ n, i+ n+1, and 2n+1, then the five
nodes with source current (there must be exactly five, to keep the submatrix
of K−1 square so we can invert it) must be in an unbroken chain on the outer
circle (for some j, they will be nodes j, j + 1, . . . , j + 4) and must contain at
least one of the two outer circle nodes with unit potential. Within these two
restrictions, we may choose any five nodes to receive source current, and still
show that our 5×5 submatrix of K−1 is nonsingular by the old homogeneous
system argument. This works by setting the selected equipotential nodes
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to have potential 0, and then working around the network, clockwise and/or
counterclockwise, using Kirchhoff’s Law at nodes on both the outer and inner
circles, and finally at the center node, until every node in the network has
been shown to have potential 0. If the five source-current-endowed nodes
are chosen strategically as outlined above, this process can be accomplished
without using Kirchhoff’s Law at any of them.
After proving that the desired configuration is possible, we put in the

source currents which will produce it, and recover the circular conductances
on each side of the outer circular resistor with no current flowing through it
(using the numbering scheme of the previous paragraph, this would be the
resistor between nodes i− 2 and i− 1 and the resistor between nodes i and
i + 1). The symmetry of the circular network allows us to set up analogous
potential configurations around the network and eventually solve for all the
outer circular conductances.
The outer radial conductances are computed precisely as the radial con-

ductances were computed in networks with one circle. The formula given in
Theorem 2 still holds, except that we must change the quantity u(5) to the
quantity u(p + n). The method for showing u(p) 6= u(p + n) is almost the
same as the method for showing u(p) 6= u(5) in the C1(1, 4) network. In this
case we create an n× n submatrix of K−1, removing the last n+ 1 columns
and a randomly chosen set of n+1 rows (not including row p or row 2n+1).
We also remove these rows from the potential vector, and we remove the
n+1 0’s from the source current vector. The principle is the same, modified
only to accomodate the larger geometry.
The inner circular conductances are computed just as the outer circular

conductances were. We use the same nodes for current flow restriction, the
same nodes for source current, and the same argument that such an arrange-
ment is possible. The only difference is that this time we solve for the inner
circular conductances rather than the outer ones. Using the same numbering
system we used with the outer circle, each configuration will allow us to re-
cover the resistor between nodes i+n− 1 and i+n and the resistor between
nodes i+n+1 and i+n+2. We need to know the conductances of the outer
radial resistors in order to tackle the inner circle (just as we had to know the
conductances of the boundary resistors to recover the outer circle), which is
why we had to compute them first.
Finally we recover the inner radial conductances, ultimately using the

same method we have used on all radial resistors. The formula of Theorem
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2 is still valid, with the following modifications: there is no source current at
node p, so the term xp becomes 0 and drops out; the quantity u(p), where
it appears alone in the numerator, becomes γ(p, p − n)(u(p) − u(p − n))
(it loses its simplified form because node p no longer borders a resistor with
unit conductance and 0 potential at the neighboring node); the quantity u(5)
becomes u(2n + 1). The process of showing u(p) 6= u(2n + 1) is identical to
the process by which we show u(p) 6= u(p+ n) for the outer radial resistors.

5. Networks with Three or More Circles

We conclude with a conjecture concerning the recovery of circular networks
of the form C1(m,n), with m ≥ 3.

Conjecture 1. Fixing boundary potentials at 0 and boundary conduc-
tances at 1, and using the A matrix as described in this paper, the conduc-
tivity of a circular network of the form C1(m,n) can be determined uniquely,
provided the condition n ≥ 2m+ 2 is true.
As of the writing of this paper, no detailed research has been done in

relation to this conjecture, but it may act as a starting point for further
investigation of circular resistor networks with interior source currents.
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