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1 The network.

In this paper we shall consider square networks of resistors whose nodes have integer coor-
dinates. We will refer to such a system as an n×n network, where n is the number of nodes
across the top row. The figure below illustrates the case when n = 5.

In general, each network has n2 interior nodes, 4n boudary nodes, and 2n(n+1) resistors.
As shown we will number the boundary nodes from −n to 3n (for convenience of notation
later on) clockwise beginning at the lower left and number the corners from 1 to 4 as shown.

Each node p in the network has a potential u(p), each resistor connecting adjacent nodes
p and q has conductance γ(pq) > 0, and by Ohm’s Law the current flow through each resistor
is I(pq) = γ(pq)(u(p)− u(q)) if u(p) ≥ u(q) or similarly of u(q) > u(p). Along the boundary
current flowing into the network will be considered positive and current flowing out of the
network will be considered negative.

We require also that the sum of the individual currents at each interior node is zero
(Kirkhoff’s Law), so that no such node is a source or sink of current. In symbols, if the qi’s
are the neighbors of an interior node p, we require

4
∑

i=1

γ(pqi)((u(p)− u(qi)) = 0.

2 Dirichlet to Neumann map.

Given the conductance of each resistor and the potentials at the boundary, the “forward”
problem is the determination of the potential at each interior node. This can be done
by applying Kirkhoff’s Law at each interior node, yielding n2 equations in n2 unknown
potentials, which can be solved by Gaussian elimination.

Once a particular forward problem has been solved, we then may determine the current
flow along the boundary from the given formula for current. The mapping from the space of
boundary potentials to the space of boundary currents for a particular network is called the
Dirichlet to Neumann map, denoted by Λ. We may find Λ as follows : For j = 1, 2, ..., 4n
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let φj be the potential vector (in 4n-space) consisting of 1 at boundary node j and zeros
elsewhere. Let Cj be the solution of the forward problem using φj; then the Cj’s are the
columns of the Λ matrix.

The units of Λ are current per unit voltage, so that multiplying a potential vector by Λ
yields a current vector. Curtis and Morrow have shown that Λ is symmetric, with positive
entries on the (main) diagonal and negative entries elsewhere. Because no current is created
or absorbed in the interior of the network, the sum of the entries of each column (row) of
Λ is zero. The matrix also contains the so-called corner relations, a key property which
will enable us to show that, given Λ, we may determine the conductance function γ of the
network.

3 Corner relations.

Let us define the kth diagonal at corner 1 as the set of k + 2 nodes along a straight line
from node k + 1 to node −k − 1. Curtis and Morrow have shown that it is always possible
to obtain potentials of zero at all nodes on and below (above) any diagonal. Consider the
following :

If we wish to set zero potentials along the kth diagonal, it is enough to (1) set the potentials
to zero at nodes k+1, k+2, ... clockwise around to −k− 1, and (2) set the current to zero
at nodes n + 1, ..., n + k. [We will see that we have a certain degree of freedom regarding
this choice.] These conditions yield zero potentials and zero currents on and below the kth

diagonal, and we are free to impose any potentials we like at nodes −k, − k + 1, ..., k.

Suppose then that we assume such a scheme along the first diagonal, and that we set the
voltage to 1 at node −1. At this node some current I will flow into the network, which must
flow out at node 1, thus determining some voltage α there. In terms of the columns (Cj’s)
of Λ, we have now obtained the first relation at corner 1,

C
−1 + αC1 =







I at node -1,
−I at node 1,
0 elsewhere.
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In general the kth relation at corner 1 is obtained by imposing zero voltages along the
kth diagonal, setting voltages of 1 at node −k and zeros at the nodes directly above, and
reading off the voltages α1, ..., αk across the top. The equations are

C
−k +

k
∑

i=1

αiCi =
{

Ij for j = −k, − k + 1, ..., k,
0 elsewhere (in particular for j = n+ 1, n+ 2, ..., 3n).

(Note that C
−k refers to the (4n+ 1− k)th column of Λ).

There are analogous relations at corners 2, 3, and 4. In regards to condition (2) above,
Curtis and Morrow have shown that we may set any k currents from n+ 1 to 3n to zero so
long as all combinations of nodes where there exists a corner relation are avoided, i.e. nodes
2n and 2n+ 1, nodes 2n− 1, 2n, 2n+ 1, and 2n+ 2, etc.

4 Inverse problem.

We now have stated enough properties of Λ to recover the conductance of the network by
the direct or staircase method. It is sufficient to describe the process for one-fourth of the
network (a “wedge”, below), as the rest may be found by appropriate rearrangements of the
network and Λ.

Let us define the kth staircase as the set of k resistors in the wedge between the (k− 1)st

and kth diagonals. Number the resistors γ1, γ2, ..., γk towards the center of the network.
In the first step, we set the first diagonal to zero and use the (n+ 1)st entry of the relation
C
−1 + α1C1 = 0 to find α1. We can now read off the current I−1 from the relation, thus
determining γ1 since I−1 = (1− 0)γ1.

The recovery of the conductance of a wegde requires n steps. If we assume that (k − 1)
steps have been completed, we solve the kth step as follows : Impose zero potentials along the
kth diagonal, and impose suitable conditions so that the kth relation holds. We set currents
n + 1, ..., n + k to zero; this corresponds to using the (n + 1)st, ..., (n + k)th entries of
the kth relation at corner 1 in order to find α1, ..., αk by Gaussian elimination. Since the
α’s are now known, we can read off the currents I

−1, I−2, ..., I−k+1 from the k
th relation.

Now repeatedly apply Kirkhoff’s Law on the interior of the wedge to find the voltages along
the (k − 1)st staircase. We set up k equations in γ1, ..., γk by applying Kirkhoff’s Law at
(k − 1) wedge nodes along diagonals (k − 1) and k, plus the equation I

−k = (1− 0)γ1. This
completes step k.
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5 Improvements.

Unfortunately the method just described is ill-conditioned. The main cause is that the
computation of α’s from the kth corner relation becomes increasingly singular as k increases.
For example, at the nth step of the direct method, we use the relation C

−n +
∑n

1 αiCi = 0,
and solve for the α’s by setting currents n + 1, ..., 2n to 0. This system in, say, a 12 × 12
case typically has a condition number on the order of 1014. The innacuracy of the α’s in
such a case results in γ-solutions nowhere near their actual values (frequently negative).

This problem can be remedied somewhat. As previously mentioned, at the kth step we
are free to impose k currents from the set n + 1, ..., 3n to zero, so long as corner relation
nodes are avoided. But columns Cn+1, ..., C2n (which we have so far been choosing) of Λ are
“nearly” linearly dependent in the sense that columns Cn+1, ..., C2n+1 are dependent. One
possible scheme is to stay away from the relation at corner 3 as much as possible. In this
“improved current” method, the condition number of solving for the α’s can be lowered by
dividing up the currents to be set to zero, putting half of them directly below corner 2 and
half of them to the right of corner 4.

Another problem in the staircase method is the relative size of the α’s. For example,
in the tenth step of a 10 × 10 network (with conductances between 1 and 9), α1 is several
orders of magnitude larger then α10. This can be improved somewhat by moving half of the
α’s just above the unit voltage at node −k (replacing them with zeros) and leaving half of
them α’s to the left of node k. The “relation” used in solving for the α’s in this case is

C
−k +

[k/2]
∑

i=1

αiC−k+i +
k
∑

i=1+[k/2]

αiCi = 0.

This is the “improved α” method (figure 5 with n = 5, k = 4), and when combined with
the improved current method the condition numbers of the steps are brought down further.
The result is that the conductance function γ is recovered more accurately.
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6 Results.

There following are data for three networks of conductances between 1 and 9. The condition
numbers here are the reciprocals of those that were returned by LINPACK double precision
matrix-solver routines. For simplicity, data from the last few steps of the recovery of the
first wedge are given, since the data from the other wedges are of like magnitudes.

8× 8 direct improved α improved current both
step 5 2.7× 106 3.1× 105 2.9× 104 5.8× 103

step 6 3.6× 107 2.0× 106 5.7× 104 1.4× 104

step 7 4.3× 108 5.6× 106 7.9× 104 1.9× 104

step 8 1.1× 1010 8.4× 106 8.9× 105 5.0× 104

10× 10 direct improved α improved current both
step 7 3.8× 109 1.6× 108 1.5× 106 3.8× 105

step 8 3.8× 1010 4.0× 107 2.0× 106 1.5× 105

step 9 5.3× 1012 3.4× 109 2.5× 106 7.5× 105

step 10 2.9× 1014 3.7× 109 2.9× 106 2.6× 105

12× 12 direct improved α improved current both
step 9 1.1× 1013 3.5× 1010 1.1× 108 2.3× 107

step 10 1.4× 1014 1.2× 1011 1.4× 108 2.1× 107

step 11 2.1× 1015 6.8× 1011 1.5× 108 3.1× 107

step 12 6.1× 1016 4.0× 1012 1.6× 108 4.2× 107

7 Further improvements.

The accuracy of the method still can be increased. Consider the fourth step of the inverse
problem of a 5× 5 network (we omit the currents for simplicity) :

As we know, in this step we are computing resistors γ1, γ2, γ3, and γ4 by using the
fourth relation at corner 1. However, γ1 could have been found much more accurately from
the second relation at corner 4 (the voltages in brackets require the computation of only two
α’s).
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Therefore a better implementation of solving the inverse problem would be to go by
“levels”: At level 1 we compute every possible first staircase (there are eight), at level 2 we
would compute every possible second staircase, and so on until we reach level 1 + [n/2]. At
this point we would solve each step only for the resistors of the staircase that were presently
unknown. For example, at the fourth level above we would only need to solve for γ4, as
we would know γ1, γ2, and γ3 from previous steps. An implementation of this sort would
greatly improve the number of digits of accuracy in the recovered resistors.
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