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Abstract

In this paper, we discuss an algorithm for recovering conductivities

of continuous materials by modelling with discrete networks. This

procedure uses the Neumann to Dirichlet map of discrete networks

and leads to our conjecture that there is a calculable link between

discrete and continuous networks.



1 Introduction

Our objective is to use resistor networks to model continuous regions. We will restrict

our discussion to square resistor networks, as in Curtis and Morrow[1]. A square

network Ωn consists of n2 interior nodes, 4n boundary nodes, and 2n(n+1) resistors

connecting the nodes such that each boundary node is connected to exactly one node.

Ω5 is shown in figure 1.
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Figure 1

1.1 The Forward Neumann Problem and The Neumann to

Dirichlet Map

The forward Neumann Problem is similar to the forward Dirichlet problem as briefly

explained in [3]. The objective of the forward problem is to produce N : the Neumann

to Dirichlet Map for an n × n network of resistors from Γ = (Ω0,Ω1, γ) which is a

network Ω = (Ω0,Ω1) and a function γ : Ω1 → R+ as explained in [3]. For each

edge σ = pq in Ω1, the number γ(ω) is called the conductance of σ and 1/γ(σ) is the

resistance of σ. The function γ on Ω1 is called the conductivity. The means to get

from Γ to N is by using Kirchoff’s law (1) and Ohm’s law (2).

∑

Q∼P

γ(PQ)(u(P )− u(Q)) = 0 (1)
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I(PQ) = γ(PQ)(u(P )− u(Q)) (2)

where u(P ) is the voltage at node P in Ω0, I(PQ) is the current passing through

segment PQ, and Q ∼ P means that Q is to vary around P ’s neighbors, as in [3].

By setting up a Kirchoff’s law equation for each interior node and an Ohm’s law

equation for each exterior node, a matrix, A, can be set up and solved for each set

{u(P )} for P , an interior node. But the matrix A is singular as explained in [1],

therefore to elimate the problem, we remove one equation in A and arbitrarily set

one voltage to zero. To solve the A matrix equation,

Au = b

the set {u(P )} for P an exterior node is used for b. This depends on the current on

the boundary, ∂Ω. The map N takes currents on ∂Ω and gives voltages on ∂Ω. To

produce a comprehendable N map and remembering that the total current in must

equal the total current out, we choose as our basis elements the set {φj}, j = 1, . . . , 4n

where φj represents 1 amp entering at boundary node j and 1 amp coming out at

boundary node j + 1 with no current in or out the other boundary nodes. It is

conveinent to think of outgoing currents as negative currents.

To create the N matrix, we used φj for the boundary current and solve the A

matrix equation as explained above. Each φj will give the j
th column of the N matrix.

Because the Neumann to Dirichlet map is not unique, (i.e. an arbitrary constant

voltage will give zero current throughout the network), we use voltage differences as

opposed to absolute voltages.

We label the boundary nodes in a clockwise direction, starting in the left-most

node of the north side (figure 2). N will be represented as a 4n by 4n matrix where

Ni,j is the potential difference between boundary node i and i + 1 due to φj. (For

clarification, N4n,j is the potential difference between boundary nodes 4n and 1 due

to φj).
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1.2 The Continuous Problem

The problem we wish to solve is the following. Four square pieces of conductive

material are placed adjacent to one another to form a larger square as shown in figure

3, so that current is free to flow between them. We wish to recover the conductivity

of each region solely from boundary information.

C3 C4

C1 C2

Figure 3

We would like to model this system of four regions with a network of resistors. For

any n, we can superimpose Ωn on the four regions and set the value of the resistivity

of each resistor to be that of the quadrant it falls upon. Our first attempt to model

the system with a discrete network would be the 2 × 2 network. We assign all the
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resistors in each quadrant the same resistivity. This is shown in figure 4a. For the

4× 4 model, the crosshairs extend as shown in figure 4b.

As n increases, this “crosshair” model produces closer approximations to the con-

tinuous case. We will need a way to take boundary data on an arbitrary n×n network

and recover the resistors within the network. This is the inverse Neumann problem.

To make our computations comparable with one another, we also seek an effective

way to reduce every size network to a 2× 2 network.
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2 The Inverse Neumann Problem

The inverse Neumann problem consists of calculating the values of the conductors in

the network from the boundary data map N . The inverse Neumann problem is similar

to the inverse Dirichlet problem as described in Curtis and Morrow[2]. Because the

continuous case being modeled is for a group of only four continuous regions, the

inverse problem described in this paper is for a 2× 2 network, but may be extended

further for larger systems.

To begin with, the corner resistors are calculated by placing zero current every-

where except the ith and (i + 1)th nodes which must be around a corner. A current

of 1 is sent in at the ith node and -1 at the (i+ 1)th node. A voltage of 0 on the face

opposite the (i + 1)th node is set as shown in figure 5 for i = 2. For clarification,

currents are shown in parentheses, while voltages are not.

By harmonic continuation as in [2], a zero voltage occurs at the interior node that

connnects both the ith and (i + 1)th node. To calculate the two resistors the values
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of the voltage are needed at the ith and (i + 1)th boundary nodes. This is obtained

directly from the N map. For the i = 2 case, the voltages for the ith and (i + 1)th

nodes are read from the 2nd columns of the N matrix. V2 = −N1,2 and V3 = N3,2.
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The other three corners are found in a similar fashion.

To calculate the four interior resistors, an important corner relationship (3) and

other similar properties (for the other corners) of the N matrix are used.

N2,j + βN2,j = 0forj = 5, 7 (3)

(This is similar to the corner relationships of the Λ matrix for the Dirichlet to Neu-

mann map in Curtis and Morrow[1], but differs slightly because of the underlying

basis of the matrix. The φj for N is (0,0,. . . ,0,1,-1,0,0,. . . ,0) whereas the basis for Λ

is (0,0,. . . ,0,1,0,0,. . . ,0).)

After calculating the β from equation (3), the voltage V (see figure 6) at the non

zero interior node can be found along with the values of the two interior conductors

touching that node. A simple rotation finds the remaining two conductor values.

Overall, given the current to voltage boundary information for any 2×2 resis-

tor network, Ω2, the inverse Neumann problem solves for the twelve resistors (eight

exterior and four interior).
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3 The Condensation Process

Since we wish to model the continuous case with a 2 by 2 network, we require a

process to reduce the 4n by 4n N matrix of an arbitrary n by n resistor network to

an 8 by 8 matrix. This process is called condensation. We produce the desired 8 by

8 matrix through the following steps.

The n by n network to be condensed has four faces, with each face divided into

halves. Label the half-faces from 1 to 8 in a counter-clockwise direction as shown in

figure 7.
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Figure 7

Let Ψj represent a current of 1 evenly distributed over the boundary nodes in half-

face j and -1 evenly distributed over the nodes of half-face j + 1 with zero currents

everywhere else. (Again, if j = 8, then j + 1 wraps around to half-side 1).

Figure 8 shows current flow due to Ψ4 on an 8 by 8 network with zero current on

the north and west faces.
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Given the distribution of currents according to Ψj, and the original n×n N matrix

which gives potential differences across all of the nodes of the boundary, we solve for

the 64 entries of the condensed matrix, Ñ by defining Ñi,j to be the average potential

difference between half-side i and half-face i + 1 due to Ψj. (Again, half-face 8 is

adjacent to 1).

Because the condensation from arbitray n×n matrices to an 8×8 matrix detroys

many of the properties of the N matrix, differing algorithms for the inverse problem

will produce differing conductor values. After testing different algorithms, we found

that no one algorithm was better than another at reproducing all of the conductors.

We used a combination of algorithms to get a “best” value for the conductors.

3.1 C: The Conductance Map from R4 to R12

With the algoritms for producing the forward Neumann problem, the condensation

process and the inverse problem, we can fuse the three to produce another map. The

forward problem takes the values of the resistors of an n × n network to prduce an

4n × 4n N matrix. Instead of knowing the value of each of the 2n(n + 1) resistors,

we take the values of each quadrant as explained in the introduction to produce the

N matrix. The 4n × 4n matrix produced is used to form a new, condensed 8 × 8
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matrix as explained above. The last step takes this 8 × 8 matrix and produces 12

values, one for each resistor in the n = 2 case.

This map C can be throught of as a map from the original 4 quadrant values, or

a vector in R4 to the reconstructed 12 resistor values or a vector in R12. Originally,

we hoped to discover properties about C, but with a Newton method convergence

algorithm used instead, we were able to discover plenty without such knowledge of

the actually map.

3.2 Stretch Factor

Starting with a 2 × 2 network in which the conductivitry of each crosshair is 1 (see

figure 4a), we produce an 8 × 8 N matrix. We perform the previously described

function C to retrieve the values of each of the twelve resistors. Because of the

symmetry of the starting vector (1,1,1,1), all boundary reistors are found to be equal.

We repeat this process for all even values of n. In each case, the four conductor values

returned are all equal. We take the ratio of the returned value for the n× n case to

that of the 2×2 case. As n increase, we produce a sequence of ratios which is known to

converge since it is achieved through a finite-differences approximation to the forward

Neumann problem. This limiting ratio will be used later and will be referred to as

the “stretch factor”. The reason the returned values for the conductivities in each

quadrant increases with n is that the finer the grid becomes, the easier it is for the

current to pass across the corner, where the two sides come very close together.

Because more current flows through this region, the inverse process returns higher

values for the conductivities. It interprets the increase in current to be due to more

conductive regions. In other words, it “thinks” the region has a higher conductivity

than it really does. We make an approximate correction later by dividing corner

conductivities by the stretch factor.

4 Solving the Continuous Inverse Problem Using

Discrete Methods

Given four continuous materials arranged as shown previously and each quadrant with

a constant conductivity, we seek a method to recover the value of the four conductors,
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(c1, c2, c3, c4). By evenly distrbuting a current of 1 over a half-face and taking out a

current of 1 over the clockwise-adjacent half-face, insulating all other half-faces, one

can determine the integrated potentials over each half-face. The N matrix for this

system is thus produced as follows. ψj represents an average current of 1 over half-side

j and an average current of -1 over its clockwise-adjacent half-face. (There are eight

half-faces). Ni,j is then the difference between the average integrated potential over

half-face i and that of half-face i+ 1 due to ψj. This creates an 8× 8 N matrix for a

continuous system. Our earlier inverse solver takes 8× 8 matrix and produces twelve

numbers—one for each resistor value— mong those twelve are four values we use as

approximations for the conductivities of each quadrant. These values are incorrect,

but we divide through by the stretch factor and produce four values for the ci’s that

we hope are close to the actual values. These new ci’s will act as our initial guess in

the Levenberg-Marquardt algorithm.

4.1 The Levenberg-Marquardt Algorithm

We use the Levenberg-Marquardt algorithm, a Newton method-type algorithm, to

find the solution to the function, C. Using the conductance map C from R4 to R12,

we want to be able to recover the four conductors (c1, c2, c3, c4) from a guess at the

four conductors. The guess is made from the 8×8 N matrix from continuous data and

the stretch factor calculated. The subroutine SNLSE in CMLIB performs iterations

of the algorithm which takes the initial guess and gradually alters them until they

are within some specified epsilon of the actual four conductivities.

4.2 Experimental Results

To demonstrate the process in action, we began by setting all conductors in the

northwest quadrant of a 10×10 network to 1000, the northeast quadrant to 1, the

southwest corner to 1.1 and the southeast quadrant to 0.001. These should be taken

as the true values of (c1, c2, c3, c4). We produced a 40×40 N matrix by the forward

Neumann map. This matrix was condensed to an 8×8 matrix as prescribed and

then run through the inverse solver. Using 2.91 as our stretch factor, we divided

the corner conductivites by 2.91 to prodcue our initial guess for (c1, c2, c3, c4). Our
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guess turned out to be (1493.14,1.12255,1.23490,7.51977e-04). After several itera-

tions, the subroutine returned our “best” guess for the conductivites to be (1000.000,

1.00000,1.10000,1.00000e-03). This is consistant to the real values to 6 significant

figures.

5 Conclusion

The claim that the Levenberg-Marquardt algorithm as used by SNLSE can recover

the conductivities of continuous materials is based on the limiting arguement of the

finite-differences approximation and numerous test cases in which we used data from

a 10×10 network as data from a contnuous system. Our stretch factor was simply

the ratio of the 10×10 network that was involved in the sequence that was used to

produce the original stretch factor. The process resulted in the recovery of the actual

four conductivites in every case we attempted to run.
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