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Abstract

In this paper I compare different methods to solve the Dirichlet problem. I
concluded that the Gauss-Seidel method is the most efficient of these meth-
ods. Using this method, I can determine the values of the interior resistors
in a 3-dimensional network given measurements at the boundary.

The Dirichlet Problem

The Dirichlet problem involves determining inner values from given boundary
conditions. In the continuous case, it is solved using Laplace’s differential
equation,

Uxx + Uyy = 0

However, in this paper I will discuss the discrete Dirichlet problem which is
solved using Kirchoff’s Law, the discrete formulization of Laplace’s equation.
Given an n × n electrical network with known inner conductances and

boundary potentials, the Dirichlet problem involves finding the inner poten-
tials for this network.(see fig. 1)
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Let γ(PQ) be the conductance between interior nodes P and Q. Thus,
from Kirchoff’s Law,

∑

QneighborofP

γ(PQ)(U(Q)− U(P )) = 0

and,
[

∑

QneighborofP

γ(PQ)]U(P ) =
∑

QneighborofP

γ(PQ)U(Q).

We can then determine the values of the potentials at the interior nodes by
solving the system of linear equations,

Au = b

Here, A is the n2
×n2 Kirchoff matrix and u is the vector of interior potentials.

Therefore, the solution of this system of linear equations is the solution to
the Dirichlet problem.

The Inverse Problem

The inverse problem involves determining boundary values from given inner
values. In order to solve this problem, the Dirichlet-to-Neumman mapping
is used.
After finding the inner potentials by solving the Dirichlet problem, we

can then find Λ which is the Dirichlet-to -Neumann mapping from potentials
on the boundary to currents on the boundary. The current into node P due
to the potential at boundary node P ′ is

γ(PP ′)(U(P )− U(P ′)).

Since we know the inner and boundary potentials of our network we can
determine each element in Λ. An entry in Λ, Ii,j , is the current at node i due
to a potential of 1 at node j. Thus,

Λu = i

where i is the column vector containing the values of the currents at the
boundary nodes. The inverse problem can then be solved using Λ as discussed
in Curtis and Morrow (1).
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The Jacobi Iterative Method

In order to decrease the computing time required to solve the Dirichlet prob-
lem, I decided to try using iterative methods. The first iterative method I
studied was the Jacobi iterative method. Once again we want to obtain the
solution of the system of linear equations,

Au = b

where A is the Kirchoff matrix, u is the vector of inner potentials, and b is
determined from the values of the boundary potentials. The Kirchoff matrix
,A , can be expressed as a matrix sum of its diagonal entries and its off
diagonal entries. Namely,

A = D +N,

where D is the matrix with diagonal entries and zeroes elsewhere, and N

is the matrix with off diagonal entries and zeroes along the main diagonal.
Thus, we can express our linear system as follows:

Au = b

can be written as,
(D +N)u = b.

Therefore,
Du = b−Nu.

Since A has diagonal entries which are nonzero, we can use the following
iterative method.

ai,iu
(m+1)
i = bi −

n
∑

j=1,j 6=i

ai,ju
(m)
j

or in matrix form,
Du(m+1) = b−Nu(m)

where we have an initial guess u0. According to Smith (6), since A is di-
agonally dominant this iterative method will converge. This method is the
Jacobi iterative method.
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The Gauss-Seidel Iterative Method

When using the Jacobi iterative method one must store all of the values in the
vector u(m) to compute the values of the vector u(m+1). Therefore, I decided
to examine the Gauss-Seidel iterative method. In the Gauss-Seidel method,
no previous values need to be stored. The algorithm for the Gauss-Seidel
method is the following:

u
(m+1)
i ai,i = bi,i −

i−1
∑

j=1

ai,ju
(m+1)
j −

n
∑

j=i+1

ai,ju
(m)
j

Again, this procedure is repeated until the values of u converge. By Theorem
2.4 in Johnson and Riess (3), u converges for any initial guess u(0). This
method of iteration converges more rapidly then the Jacobi method since
values are used as soon as they are calculated. This can be seen in the
graphs included in the appendix.

The Gauss-Seidel Iterative Method In 3 Dimensions

After discovering the efficiency of using the Gauss-Seidel method to solve
the Dirichlet problem in a 2-dimensional network, I considered applying it
to solving the Dirichlet problem in three dimensions. The complications and
the great amount of computing time that arise to solve the system of linear
equations,

Au = b,

in 3 dimensions using linear algebra persuaded me to use this method. The
Gauss-Seidel method succeeded in significantly decreasing the complexity
and the computing time in solving the Dirichlet problem in 3 dimensions.

Calculating Isolated Resistors in a 3-Dimensional Net-

work

Since the dirichlet problem in 3 dimensions can be solved efficiently, I decided
to try to find an algorithm similar to Landrum’s algorithm in 2 dimensions
(5) to determine the value of an isolated resistor in a 3-dimensional network.
This algorithm involves isolating a resistor by forcing the boundary currents
from one face to flow through an interior resistor.
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The first step is to make conditions on the boundary to restrict current
from the other faces to flow through the isolated resistor. The value of the
isolated resistor is then determined by summing the values of the boundary
currents from the single face. The following is an example of isolating a
resistor by making a specific set of boundary conditions.
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Kirchoff’s Law determines some of the interior potentials from the values
of the boundary conditions as shown above. This in turn forces the isolated
resistor to be equal to the sum of the currents from the top face.
If you consider the shape formed from the interior nodes which have a

potential of one, you will notice a pyramidal structure. The same is true for
those interior nodes which have a potential of zero. These same shapes will
occur when resistors are isolated in other 3-dimensional networks.
¿From the boundary conditions given you can set up the following system

of equations.

(
unknownno.ofpotentials

∑

l=1

vlIj)i + (
∑

Ik)i = 0

where j corresponds to the position of the boundary node where the potential is not known, i corresponds to the

position of the boundary node where there is no current, and k corresponds to the position of the boundary node where

the potential is equal to 1.

The I’s represent the elements in the Kirchoff matrix, Λ. In the exam-
ple, there will be 30 equations and 30 unknowns. After solving this sys-
tem of equations, the potentials at the face from which the current that
flows through the isolated resistor originates from are determined. Using the
Dirichlet-to -Neumann mapping, Λ, we can find the currents at the boundary
of this face since

Λu = i

.
The value of the isolated resistor is determined by summing these cur-

rents.
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