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1 Introduction

In this paper I chronicle my attempts to determine the presence and location of a diode in a square
network of resistors, and to determine the values of those resistors. First I define a discretized
Dirichlet to Neumann map for a resistor network that contains a diode. I then give an algorithm
for computing some of the resistors in a network containing a diode, using the Dirichlet to Neumann
map. Finally, I describe my attempts to find the location of the diode and remaining resistors.

2 The Dirichlet to Neumann Map

It is shown, in Curtis and Morrow, that a matrice Λ can be constructed from a network of resistors,
which maps voltages on the boundary of the network to currents on the boundary of the network.
Λ is an NxN matrice, where N is the number of exterior nodes in the network Γ. The ith column
of Λ contains the currents into Γ resulting from placing a voltage of 1 at the ith exterior node and
a voltage of 0 at every other node. Thus by superposition :

Λx = b

maps external voltages x onto external currents b.

3 A Dirichlet to Nuemann map with a Diode

A diode is a nonlinear electrical device which only allows current to flow through it in one direction.
An ideal diode d

¯
allows current to flow between its base and its tip if and only if the potential at

its base, Vb is greater than the potential at its tip, Vt. If Vt ≥ Vb, d
¯
becomes an open circuit, and

the current flow is zero. In this paper, when I say diode I shall always mean an ideal diode 1.

1In actuality, a not-so-ideal diode generally becomes a short circuit when the voltage across it is greater than .6

volts, rather than 0 volts.
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Furthermore, any diode present in a resistor network shall be assumed to be between two interior
nodes of the network (and not between an interior node and an exterior node) and in series with a
resistor between the same two nodes. Lastly, a diode with current flowing through it is said to be
on, whereas a diode without current flowing through it is said to be off.

Here is the electrical symbol for a diode. The arrow represents

direction of flow. Current flows from the base to the tip only.

(base) ----|>|-------\/\/\/----(tip)

(diode) (resistor)

For a network Γ∗ that contains an ideal diode, I define a new mapping, Λ∗. This Λ∗ is constructed
in the same way as Λ, i.e.: every ith column of Λ∗ contains the external currents into Γ∗ that result
from placing a voltage of 1 at the ith exterior node and a voltage of 0 everywhere else. Λ∗ does n

¯
ot,

however, map external voltages to external currents, except in special cases which I shall explain
below.

I define, for every internal resistor γ in Γ, a Λoc, which is the Λ matrice that would result if γ
were broken; i.e. if it was an open circuit with infinite resistivity.

For each ith column of Λ∗, that column shall be the same as the ith column of Λ, (where Λ is
assumed to come from a resistor network Γ identical to Γ∗ except for the presence of the diode) if
and only if the diode is on. If the diode is off then no current can flow directly from the interior
node at the diode’s tip to the interior node at the diode’s base; it is an open circuit. Hence the ith
column of Λ∗, is identical to the ith column of Λoc (for the resistor γ in series with the diode d

¯
)

whenever the diode is off.

REMARK 1: A diode must be either on or off. The general method of solving networks
containing diodes is called the method of assumed states. With one diode in the network, we first
assume the diode is on (don’t forget that a diode has NO resistance of its own), hence current
may flow through it, and through the resistor in series with it. We then solve for Vb and Vt. If
Vb < Vt then the initial guess was wrong and the diode is off. Solving once more for Vb and Vt,
this time with an open circuit between them, we indeed find that Vb is still less than Vt. The
reason for this becomes clear when one imagines a short circuit between the two nodes, making
their respective voltages equal. Now increase the resistance between the nodes until it is infinite
(open circuit). Clearly the voltage difference between the nodes must increase continually as the
resistance increases. It follows that if Vb < Vt with some resistance σ between them, then for an
infinite resistance between them, the difference between them must be even greater.
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4 The Inverse Problem

The inverse problem that I attempted to solve, with only partial success, was to recover the values
of all the resistors, and the location of the diode, using only the information contained in Λ∗. First
I shall give a method for determining which columns of Λ∗ come from Λ, and which ones come
from Λoc. I shall then present certain facts I was able to determine about all Λ∗s, and a method for
recovering some (but not all) of the resistors in Λ∗. Lastly I shall show give a method for finding
all the resistors and the position of the diode, if more boundary measurements are allowed.

I define an exterior node of a resistor network that contains a diode to be off if placing a voltage
of 1 at that exterior node, and a voltage of 0 at every other exterior node, causes the potential at
the tip of the diode to be higher than the potential at the base of the diode, which causes the diode
to act like an open circuit. Similarly, an exterior node is on if a voltage of 1 at that exterior node
and 0 elsewhere causes the diode itself to be on (act like a short circuit).

Throughout this paper I shall refer to both columns of Λ∗ matrices and boundary nodes of Γ∗

resistor networks as being on or off. There is no distinction; each Λ column corresponds to one
boundary node and vice versa.

The method to determine which columns of Λ∗ are on and which are off follows from Ohm’s
law:

I = V G

where V stands for voltage, I for current, and G for conductivity. Assuming a voltage of 1 at node
i and a voltage of 0 at every other node, the sum of the currents flowing through the the network is
equal to the current flowing into the network at exterior node i.2 This in turn equals V G equals Gi,
the equivalent conductance between exterior node i and ground. I am not interested in calculating
Gi (it would be a nasty job); suffice it to say that adding a resistor anywhere inside the network will
cause Gi to increase. One can see this more easily using an argument like that used in REMARK
1:

If the network contain only 1 resistor, it would certainly have a lower conductivity than if it
contained 2 resistors in series. (Recall that conductivities in series add.) On the other hand, if
the network were replaced with a sheet of copper (many many resistors in series), its conductivity
would be much much higher. Adding one resistor to a network must increase Gi, as it give the
current another path to follow. Therefore, the diagonal entries of a Λoc must always be less than
the corresponding entries in Λ. Λ has a higher conductivity, and hence more current flows. We also
know that in each column of Λ∗ (or any Λ) the sum of the absolute values of the off-diagonal entries
must equal the on-diagonal entry. Lastly, recall that Λ and Λoc, but not Lambda∗, are symmetric.
From all this we obtain this rule:

2remember that all the other other nodes will have negative current flow. Also, by Kirchoff’s Current Law, the

sum of the currents into a network must be 0.
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∀ exterior node i, IF (the ith column)

∑

j 6=i
jεext.nodes

|Λ∗(j, i)| <
∑

j 6=i
jεext.nodes

|Λ∗(i, j)|

(the ith row) Then node i is off. Otherwise it is on.

4.1 Some Facts about Λ∗

1. For any given Λ∗, at least one boundary node must be on and one must be off.

Suppose all the the boundary nodes are on. Starting at node 1, start placing a voltage of
1 at each boundary node of the network, Γ∗. By superposition the solutions must add, so
the current through the diode must increase every time another voltage of 1 is added. When
there is a voltage of 1 at every exterior node, there will be a very non-zero current running
through the diode. But since voltage is a is a γ harmonic function, and the exterior values are
all 1, the interior voltages must all be 1 also, and no current can flow. This is a contradiction.
A similar argument holds for the case when all the boundary nodes are off.

2. The two boundary nodes occuring around a corner of Γ∗ must be either both on or both off.

This follows from the fact that currents and voltages from one corner node must differ from
those of the other corner node by a positive constant. If one was off and the other on then by
superposition current flowing from corner node A would have to choose a noticeably different
route through Γ∗ than current from corner node B, which makes no sense.

3. CONJECTURE: All the ons and offs in the boundary of a given Γ∗ must come in two simply
connected, complementary sets: a set of ons, and a set of offs.

I never encountered a pattern of ons and offs that would violate this conjecture, but a con-
jecture it remains.

4.2 A Method to Compute Some of the Resistors from Λ∗

I shall number the corners of a square network from 0 to 3, proceeding clockwise and starting in the
upper right hand corner. Let cornerj ,i ,a be the boundary node i nodes to the left of corner j.(The
numbering shall start with 1 at the corner.) Cornerj ,i ,b shall be the boundary node i nodes to the
right. I shall define the ith ladder of corner j as those resistors within the trapezoid delimited by
cornerj ,i ,a , cornerj ,i+1 ,a , cornerj ,i ,bandcornerj ,i+1 ,b . (see picture).
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(corner 3) f f f f f f (corner 0)

| | | | # * This is a typical pattern of

f---------------#--*-f ons and offs. The ons are

| | | | | # represented by n’s, the offs

f------------------#-f by f’s.

| | | | | | In this picture, *s are on

n--------------------n the first ladder of corner 0.

| | | | | | #’s are on the second.

n--------------------n

| | | | | |

n--------------------n

| | | | | |

n--------------------n

| | | | | |

(corner 2) n n n n n n (corner 1)

The algorithm given by Curtis and Morrow for computing a given ladderj,i requires knowledge of
only those columns of Λ corresponding to the nodes from cornerj ,i ,a to cornerj ,i ,b , inclusive. IF
all those equivalent nodes in Λ∗ are all on, it is then possible to compute the appropriate ladder
of resistors as if the network did not contain a diode at all. This is also true for ladders bounded
entirely by offs, except that if the diode is hidden within one of the ladders to be computed, it will
cause wildly inaccurate answers. (This corresponds to attempting to compute the resistors of a
network that contains a broken resistor.3)

The following diagram shows which resistors could be recovered from Λ∗ for the Γ∗ network
pictured above. Those resistors which cannot be found are marked with *s. Those which can be
found only if the diode is somewhere among the stars are marked with hats. (^s)

3see Locating Faulty Resistors in a Network, Hudelson
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f f f f f f

| | * * | |

f---^--*--*--*--^----f * marks irrecoverable resistor

^ * * * * ^ ^ marks possibly recoverable resistor

f---*--*--*--*--*----f (recoverable if the diode is not on

* * * * * * that ladder)

n---*--*--*--*--*----n

| * * * * |

n------*--*--*-------n

| | * * | |

n--------------------n

| | | | | |

n--------------------n

| | | | | |

n n n n n n

4.3 Finding All the Resistors and the Diode

I define Λ∗∗ to be the matrice obtained by putting a voltage of negative one, one at a time at each
exterior node of Γ∗. Once again, the ith column of Λ∗∗ contains the currents into Γ∗ around the
boundary obtained by putting a voltage of -1 at the ith boundary node, and 0s at all the other
boundary nodes.

For every ith column in Λ∗, if that column is on (current flows through the diode when the
voltage at 1 at that boundary node and 0 elsewhere), then the corresponding column of Λ∗∗ must
be off, and vice versa. The reason comes from superposition: if the network did not have a diode,
adding the two columns together must result in zero current flow everywhere. Hence current in Λ∗∗

i

must be in the opposite direction as current in Λ∗
i , over every resistor. (Of course the diode will

only allow it to flow in one direction across it, but the voltage drop across it must still change sign
from Λ∗ to Λ∗∗.) Thus it is possible to reconstruct the original Λ and Λoc.

For each ith column in Λ∗, if it is on it becomes the ith column of Λ and Λ∗∗
i becomes the ith

column of Λoc. If it is off it becomes the ith column of Λoc and Λ∗∗
i becomes the ith column of Λ.

Having found Λ and Λoc, we can first use Curtis and Morrow’s method4 to find the resistors.
We can then use Hudelson’s method5 to find the location of the diode, since in Λoc the diode is
reduced to an open circuit.

4Determining the Resistors in a Network
5Locating Faulty Resistors in a Network
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4.4 Two Diodes Between the Same 2 Interior Nodes

One diode in a network can be treated as a degenerate case of the picture below. When the VA > VB

,diode 1 is on, diode 2 is off, and current flows through resistor 1. If VB > VA , diode 2 is on, diode
1 is off, and current flows through resistor 2. In the case we have until now dealt with, resistor
2 had infinite resitivity (or 0 conductivity) and is really an open circuit. Resistor 2 can, however,
have a finite resistance without any harm acruing to the methods described above. The definition
of on and off must change somewhat; off now means current flows through the resistor with the
higher resistivity, on through the lower. Indeed, if resistor 1 = resistor 2 the diodes cannot be
detected.

(resistor 1) (diode 1)

|--/\/\/\/-----|>|------|

| |

A---------| |-----------B

|----|<|----/\/\/\/-----|

(diode 2) (resistor 2)

The same number of resistors can be found from Λ∗ as before (with the added bonus that the diode’s
presence among off columns will no longer cause errors as it did when it was a short circuit), and
when using Λ∗∗, Hudelson’s methods no longer need to be used, as there are no broken resistors. Λ
and Λoc can both be given the inverse treatment; the results will be identical except for one resistor
in each network, which will be different.
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5 Examples

I end with a few examples of the on off patterns generated in a 6x6 Γ∗ network of constant conduc-
tivities. The dollar signs mark the location of the diode in each case, and stars mark those resistors
which I could not recover from Λ∗.

f f n n n n

| * | | | |

f----*-*-------------n

$ * * | | |

n---*--*--*----------n

| * * * | |

n------*--*----------n

| | * | | |

n--------------------n

| | | | | |

n--------------------n

| | | | | |

n--------------------n

| | | | | |

n n n n n n

n f f f n n

| * * * | |

n-----*--*--*--------n

| * $ * * |

n-----*--*--*--------n

| | * * | |

n--------*-----------n

| | | | | |

n--------------------n

| | | | | |

n--------------------n

| | | | | |

n--------------------n

| | | | | |

n n n n n n
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f f f f f f

| | * * * |

f-----*--*--*--*-----f

| * * * * *

f--*--*--*--*--*-----n

* $ * * * |

n--*--*--*--*--------n

| * * * | |

n-----*--*-----------n

| | * | | |

n--------------------n

| | | | | |

n--------------------n

| | | | | |

n n n n n n

f f f f f f

| | | | | |

f---------*----------f

| | * * | |

f------*--*--*-------f

| * * * * |

f---*--*--*--*--*----f

$ * * * * *

n---*--*--*--*--*----n

| * * * * |

n------*--*--*-------n

| | * * | |

n---------*----------n

| | | | | |

n n n n n n
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f f f f f f

| | | | | |

f---------*----------f

| | * * | |

f------*--*--*-------f

| * * * * |

f---*--*--*--*--*----f

* * $ * * *

n---*--*--*--*--*----n

| * * * * |

n------*--*--*-------n

| | * * | |

n---------*----------n

| | | | | |

n n n n n n
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