The Inverse Conductivity Problem for a Hexagonal Network

Brett Sovereign
Rice University

October 25, 1990
1 Introduction

1.1 Overview

In this paper I explain the procedure by which the conductivities of a symmetrical hexagonal network can be determined from measurements of currents on the boundary due to imposed voltages. The existence of a unique solution to this inverse conductivity problem for any discrete network is shown in Curtis and Morrow (1990). This particular class of networks could be useful in more accurately approximating the continuous problem for a circular surface. In the end I show some of the results of the reconstruction for the simplest cases.

1.2 The Network

Let Ω be a network of resistors (lines) and conductors (intersections of lines), resembling a hexagonal tiling of the plane.

![Figure 1](image-url)
In this arrangement, each interior node is connected by three resistors to three nodes in the network, and the set of interior nodes is denoted by \(\Omega_0 \). Two nodes are adjacent if they are connected by a single resistor. Each boundary node is connected by one resistor to one interior node, and the set is denoted by \(\partial \Omega \). The set of resistors is denoted by \(\Omega_1 \), and an individual resistor is often referred to by the nodes which it connects, such as \(PQ \). A corner on the boundary of a hexagonal network occurs between two resistors on the boundary when they are connected to two interior nodes which are adjacent. A side of a boundary is the set of boundary nodes (and accompanying resistors) which lie between two corners, as in the below figure.

A symmetrical hexagonal network has exactly six sides, each with \(n \) boundary nodes. The size of these networks are completely determined by \(n \), having \(6 \times n \) boundary nodes, \(6 \times n^2 \) interior nodes, and \(9 \times n^2 + 3 \times n \) total resistors. When discussing the network in general, there are several logical ways to number the nodes and resistors. For purposes of later discussion, the conductors can be broken into \(n \)
circular shells, with two distinct parts: the spoke, the circle of conductors radiating out from the center, and the base, the circle of conductors between the spokes. Shell numbering starts from the upper left spoke on the boundary and counts clockwise, and then moves to the base conductor to the immediate right and continues, moving into the center. Rectangular numbering considers the network as a modified rectangle, and numbers left to right, top to bottom, first the horizontal conductors, and then the vertical ones.

![Rectangular Indexing](image)

In general, the boundary nodes and resistors considered by themselves will be numbered clockwise from the upper left corner.

1.3 The Forward Problem

Each resistor PQ has a conductivity $\gamma(PQ) > 0$ associated with it, and each node has a real voltage $u(P)$ associated with it. Given a set of conductivities for our given network, we wish to find the linear mapping between voltages imposed on the boundary and the resulting currents, known as the Dirichlet to Neumann map. By
Ohm's law the current I through a given resistor PQ is given by

$$I(PQ) = \gamma(PQ)(u(p) - u(q))$$

Then for each interior node, Kirkhoff's Law applies

$$\sum_{Q \sim P} \gamma(PQ)(u(P) - u(Q)) = 0$$

Where $Q \sim P$ indicates that Q is adjacent to P.

This equation can be rewritten as

$$[\sum_{Q \sim P} \gamma(PQ)] * u(P) - \sum_{Q \sim P} (\gamma(PQ) * u(Q)) = 0$$

Thus the net current flow through any interior node is zero, and the $6 \times n^2$ equations (one for each interior node of Ω_0) can be written as a matrix equation

$$Au = b$$

in which A is a $6 \times n^2$ by $6 \times n^2$ matrix with each diagonal entries being the sum of γ over the neighboring interior resistors, u the vector of voltages at each interior node, and b the vector of $\gamma(PQ) * u(Q)$ for boundary resistors PQ moved to the right hand side of the equation.

If $u(Q)$ for every boundary node Q then $u(P) = 0$ at all interior nodes P by the maximum principle (see Curtis and Morrow). This implies the non-singularity of A and so the above matrix equation has a unique solution. By setting A and b for the given conductivity and boundary potentials, we can solve for the interior potentials, and then calculate the currents at the boundary.

The linear mapping from voltages to currents is represented by the matrix Λ, which is dimension $6 \times n$ by $6 \times n$. $\Lambda(e_i)$ represents the currents across the boundary resistors due to a voltage of 1 at the ith boundary node and zero elsewhere. Thus $\Lambda_{i,j}$ is the current flow through boundary resistor i due to a voltage of 1 at boundary node j.
2 The Inverse Problem

2.1 The Algorithm

Now we work from the other direction: given the Dirichlet to Neumann map (in the form of a matrix Λ), we wish to calculate the conductivity throughout the network. By rewriting Kirkhoff’s Law once again

$$\left(\sum_{Q \rightarrow P} \gamma(PQ)u(P) \right) = \sum_{Q \rightarrow P} \gamma(PQ)u(Q)$$

we see that Kirkhoff’s Law is a weighted average. Since $\gamma(PQ) > 0$, all four terms of this equation are non-zero. Given any three of the terms, the fourth follows automatically.

Given the following boundary information:

1. The values of $u(P)$ on sides 1–6:
2. The values of $\frac{\partial u}{\partial n}$ (the currents) on sides 5 and 6.

There is a unique solution u that satisfies Kirkhoff’s Law with this information. Simply use the 4-point formula and work from sides 5 and 6.

In particular, setting u to zero on sides 1,4–6, except for $u(P_n) = 1$ on side 1 and $\frac{\partial u}{\partial n} = 0$ on sides 5 and 6 gives you a unique solution u that is zero up to the dotted line on the figure.
In general, there must be a series of voltages v_i on side 2 and part of side 3 such that

$$u(P_i) = 1$$
$$u(P_j) = v_i$$

For P_j located on sides 2 and 3 and above the dotted line. The values v_i can be calculated from the overdetermined system:

$$\Lambda(e_3) + v_1 \cdot \Lambda(e_4) + v_2 \cdot \Lambda(e_5) + v_3 \cdot \Lambda(e_6) + v_4 \cdot \Lambda(e_7) = 0$$

for boundary nodes 13–18 (sides 5 and 6). A unique solution for the v_i can be obtained by selecting from the above system the equations for side 5, and the adjacent boundary node on side 6. The uniqueness is shown by a similar argument to the rectangular case (see [Curtis and Morrow]).

Once the right-hand voltages are determined, the currents are calculated by

$$\Lambda(e_3) + v_1 \cdot \Lambda(e_4) + v_2 \cdot \Lambda(e_5) + v_3 \cdot \Lambda(e_6) + v_4 \cdot \Lambda(e_7) = C_i$$
this time at the boundary nodes with a non-zero voltage. Recalling the equation for current through a resistor, we can now determine the conductors γ_1 and γ_2, associated with P_3 and P_7 respectively, in the following way:

$$C_1 = (1 - 0) \cdot \gamma_1$$
$$C_5 = (v_4 - 0) \cdot \gamma_2$$

By rotating the figure counterclockwise so that side 2 becomes side 1, and repeating the above process, we calculate the first and third conductor on each side. The middle conductor on each side is found by changing the position of the 1 voltage to the middle of side 1, and solving for the (now five) voltages on the left side.

In this way, the boundary conductors are calculated.
We return to the initial conditions, and using our knowledge of the boundary conductors, calculate the base.

The interior shells of conductors are found in a similar fashion, using previously calculated information to determine the spokes, rotating until all spokes are found, and then determining the base. The procedure for determining the xth shell in an n-symmetrical hexagonal network is the same as calculating the boundary shell for an x-symmetrical hexagonal network. In order to put a non-zero voltage on the ith node of the xth shell, we place a 1 voltage on the (i)th boundary node of the entire network, and calculate inwards.
2.2 Some Results

The algorithm was programmed for the two simplest cases, the 1- and 2-hexagon networks. Given an initial set of conductances, a lambda matrix was generated in double precision (14 decimal places) which was then used to recalculate the γ's, and the deviation from the given conductance was found. For $\gamma = 1$ for all conductors, there was no measurable error for the 1-hex case, but for the 2-hex case there was an max error $\approx 1.1\exp{-13}$. For conductances which equalled the rectangular index number (γ(conductor No. 1)$= 1$, the error was $\approx 3.7\exp{-13}$ for 1-hex, and $5.4\exp{-8}$ for 2-hex. With given conductances which equalled the shell index, the error was $\approx 1.3\exp{-12}$ for 1-hex, and $4.4\exp{-12}$ for 2-hex.
References

[Curtis and Morrow] Edward Curtis and James Morrow, “The Dirichlet to Neumann Map for a Resistor Network”

A Programs

c Forward solver for symmetric hexagonal network

```
c File notation
c side, spiral$ (= y shell index) and g array = user specified
c Lambda matrix (for inspection)= user specified
c Lambda matrix (for inverse program)= fort.total cond
c Conductances (for comparison in inverse)= fort.total cond +1
implicit double precision (a-h,o-y)
parameter(mside=3,mlda=54,mbsize=18,mrsiize=90)
ingterg side, tnode, tcond, iband
character*16, filename, xy, spiral
double precision a(mlda,mlda), g(mrsiize+1), abe(mlda, mlda)
integer ipvt(24)
double precision lambda(mbsize, mbsize), pot(mlda)
integer bn(mbsize), bcond(mbsize), rsize, bounnode

c read conductivities into g
print *, 'keyboard or file?'
read *, xy
if (xy.ne.'f') then
goto 10
end if
print *, 'input file name?'
read *, filename
open(unit=15, file=filename, status='old')
read (15,*) side, spiral
```
if (side.gt.mside) then
 print *, 'case too large'
 stop
end if

if (side.gt.mside) then
 print *, 'case too large'
 stop
end if

side=iside
if *iside
 tcond=3*side*(3*side+1)
 print *, 'spiral or rectangular?'
 read *, xy
 if (xy.eq.'s') then
 spiral='y'
 else
 spiral='n'
 end if
 print *, 'constant, increasing, or specified?'
 read *, xy
 if (xy.eq.'i') then
 do 12 i=1,tcond
 g(i)=i
 continue
 goto 20

12

goto 20
else if (xy.eq.'c') then
 do 13 i=1,tcond
 g(i)=1
 13 continue
 goto 20
end if

15 do 17 i=1,tcond
 print *, 'conductor #', i
 read *, g(i)
 17 continue

convert to rectangular indexing if spiral

20 if (spiral.eq.'y') then
 call convert(g,side,0)
 end if
 print *, 'output filename?'
 read *, filename
 g(mrsize+1)=0
 call setmat(side,g,a)
 rsize=2*side*(3*side+1)
 tnode=6*side**2

put a matrix into band storage

iband=4*side-1
100 do 110 i=1,tnode
 j1=max0(1,i-iband)
 j2=min0(tnode,i+iband)
 do 100 j=j1,j2
 k=j-i+iband+1
 abe(i,k)=a(i,j)
 100 continue
 110 continue

factor banded matrix

lda=mlda
call dnbfa(abe,lda,tnode,iband,iband,ipvt,info)

c set up boundary node-resistor/interior node link

do 200 y=1,6
 do 190 x=1,side
 bounnode=(y-1)*side+x
 bcond(bounnode)=0
 bn(bounnode)=0
 if (y.eq.1) then
 bn(bounnode)=2*x
 bcond(bounnode)=rsize+x
 else if (y.eq.4) then
 bn(bounnode)=tnode-2*x+1
 bcond(bounnode)=tcond-x+1
 else if (y.eq.2) then
 do 120 i=i,x
 bn(bounnode)=bn(bounnode)+(2*side+2*I-1)
 bcond(bounnode)=bcond(bounnode)+(2*side+2*I-1)+1
 120 continue
 else if (y.eq.3) then
 bn(bounnode)=tnode/2
 bcond(bounnode)=rsize/2
 do 130 i=i,x
 bn(bounnode)=bn(bounnode)+4*side+1-2*i
 bcond(bounnode)=bcond(bounnode)+4*side+2-2*i
 130 continue
 else if (y.eq.5) then
 bn(bounnode)=tnode+1
 bcond(bounnode)=rsize+1
 do 140 i=i,x
 bn(bounnode)=bn(bounnode)-(2*side+2*I-1)
 140 continue
bcond(bonnnode)=bcond(bonnnode)-(2*side+2*i-1)-1

140 continue

else if (y.eq.6) then
 bn(bonnnode)=tnode/2+1
 bcond(bonnnode)=rsize/2+1
 do 150 i=1,x
 bn(bonnnode)=bn(bonnnode)-(4*side+1-2*i)
 bcond(bonnnode)=bcond(bonnnode)-(4*side+2-2*i)
 150 continue
end if

190 continue

200 continue

2 c
 iband=4*side-i
 do 210 i=1,6*side
 c initialize right vectors
 do 205 j=1,tnode
 pot(j)=0
 205 continue
 c set right hand side for bounnode=i
 inode=bn(i)
 icond=bcond(i)
 pot(inode)=g(icond)
 c solve for interior potentials
 call dnbsl(abe,lda,tnode,iband,iband,ipvt,pot,0)
 c find lambda matrix
 do 207 k=1,6*side
 knode=bn(k)
 kcond=bcond(k)
 if (k.eq.i) then
 lambda(i,i)=g(kcond)*(1-pot(knode))
 else
\begin{verbatim}
lambda(k,i) = -g(kcond)*pot(knode)
end if

207 continue
210 continue

c print conductances
if (filename.eq.'skip') then
 goto 321
end if

open (unit=16,file=filename,status='new')
write (16,*)
write (16,410)'nodes on a side=',side
write (16,410)'total conductors=',tcond,'total nodes=',tnode
write (16,410)'assigned conductances (rectangular indexing)'
write (16,*)
write (16,400)(g(i),i=1,tcond)
write (16,*)

c print lambda matrix
print *,print lambda matrix?'
read *,xy
if (xy.eq.'n') then
 goto 321
end if

310 call prmatr(lambda,18,18,6*side,6*side)

c print 'pure' lambda matrix for inverse problem
321 if1=tcond
 do 230 i=1,6*side
 do 240 j=1,6*side
 write (if1,*)lambda(j,i)
 240 continue
 230 continue

400 format(1p,5(d20.14,1x))
\end{verbatim}
SUBROUTINE SETMAT(side, g, a)

integer side, node, nn, en, wn, sn, nc, sc, ec, wc
integer rowsize, rsize, x, y
double precision g(91), a(54, 54)

rsize = 2*side*(3*side+1)

c top half of network
 do 70 y = 1, side
 c number of columns = rowsize
 rowsize = 2*side+2*y-1
 c column = x
 do 65 x = 1, rowsize
 c set boundary flags
 inw = 0
 ine = 0
 inf = 0
 c locate node(x, y)
 node = 0
 do 10 i = 1, y - 1
 node = node + (2*side+2*i-1)
 10 continue

 node = node + x

 do 70 y = 1, side

END
c write (20,*)'node=',node

c check if x is odd or even
 if (mod(x,2).ne.0) then
 goto 20
 end if

c
c even x north node/conductor
 sc=0

c flag if row 1 since on boundary
 if (y.eq.1) then
 inf=-1
 end if

c find north node
 nn=node-(rowsize)+1

c find north conductor
 nc=rsize
 do 15 i=1,y-1
 nc=nc+(side-1+i)
 15 continue
 nc=nc+(x/2)

c assign value to a matrix (except if flagged)
 if (inf.ne.-1) then
 if (nc.eq.0) then
 a(node,nn)=0
 end if
 a(node,nn)=-g(nc)
 end if
 goto 30

c
c odd x south node/conductor

20 nc=0

c determine if middle row
if (y.eq.side) then
 find node if middle
 sn=node+(rowsize)
 find if is not middle
 else
 sn=node+2*side+2*y
 end if

find south conductor
 sc=rs
 do 25 i=1,y
 sc=sc+side-1+i
 continue
 sc=sc+(x+1)/2
assign value to a matrix
 if (sc.eq.0) then
 a(node,sn)=0
 goto 30
 end if
 a(node,sn)=-g(sc)

 east conductor/node
 ec=0
 flag if last node on row
 if (x.eq.(rowsize)) then
 ine=-1
 end if

 find east node
 en=node+1

 find east conductor
 do 35 i=1,(y-1)
 ec=ec+(2*side+2*i-1)+1
 continue
 35
ec=ec+x+1

assign value to a matrix (skip if flagged)
if (ine.ne.-1) then
 if (ec.eq.0) then
 a(node,en)=0
 end if
 a(node,en)=-g(ec)
end if

west conductor/node
wc=0
flag if first node on row
if (x.eq.1) then
 inw=-1
end if
find west node
wn=node-1
determine if last node on row
if (x.eq.(rowsize)) then
goto 45
else
if F, then simple calculation of west conductor
 wc=ec-1
 goto 55
end if
if T, then calculate west conductor
45
do 50 i=1,(y-1)
 wc=wc+(2*side+2*i-1)+1
continue
wc=wc+x
assign value to a matrix (except if flagged)
55 if (inv.ne.-1) then
 if (wc.eq.0) then
 a(node,wn)=-g(wc)
 end if
 a(node,wn)=-g(wc)
 end if

 c put diagonal entry into a
60 if (ec.eq.0) then
 ec=91
 end if
 if (wc.eq.0) then
 wc=91
 end if
 if (nc.eq.0) then
 nc=91
 end if
 if (sc.eq.0) then
 sc=91
 end if
 a(node,node)=g(ec)+g(wc)+g(nc)+g(sc)
65 continue
70 continue

 c bottom half of hexagonal network

 do 120 y=side+1,2*side
 c number of columns in row(y)=rowsize
 rowsize=6*side-2*y+1
 do 115 x=1,rowsize
 c write (20,*)'(x=','x','y=','y,')'
115 continue
120 continue
c set boundary flags to zero
 inf=0
 ine=0
 inw=0
 node=3*side**2

c determine node(x,y)
 do 75 i=side+1,y-1
 node=node+(6*side-2*i+1)
 75 continue
 node=node+x

c write (20,*)'node=',node

c check to see if x is even or odd
 if ((mod(x,2)).ne.0) then
 goto 80
 end if

c even x south node/conductor
 nc=0

c flag if last row since on boundary
 if (y.eq.(2*side)) then
 inf=-1
 end if

c determine south node
 sn=node+(rowsize)-1

c determine south conductor
 sc=rszize+side*(3*side-1)/2
 do 77 i=side+1,y
 sc=sc+3*side+1-i
 77 continue
 sc=sc+x/2

c assign value to a matrix unless flagged
 if (inf.ne.-1) then
a(node,sn)=-g(sc)
end if
goto 90

c odd x north node/conductor
80 sc=0
 c determine if middle row or not
 if (y.gt.(side+1)) then
 c if F, determine north node
 nn=node-(rowsize)-1
 c if T, determine north node
 else
 nn=node-(rowsize)
 end if
 c determine north conductor
 nc=rowsize+(3*side-1)*side/2
 do 85 i=side+1,y-1
 nc=nc+3*side+1-i
85 continue
 nc=nc+(x+1)/2
 c assign value to a matrix
 a(node,nn)=-g(nc)
 c east node/conductor
90 ec=0
 c flag if on end of row
 if (x.eq.(rowsize)) then
 ine=-1
 end if
 c determine east node
 en=node+1
 c determine east conductor
 ec=side*(3*side+1)
do 95 i=side+1,y-1
 ec=ec+(6*side-2*i+1)+1
95 continue
 ec=ec+x+1

C assign value to a matrix unless flagged
 if (ine.ne.-1) then
 a(node,en)=-g(ec)
 end if

C west node/conductor
 wc=0

C flag if first node of row
 if (x.eq.1) then
 inw=-1
 end if

C determine west node
 wn=node-1

C determine if last node on row
 if (x.eq.(rowsize)) then
 goto 100
 else

C if F, simple conductor calculation
 wc=wc-1
 goto 110

end if

C if T, calculate west conductor

100 wc=side*(3*side+1)
 do 105 i=side+1,y-1
 wc=wc+(6*side-2*i+1)+1
105 continue
 wc=wc+x

C assign value to a matrix unless flagged
110 if (inw.ne.-1) then
 a(node,wn)=-g(wc)
end if

C put diagonal matrix entry
 if (ec.eq.0) then
 ec=91
 end if
 if (wc.eq.0) then
 wc=91
 end if
 if (nc.eq.0) then
 nc=91
 end if
 if (sc.eq.0) then
 sc=91
 end if
 a(node,node)=g(nc)+g(sc)+g(ec)+g(wc)

C move to next x
115 continue

C move to next y
120 continue
 return
end

SUBROUTINE prmatr(mat,maxrow,maxcol,row,col)

C this subroutine prints out the elements of the matrix mat
C with dimensions row by col

implicit undefined(a-z)
integer maxrow,maxcol,row,col
double precision mat(maxrow,maxcol)
i
integer i,j,k,i1,i2,block,l,space

space=3

20 format(a)

block=int(col/5)+1
if(mod(col,5).eq.0)block=block-1
do 50 j=1,block
 i1=(j-1)*5+1
 if(j.eq.block.and.mod(col,5).ne.0)then
 i2=(j-1)*5+mod(col,5)
 else
 i2=j*5
 endif

 write(16,30)('column',i,i=i1,i2)

30 format(6x,5(a,i11,4x))
do 40 k=1,row
 if(i2.eq.j*5)then
 write(16,60)k,(mat(k,i),i=i1,i2),k
 else
 write(16,70)k,(mat(k,i),i=i1,i2)
 endif
40 continue
do 45 l=1,space
 write(16,*)
45 continue
50 continue
60 format(i3,5(1x,d20.14),i3)
70 format(i3,5(1x,d20.14))
 stop
end

SUBROUTINE convert(g,side,dir)
c converts conductances from spiral indexing into rectangular form
c (dir=0) or vice-versa (dir=1)
 implicit double precision (a-h,o-z)
 integer scond2,rcond2,start,dir
 integer tcond, scond, rcond, thcond, i,j,x,y,sidemargin1
 integer wideside,side,shell,topmargin1,topmargin2,sidemargin2
 double precision g(3*side*(3*side+1)),h(200)
c transfer input into temporary array
 tcond=3*side*(3*side+1)
do 10 i=1,tcond
 h(i)=g(i)
10 continue
 thcond=2*tcond/3
c start from outside shell and work inwards
do 20 shell=side,1,-1
 if (shell.eq.side) then
 start=0
 topmargin1=0
 topmargin2=0
 sidemargin1=0
 sidemargin2=0
 else
 start=start+3*wideside
 topmargin1=topmargin1+(side-shell)*2+2*side
 topmargin2=topmargin2+side+(side-shell-1)
20 continue
sidemargin1 = sidemargin1 + 2
sidemargin2 = sidemargin2 + 1

end if
wideside = 2 * shell - 1

! work around shell first time (spokes first)
do 30 y = 1, 6
 do 40 x = 1, shell
 scond = start + (y - 1) * shell + x
 rcond = 0
 if (y .eq. 1) then
 rcond = thcond + topmargin2 + sidemargin2 + x
 else if (y .eq. 4) then
 rcond = tcond - topmargin2 - sidemargin2 - x + 1
 else if (y .eq. 2) then
 rcond = topmargin1
 do 50 j = 1, x
 rcond = rcond + (2 * shell + 2 * j - 1) + 2 * sidemargin1 + 1
 50 continue
 rcond = rcond - sidemargin1
 else if (y .eq. 6) then
 rcond = topmargin1
 tx = shell + 1 - x
 do 60 j = 1, tx - 1
 rcond = rcond + (2 * shell + 2 * j - 1) + 2 * sidemargin1 + 1
 60 continue
 rcond = rcond + sidemargin1 + 1
 else if (y .eq. 3) then
 rcond = thcond / 2
 do 70 j = 1, x
 rcond = rcond + (4 * shell + 1 - 2 * j) + 2 * sidemargin1 + 1
 70 continue
 rcond = rcond - sidemargin1
 40
30
27
else if (y.eq.5) then
 rcond=thcond/2
 tx=shell+1-x
 do 80 j=1,tx-1
 rcond=rcond+(4*shell+2-2*j)+2*sidemargin1
 80 continue
 rcond=rcond+sidemargin1+1
end if

! do the conversion
if (dir.eq.0) then
 g(rcond)=h(scond)
else
 g(scond)=h(rcond)
end if

30 continue
start=start+6*shell

do 90 x=1,wideside
 scond=start+x
 scond2=start+3+wideside+x
 rcond=topmargin1+sidemargin1+2+x
 rcond2=thcond-topmargin1-sidemargin1-x-1
 if (dir.eq.0) then
 g(rcond)=h(scond)
 g(rcond2)=h(scond2)
 else
 g(scond)=h(rcond)
 g(scond2)=h(rcond2)
 end if
90 continue
start=start+wideside

do 100 x=1,wideside
 scond=start+x
scond2=start+x+3*wideside
if (mod(x,2).eq.1) then
 rcond=thcond+topmargin2
 do 110 j=1,(x-1)/2+2
 rcond=sidemargin2*2+shell+j-1+rcond
 110 continue
 rcond=rcond-sidemargin2
 rcond2=tcond-rcond+thcond+1
else
 rcond=topmargin1
 do 120 j=1,x/2+1
 rcond=2*sidemargin1+rcond+(2*shell+2*j)
 120 continue
 rcond=rcond-sidemargin1-1
 rcond2=thcond-rcond+1
end if
if (dir.eq.0) then
 g(rcond)=h(scond)
 g(rcond2)=h(scond2)
else
 g(scond)=h(rcond)
 g(scond2)=h(rcond2)
end if
continue
start=start+wideside
do 130 x=1,wideside
 scond=start+x
 scond2=start+x+3*wideside
 if (mod(x,2).eq.1) then
 rcond=thcond/2
 do 140 j=1,(x-1)/2+1
 rcond=rcond+2*sidemargin1+(4*shell-2*j+2)
 140 continue
 end if
 rcond=rcond+2*sidemargin1
 g(rcond)=h(scond)
 g(rcond2)=h(scond2)
 do 130 continue
140 continue
rcond=rcond-sidemarg1-1
rcond2=thcond-rcond+1
else
rcond=thcond+side*(3*side+3)/2
do 150 j=1,x/2
 rcond=rcond+2*sidemargin2+(2*shell-j)
150 continue
rcond=rcond-sidemargin2
rcond2=tcond-rcond+thcond+1
end if
if (dir.eq.0) then
 g(rcond)=h(scond)
 g(rcond2)=h(scond2)
elser g(scond)=h(rcond)
 g(scond2)=h(rcond2)
end if
130 continue
start=start+wideside
20 continue
return
end

c Inverse solver for 1 hexagon case
 implicit double precision (a-h,o-y)
 double precision lambda(6,6),u(2),e(3),f(3,6),pot(6),
$ v(2,6),g(12),h(12),diff(12)
 integer top,bnode(100),jnode(100,6),tnode

30
character*16 filename,xy
c
 c ask for filename
 tnode=6
 print *, 'output filename?'
 read *, filename
 c read lambda in from file
 do 10 i=1,6
 do 20 j=1,6
 read (12,*) lambda(j,i)
 20 continue
 10 continue
 c take top=1 to 6 solve for exterior conductances
 do 30 top=1,6
 call getvolt(lambda,1,top,1,u,e,tnode)
 30 continue
 c print *, u(i)
 do 35 i=1,2
 v(i,top)=u(i)
 35 continue
 c get interior conductances
 do 50 top=1,6
 pot(top)=v(1,top)-f(2,top)/g(jnode(2,top))
 50 continue
 c convert into rectangular indexing
 call convert (g,1,0)
c compare with initial conductances
 ix=13
 do 300 i=1,12
 read (ix,*) h(i)
 diff (i)=dabs(h(i)-g(i))
300 continue

c print conductances into file
 open (unit=15, file=filename,status='new')
 write (15,210) 'conductances (differences)'
 write (15,200) (g(i),diff(i),i=1,12)
 close (unit=15)
200 format(ip,2(d20.14,1x,d20.14,3x))
210 format(4x,a)

 stop
 end

c Inverse solver for 7 hexagon case
 implicit double precision (a-h,o-y)
 double precision g(42),lambda(12,12),u(4),v(4,6),e(6),f(6,6)
 double precision pot(8,6),h(42),diff(42)
 integer top,inode(100),jnode(100,6),knode(100,6)
 character*16 filename

c read from file
 do 10 i=1,12
 do 20 j=1,12
 read (42,*) lambda(j,i)
 20 continue
10 continue

 print *, 'output file name?'
 read *,filename
do 30 top=1,6
 call getvolt (lambda,2,top,2,u,e,inode)
 do 40 i=1,3
 v(i,top)=u(i)
 40 continue
 do 50 i=1,4
 f(i,top)=e(i)
 50 continue
 do 60 i=1,4
 jnode(i,top)=inode(i)
 60 continue

get exterior conductances
 g(inode(1))=f(1,top)
 g(inode(4))=f(4,top)/v(3,top)
30 continue

do 70 top=1,6
 pot(1,top)=v(1,top)-f(2,top)/g(jnode(2,top))
 pot(2,top)=v(2,top)-f(3,top)/g(jnode(3,top))
 do 80 i=1,3
 inode(i)=mod(3*top+i-2,18)+13
 knode(i,top)=inode(i)
 80 continue
 g(inode(1))=-f(1,top)/pot(1,top)
 g(inode(2))=g(inode(1))+f(2,top)/pot(1,top)
 g(inode(3))=-pot(1,top)/pot(2,top)*g(inode(2))
70 continue

do 90 top=1,6
 call getvolt (lambda,2,top,1,u,e,inode)
 do 100 i=1,6
f(i, top) = e(i)
100 continue
do 110 i = 1, 5
 v(i, top) = u(i)
110 continue
ihg = 3*(top-1) + 13
pot(1, top) = -f(1, top)/g(ihg)
pot(2, top) = -f(2, top)/g(2*top)
ihh = ihg + 1
g(30+top) = -g(ihg) + (pot(2, top) - pot(1, top)) * g(ihh)
$ /pot(1, top)
pot(3, top) = v(1, top) - f(3, top)/g(jnode(2, top))
pot(5, top) = pot(3, top) + (-f(3, top) + (pot(3, top) - pot(2, top)) * g(12 + 3*top)) / g(jnode(2, top))
pot(6, top) = v(2, top) - f(4, top)/g(jnode(3, top))
90 continue
c get last conductances
do 120 top = 1, 6
 igh = mod(top, 6) + 31
 pot(4, top) = pot(5, top) + ((pot(5, top) - pot(3, top)) * g(jnode(2, top)) +
 $ (pot(5, top) - pot(6, top)) * g(jnode(3, top))) / g(igh)
g(36+top) = -pot(1, top)/pot(4, top) * g(30+top)
120 continue
c convert into rectangular coordinates
call convert(g, 2, 0)
c compare to original
 if1 = 43
do 193 i = 1, 42
 read (if1, *) h(i)
 diff(i) = dabs(h(i) - g(i))
193 continue
 open (unit=15, file=filename, status='new')

34
write (15,210)'conductances (differences)'
write (15,200)(g(i),diff(i),i=1,42)
close(unit=15)
200 format(1p,2(d20.14,3x,d20.14,1x))
210 format(4x,a)
stop
end

SUBROUTINE getvolt(lambda,side,top,loc,u,e,bnode)
c input lambda matrix, nodes on a side, which side one voltage is imposed
c which node on that side is one (loc=1-side)
c output voltage (u) and currents
implicit undefined (a-z)
integer i,top,loc, band,j,side,wideband,topband
integer gnode(100),bnode(100),ipvt(100),info
double precision lambda(6*side,6*side),e(3*side-2*loc+2)
double precision a(100,100),u(2*side-loc+1)
character*16 xy
c
topband=side-loc+1
band=2*side-loc+1
wideband=topband+band
c determine boundary nodes involved
do 5 i=1,topband
 bnode(i)=(top-1)*side+loc+i-1
c print *,bnode(i)
5 continue
do 10 i=1,band
 bnode(i+topband)=mod(top*side+i-1,6*side)+1
gnode(i)=mod(bnode(i+topband)+3*side-1,6*side)+1
c print *, bnode(i+topband), gnode(i)
10 continue

c read *, xy
 do 20 i=1, band
 do 30 j=1, band
 a(i, j) = lambda(gnode(i), bnode(j+topband))
 30 continue
 u(i) = -lambda(gnode(i), bnode(1))
 20 continue

c factor a matrix
 call dgefa(a, 100, band, ipvt, info)

c solve for voltages
 call dgesl(a, 100, band, ipvt, u, 0)

c get exterior currents
 do 40 i=1, wideband
 e(i) = lambda(bnode(i), bnode(1))
 40 continue
 do 50 j=1, band
 e(i) = e(i) + u(j) * lambda(bnode(i), bnode(j+topband))
 50 continue

40 continue

return

end