Determining the Resistance within a 3-Dimensional Network

Christina H. Lamont

June 1989

1 Introduction

In this paper it is shown that the resistors in a cubic network can be determined by measurements at the boundary of the currents generated by imposed voltages. First we solve the Dirichlet problem for the continuity equation and give a discretized version of this solution. Next, we define a map of Dirichlet data to Neumann data and describe its uses within the context of this paper. Finally, we give an algorithm for using the boundary measurements to compute the resistances and supply numerical results.

2 The Dirichlet Problem

Assume we are given a 3 -dimensional region, V, with conductivity $\gamma(x, y, z)$ and potential $u(x, y, z)$ throughout. If we assume, also, that there are no sources of current within V, then we know the total current flowing into V is zero. Thus, the Divergence Theorem implies for every region, Ω, within V

$$
\begin{aligned}
0 & =\iint_{\partial \Omega} \gamma g \overrightarrow{r a} d u \cdot \vec{u} d A \\
& =\iiint_{\Omega} \operatorname{div}(\gamma \operatorname{gradu}) d V
\end{aligned}
$$

Thus, since the integral must be zero for all such Ω, it must be true that $\operatorname{div}(\gamma \operatorname{gradu})=0$. Assume, now, that we are given only the potential, ϕ, along the boundary of V (call it ∂V) and the conductivity, $\gamma(x, y, z)$, throughout V. Our problem then becomes, find a potential function $u(x, y, z)$ defined throughout V such that $u=\phi$ on ∂V in some sense. That is, find u such that $u=\phi$ on ∂V and $L_{\gamma} u=0$ where $L_{\gamma} u \equiv \operatorname{div}(\gamma g r a d u)$.
Since

$$
\begin{aligned}
0 & =\operatorname{div}(\gamma \operatorname{grad} u) \\
& =\left(\gamma u_{x}\right)_{x}+\left(\gamma u_{y}\right)_{y}+\left(\gamma u_{z}\right)_{z}
\end{aligned}
$$

and we are solving for u, we would like to find approximations to $\left(\gamma u_{x}\right)_{x},\left(\gamma u_{y}\right)_{y},\left(\gamma u_{z}\right)_{z}$ in terms of $u(x, y, z)$.

If we define

$$
D_{h}(x) \equiv \frac{u(x+h, y, z)-u(x, y, z)}{h}
$$

then

$$
\left(\gamma u_{x}\right)_{x} \sim \frac{\gamma\left(x+\frac{h}{2}, y, z\right) D_{h}(x)-\gamma\left(x-\frac{h}{2}, y, z\right) D_{h}(x-h)}{h}
$$

Note:

$$
\begin{aligned}
\lim _{h \rightarrow 0} \gamma\left(x+\frac{h}{2}, y, z\right) & {\left[\frac{u(x+h, y, z)-u(x, y, z)}{h^{2}}\right]+\gamma\left(x-\frac{h}{2}, y, z\right)\left[\frac{u(x-h, y, z)-u(x, y, z)}{h^{2}}\right] } \\
= & \lim _{h \rightarrow 0}\left[\frac{\gamma(x, y, z)+\frac{h}{2} \gamma_{x}(x, y, z)}{h}\right]\left[u_{x}(x, y, z)+\frac{h}{2} u_{x x}(x, y, z)\right] \\
& +\lim _{h \rightarrow 0}\left[\frac{\gamma(x, y, z)-\frac{h}{2} \gamma_{x}(x, y, z)}{h}\right]\left[\frac{h}{2} u_{x x}(x, y, z)-u_{x}(x, y, z)\right] \\
= & \lim _{h \rightarrow 0}\left(\frac{\gamma(x, y, z)}{h}\right)\left(h u_{x x}(x, y, z)\right)+\frac{1}{h}\left(h \gamma_{x}(x, y, z)\right)\left(u_{x}(x, y, z)\right) \\
= & \gamma\left(\frac{\partial^{2}}{\partial x^{2}} u\right)+\left(\frac{\partial}{\partial x} \gamma\right)\left(\frac{\partial}{\partial x} u\right) \\
= & \left(\gamma \frac{\partial u}{\partial x}\right)_{x}
\end{aligned}
$$

Thus,

$$
\frac{\gamma\left(x+\frac{h}{2}, y, z\right) D_{h}(x)-\gamma\left(x-\frac{h}{2}, y, z\right) D_{h}(x-h)}{h}
$$

is a reasonable approximation to $\left(\gamma u_{x}\right)_{x}$.
Similarly,

$$
\left(\gamma u_{y}\right)_{y} \sim \frac{\gamma\left(x, y+\frac{h}{2}, z\right) D_{h}(y)-\gamma\left(x, y-\frac{h}{2}, z\right) D_{h}(y-h)}{h}
$$

$$
\left(\gamma u_{z}\right)_{z} \sim \frac{\gamma\left(x, y, z+\frac{h}{2}\right) D_{h}(z)-\gamma\left(x, y, z-\frac{h}{2}\right) D_{h}(z-h)}{h}
$$

where $D_{h}(y), D_{h}(z)$ are defined in the same manner as $D_{h}(z)$.
If we let $h=1$, then

$$
\begin{aligned}
0= & \operatorname{div}(\gamma \operatorname{gradu}) \\
= & L_{\gamma} u \\
= & \left(\gamma u_{x}\right)_{x}+\left(\gamma u_{y}\right)_{y}+\left(\gamma u_{z}\right)_{z} \\
\sim & \gamma\left(x+\frac{1}{2}\right)[u(x+1)-u(x)]+\gamma\left(x-\frac{1}{2}\right)[u(x-1)-u(x)] \\
& +\gamma\left(y+\frac{1}{2}\right)[u(y+1)-u(y)]+\gamma\left(y-\frac{1}{2}\right)[u(y-1)-u(y)] \\
& +\gamma\left(z+\frac{1}{2}\right)[u(z+1)-u(z)]+\gamma\left(z-\frac{1}{2}\right)[u(z-1)-u(z)]
\end{aligned}
$$

Let us now turn to the specific type of region with which we concern ourselves in this paper, the cubic lattice. Let there be N steps along each edge of the cube that the lattice network has $(N-1)^{3}$ interior points. In figure (2), for example, $N=3$. We will call any lattice point a node and the segment joining any two nodes an edge. Sometimes we refer to an edge as a resistor. If p is a node such that it is not an interior to the lattice, then p is said to be a boundary node.

Suppose, as with the general region, we are given a potential function $f(p)$, where p ranges over all boundary nodes, and conductivity, $\gamma(p q)$, for all edges, $p q$, in the network. Then we would like to find a potential function $u(p)$ over all nodes p (boundary and interior) such that $L_{\gamma} u=0$ and $u(p)=f(p)$ whenever p is a boundary node. Notice, however, that equation (1) is just Kirchoff's Law applied at an interior node.

If p is any node, then define

$$
N(p) \equiv\{q \mid q \text { is a node connected to } p \text { by a single edge }\}
$$

Thus, equation (1) is equivalent to

$$
0=\sum_{q \in N(p)} \gamma(p q)(u(p)-u(q))
$$

Notice, in addition, if we apply Kirchoff's Law at every interior node, then we get a matrix equation in $(N-1)^{3}$ variables and $(N-1)^{3}$ unknowns. The following proposition shows the function $u(p)$ is unique.

Definition Let Ω_{0} be the set of all nodes in the network, int Ω_{0} be the set of all interior nodes, and $\partial \Omega_{0}$ be the set of all boundary nodes

Proposition Let $\phi: \partial \Omega_{0} \rightarrow \Re$ be given. Then there exists a unique function $f: \Omega_{0} \rightarrow \Re$ such that $L_{\gamma} f(p)=0$ for all $p \in \operatorname{int} \Omega_{0}$ and $f(p)=\phi(p)$ for all $p \in \partial \Omega_{0}$.

Therefore, if we are given potential along the boundary and conductivity throughout, then there is only one possible function u which solves our problem. As an example consider the cube of figure (2). Suppose $\gamma(p q)=1$ for every edge within the network. Since $N=3$ and there are always $(N-1)^{3}$ interior nodes, we must consider 8 equations; we need only find the potential at interior nodes (since the potential at the boundary nodes is given), thus, there are 8 unknown values. Below is the matrix equation, $A x=b$, to be solved.

$$
\left(\begin{array}{rrrrrrrr}
6 & -1 & -1 & 0 & -1 & 0 & 0 & 0 \\
-1 & 6 & 0 & -1 & 0 & -1 & 0 & 0 \\
-1 & 0 & 6 & -1 & 0 & 0 & -1 & 0 \\
0 & -1 & -1 & 6 & 0 & 0 & 0 & -1 \\
-1 & 0 & 0 & 0 & 6 & -1 & -1 & 0 \\
0 & -1 & 0 & 0 & -1 & 6 & 0 & -1 \\
0 & 0 & -1 & 0 & -1 & 0 & 6 & -1 \\
0 & 0 & 0 & -1 & 0 & -1 & -1 & 6
\end{array}\right) \quad\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6} \\
x_{7} \\
x_{8}
\end{array}\right)=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4} \\
b_{5} \\
b_{6} \\
b_{7} \\
b_{8}
\end{array}\right)
$$

where

$$
\begin{aligned}
x_{i} & =u\left(p_{i}\right) \\
b_{i} & =\sum_{q^{\prime} \in N\left(x_{i}\right)} \gamma\left(p_{i} q^{\prime}\right) u\left(q^{\prime}\right)
\end{aligned}
$$

In general, $b=\left(b_{1}, \ldots, b_{(N-1)^{3}}\right)$ and $x=\left(x_{1}, \ldots, x_{(N-1)^{3}}\right)$, where b_{i}, x_{i} are defined as above. Before we can give a general description of the matrix, A, we must establish a system of indexing. Assume
the upper left-hand node found furthest back in the network is always labelled node 1. Assume, also, the labelling of neighbors of a node i suggested in figure (4).
Note:

1. If $i \leq(N-1)^{2}$, then i does not have a northern neighbor.
2. If $i>(N-2)(N-1)^{2}$, then i does not have a southern neighbor.
3. If $j(N-1)^{2}<i \leq j(N-1)^{2}+(N-1), j=0, \ldots,(N-2)$, then i does not have a neighbor behind.
4. If $j(N-1)^{2} \geq i>j(N-1)^{2}-(N-1), j=1, \ldots,(N-1)$, then i does not have a neighbor in front.
5. If $i=j(N-1), j=1, \ldots,\left(N-1^{2}\right.$, then i does not have an eastern neighbor.
6. If $i=j(N-1)+1, j=0, \ldots,(N-1)^{2}$, then i does not have a western neighbor.

This indexing scheme will be used throughout this paper.
Now we can give the general description of the matrix, A.
A is an $(N-1)^{3} X(N-1)^{3}$ block tridiagonal matrix

$$
A=\left[\begin{array}{ccccc}
B_{1} & C_{1} & 0 & \ldots & 0 \\
C_{1} & . & . & \ldots & . \\
0 & . & . & \ldots & . \\
\cdot & \cdot & . & \ldots & 0 \\
. & \ldots & . & . & C_{N-2} \\
0 & \ldots & 0 & C_{N-2} & B_{N-1}
\end{array}\right]
$$

where each B_{i}, C_{i} is an $(N-1)^{2} X(N-1)^{2}$ matrix.

$$
C_{i}=\left[\begin{array}{cccc}
-\gamma_{i, 1} & 0 & \ldots & 0 \\
0 & . & \ldots & . \\
. & \ldots & \ldots & 0 \\
0 & \ldots & 0 & -\gamma_{i,(N-1)^{2}}
\end{array}\right] \quad i=1, \ldots, N-2
$$

where $\gamma_{i, j}=$ conductivity between node $(i-1)(N-1)^{2}+j$ and node $i(N-1)^{2}+j$ (the southern interior neighbor).

1. $\gamma_{i, j}$ equals the conductivity between node $i(N-1)^{2}+j$ and its northern interior neighbor.
2. If $i=1$, then node j does not have a northern interior neighbor; if $i=(N-1)$, then node $(N-1)^{2}(N-2)+j$ does not have a southern interior neighbor.
B_{i} is a block tridiagonal matrix of the form:

$$
B_{i}=\left[\begin{array}{ccccc}
D_{i, 1} & E_{i, 1} & 0 & \ldots & 0 \\
E_{i, 1} & \cdot & \cdot & \ldots & \cdot \\
0 & \cdot & \cdot & \ldots & \cdot \\
\cdot & \cdot & \cdot & \ldots & 0 \\
\cdot & \ldots & \cdot & \cdot & E_{i, N-2} \\
0 & \ldots & 0 & E_{i, N-2} & D_{i, N-1}
\end{array}\right] \quad i=1, \ldots, N-1
$$

where each $D_{i, j}, E_{i, j}$ is an $(N-1) X(N-1)$ matrix.

$$
E_{i, j}=\left[\begin{array}{cccc}
-\gamma_{i, j, 1} & 0 & \ldots & 0 \\
0 & \cdot & \ldots & . \\
. & \ldots & \ldots & 0 \\
0 & \ldots & 0 & -\gamma_{i, j(N-1)^{2}}
\end{array}\right] \quad \begin{aligned}
& i=1, \ldots, N-1 \\
& j=1, \ldots, N-2
\end{aligned}
$$

where $\gamma_{i, j, k}=$ conductivity between node $(i-1)(N-1)^{2}+(j-1)(N-1)+k$ and node $(i-1)(N-$ $1)^{2}+j(N-1)+k$ (the forward interior neighbor).
As with the matrix C_{i}, note:

1. $\gamma_{i, j, k}$ is also the conductivity between node $(i-1)(N-1)^{2}+j(N-1)+k$ and its interior neighbor behind.
2. If $j=1$, then node $(i-1)(N-1)^{2}+k$ has no interior neighbor behind; if $j=N-2$, then node $(i-1)(N-1)^{2}+(N-2)(N-1)+k$ has no forward interior neighbor.

Finally,

$$
D_{i, j}=\left[\begin{array}{ccccc}
-\gamma_{i, j, 1} & -\beta_{i, j, 1} & 0 & \ldots & 0 \\
-\beta_{i, j, 1} & \cdot & \cdot & \cdots & \cdot \\
0 & \cdot & \cdots & \cdots & \cdot \\
\cdot & \cdots & \cdots & \cdot & 0 \\
\cdot & \cdots & \cdot & \cdot & -\beta_{i, j,(N-1)^{2}} \\
0 & \cdots & 0 & -\beta_{i, j,(N-1)^{2}} & -\gamma_{i, j,(N-1)^{2}}
\end{array}\right] \quad \begin{aligned}
& i=1, \ldots, N-1 \\
&
\end{aligned}
$$

where $\beta_{i, j, k}=$ conductivity between node $(i-1)(N-1)^{2}+(j-1)(N-1)+k$ and the node $(i-1)(N-1)^{2}+(j-1)(N-1)+k+1$ (the east interior neighbor) and

$$
\gamma_{i, j, k}=\sum_{q \in N(p)} \gamma(p q)
$$

where p is node $(i-1)(N-1)^{2}+(j-1)(N-1)+k$.
Note:

1. If $k=1$, then $(i-1)(N-1)^{2}+(j-1)(N-1)+1$ has no west interior neighbor
2. If $k=N-2$, then $(i-1)(N-1)^{2}+j(N-1)$ has no east interior neighbor.

Having solved the matrix equation $\mathrm{Ax}=\mathrm{b}$, we know the potential at every interior node. Now we need to find the current flowing in at every boundary node.

Let q^{\prime} be a boundary node and let p be its interior neighbor. We have been given (as initial data), the potential at q^{\prime} and the conductivity $\gamma\left(p q^{\prime}\right)$. In addition, we know, by definition of conductivity, that $\gamma V=I$. Therefore, if $C\left(q^{\prime}\right)$ is the current flowing in at q^{\prime}, then

$$
C\left(q^{\prime}\right)=\gamma\left(p q^{\prime}\right)\left[u(p)-u\left(q^{\prime}\right)\right] .
$$

3 The Dirichlet to Neumann Map

Suppose we are given a conductivity function, γ, throughout a network. Let $i=1, \ldots, 6(N-1)^{2}$ where $6(N-1)^{2}$ is the total number of boundary nodes. If we let $\left\{\Omega_{i j}\right\}_{j=1}^{6(N-1)^{2}}$ be a set of values across all boundary nodes where

$$
\Omega_{i j}= \begin{cases}0 & i \neq j \\ 1 & i=j\end{cases}
$$

then for each i we can solve the Dirichlet problem as mentioned in the previous section and find a vector C_{i} containing the currents flowing in at each boundary node. Thus, we can form a $6(N-1)^{2} X 6(N-1)^{2}$ matrix

$$
\Lambda_{\gamma}=\left(C_{1}, \ldots, C_{6(N-1)^{2}}\right)
$$

There are two primary uses for Λ_{γ}

1. Given any vector v of potentials along the boundary, $\Lambda_{\gamma} v$ gives the corresponding current flowing in at each boundary node (for the given conductivity function, γ). Thus, Λ_{γ} maps Dirichlet data to Neumann data.
2. It is possible to define a potential function along the boundary which describes a specific pattern of potentials on the interior nodes. In the following paragraphs the desired pattern of potentials is described and it is explained how to find the necessary potential function along the boundary.

Lemma Let S be the set of all nodes in planes $P_{0}, P_{1}, \ldots, P_{k}$ and let γ be defined throughout the network. Assume f is a function defined on S such that $L_{\gamma} f(p)=0$ for all nodes p interior to S. Then f can be defined on P_{k+1} so that $L_{\gamma} f(p)=0$ for all nodes $p \in S$. The definition of f is uniquely determined on the interior nodes of P_{k+1} and can be given arbitrary values at the boundary nodes of P_{k+1}.

Consider figure (6). Basically, what the above lemma says is that if

$$
\begin{aligned}
q_{1} & \in P_{k-1} \\
q_{2}, \ldots, q_{5}, p & \in P_{k} \\
q_{6} & \in \operatorname{int}_{k+1},
\end{aligned}
$$

then according to Kirchoff's Law there is only one choice for the value of q_{6}. If q_{6} is a boundary node, as in figure (7), then

$$
C\left(q_{6}\right)=\gamma\left(q_{6} p\right)\left(f\left(q_{6}\right)-f(p)\right) .
$$

However, $C\left(q_{6}\right)$ is unknown and the lemma does not indicate any means, other than Kirchoff's Law, for determing $C\left(q_{6}\right)$. Thus, $f\left(q_{6}\right)$ is arbitrary. Note, however, that once the potential has been fixed at a boundary node and its adjacent neighbor, then the current flowing into that boundary node has been determined.

The next lemma follows immediately.
Lemma Let a network with conductivity function, γ, be given. Suppose $f \equiv 0$ on the nodes of planes P_{1}, \ldots, P_{l}. Suppose, also, we are given a boundary node $q \in P_{l+1}$ such that q is in the $m_{t h}$ row of the north face of the network and $f(q)=1$. Then by letting $f\left(p^{\prime}\right)=0$ for all boundary nodes $p^{\prime} \neq q$ such that $f\left(p^{\prime}\right)$ is arbitrary, we can continue f so that $L_{\gamma} f(p)=0$ for all interior nodes p in the network and $f(p)=0$ for all interior nodes p_{s} in the network where

$$
\begin{aligned}
s= & i+j(N-1)+k(N-1)^{2} \\
i= & k-l-1, \ldots, N \\
j= & 0, \ldots, m-k+l+1 ; \\
& m+i-l-1, \ldots, N-2 \\
k= & l+1, \ldots, N-2
\end{aligned}
$$

If f is continued as described in the previous lemma, then there are boundary nodes along the east face at which the potential is non-zero. We label such boundary nodes q_{1}, \ldots, q_{h} and the associated potentials $\alpha_{1}, \ldots, \alpha_{h}$. In order to get these non-zero potentials, there must be some current flowing through the network. The nodes p_{s}, where s is as mentioned earlier, outline the region through which this current flows. Because of the shape it takes, we call this region the wedge, W. Notice that the α_{j} 's, $j=1, \ldots, h$ are uniquely determined by the continuation process.

In the problem to be considered in this paper, we will want to know the values α_{j}, but will not know the conductivity across all the resistors in the network. Thus, we need a reasonable method of finding the α_{j} 's.

Note the following with regard to the previous lemma:

1. The current flowing in at each boundary node of the west face will be zero.
2. A potential function has been defined along the boundary.

Thus, if p is a boundary node of the west face and $C(p)$ is the amount of current flowing in at p , then

$$
\begin{aligned}
0 & =C(p) \\
& =\Lambda_{\gamma}(p, q)+\alpha_{1} \Lambda_{\gamma}\left(p, q_{1}\right)+\ldots+\alpha_{h} \Lambda_{\gamma}\left(p, q_{h}\right)
\end{aligned}
$$

Assume $\left\{p_{1}, \ldots, p_{h}\right\}$, a collection of boundary nodes, is the reflection of $\left\{q_{1}, \ldots, q_{h}\right\}$ onto the west face. Calculations indicate that, in order to find reasonable approximations to $\alpha_{1}, \ldots, \alpha_{h}$, we only need to consider the h equations formed when $p \in\left\{p_{1}, \ldots, p_{h}\right\}$; we conjecture that these equations in fact determine a linearly independent solution. We will refer to this method of finding the α_{j} 's as $A(W)=\left(\alpha_{1}, \ldots, \alpha_{h}\right)$.

4 Algorithm

We would like to construct an algorithm which finds the conductivity across every resistor in the network when we only know the corresponding Lambda matrix, Λ_{γ}. The use of the function $A(W)=\left(\alpha_{1}, \ldots, \alpha_{h}\right)$ is central to our approach since it restricts the flow of current to the wedge, W.

Consider the wedge, W, of figure (10). $A(W)=\alpha$ implies $f(q)=1, f\left(q_{1}\right)=\alpha, f(p)=0$, where f is a potential function. Since we know the potential at all boundary nodes, we can use Λ_{γ} to find $C(q), C\left(q_{1}\right)$, the current flowing in at q, q_{1}, respectively. Next, assume $\gamma_{1}=\gamma(q p), \gamma_{2}=\gamma\left(p q_{1}\right)$. Then, by definition of conductance

$$
\begin{aligned}
\gamma_{1} & =\frac{C(q)}{f(q)-f(p)}=C(q) \\
\gamma_{2} & =\frac{C\left(q_{1}\right)}{f\left(q_{1}\right)-f(p)}=\frac{C\left(q_{1}\right)}{\alpha}
\end{aligned}
$$

Thus, it is relatively simple to find the conductances across any resistor within a wedge of the type shown in figure (10). Assume we have done this for all such wedges.

Consider, now, the wedge, W, of figure (11). As a result of our previous work, we know the conductivity across the resistors which are highlighted. Again we consider $A(W)=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)$ which puts

$$
f(q)=1 f\left(q_{1}\right)=\alpha_{1} f\left(q_{2}\right)=\alpha_{2} f\left(q_{3}\right)=\alpha_{3} f\left(q_{4}\right)=\alpha_{4}
$$

and uses Λ_{γ} to find $C(q), \ldots, C\left(q_{4}\right)$. Let

$$
\begin{gathered}
\gamma_{1}=\gamma\left(q p_{1}\right) \quad \gamma_{2}=\gamma\left(p_{1} p_{3}\right) \quad \gamma_{3}=\gamma\left(p_{2} p_{3}\right) \quad \gamma_{4}=\gamma\left(p_{3}, p_{4}\right) \quad \gamma_{5}=\gamma\left(p_{3} p_{5}\right) \quad \gamma_{6}=\gamma\left(q_{4} p_{5}\right) \\
\gamma_{1}^{\prime}=\gamma\left(q_{1} p_{2}\right) \quad \gamma_{2}^{\prime}=\gamma\left(q_{3} p_{4}\right)
\end{gathered}
$$

Note: $\gamma_{1}^{\prime}, \gamma_{2}^{\prime}$ are already known.
Thus,

$$
\begin{aligned}
\gamma_{1} & =C(q) & \gamma_{2} & =-\frac{\gamma_{1}}{f\left(p_{3}\right)} \\
\gamma_{3} & =-\frac{\alpha_{1} \gamma_{1}^{\prime}}{f\left(p_{3}\right)} & \gamma_{4} & =-\frac{\alpha_{3} \gamma_{2}^{\prime}}{f\left(p_{3}\right)} \\
\gamma_{5} & =-\frac{\gamma_{6}}{f\left(p_{3}\right)} & \gamma_{6} & =\frac{C\left(q_{4}\right)}{\alpha_{4}}
\end{aligned}
$$

The iteration continues in a similar manner, taking large wedges at each step. The process is generalized in what follows.

Let v be the iteration count (indicating the size of the wedge under consideration). v will run from 0 to $N-2$. We will also have a counter h which indicates at least how far from the end of an edge the boundary node, b, should be. $A(W)$ implies $f(b)=1$ (see figure (12)). Initially, $h=0$. Every time v is incremented, we check to see if v is odd; if it is, we increment h.

Let $i=h+1, \ldots, N-h-1$ and consider one of the twelve edges, $E . i$ will index the boundary nodes b previously mentioned. At this point we implement $A(W)$ where q corresponds to the boundary node b. Thus, for this wedge, $W_{v}, A\left(W_{v}\right)$ defines a potential at every point of the boundary and we have forced current to flow only through W_{v}. Assume we have found the conductivity across all resistors in any wedge W_{v} where $v=k$. Our task is then to find the conductivity across all resistors in a wedge, W_{k+1}.

That is, assume we know the conductance for any wedge $A B C D$ and are trying to find the conductance for the wedge $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ which contains $A B C D$. Since we have also found the conductance for all other wedges considered at step $v=k$, we need only find the conductivity across those resistors shown in figure (13c).

When finding the conductivity across these resistors, consider the system of labelling suggested in figure (14). Assume the γ 's, β 's are the conductances to be found across the indicated resistors. First we implement a procedure (yet to be described) to find $\gamma_{0}, \ldots, \gamma_{v}, \gamma_{2}^{\prime}, \gamma_{2}^{\prime \prime}, \ldots, \gamma_{v / 2}^{\prime}, \gamma_{v / 2}^{\prime \prime}$. Then we use a similar procedure to find the $\beta^{\prime} \mathrm{s}, \beta^{\prime}$'s,$\beta^{\prime \prime}$'s.
γ_{0} and γ_{1} are trivial to determine; all we need to know is the current flowing in at the adjacent boundary nodes. As mentioned earlier, these values can be found through the use of Λ_{γ}.

Assume,now, that we are trying to find γ_{j} where j is even. At this step we must also find $\gamma_{j}^{\prime}, \gamma_{j}^{\prime \prime}$. However, the resistors across which these conductances flow may be buried deep within our network and we need to know something about the current and potential near these resistors. Thus, we define a recursive procedure to find the currents and potentials at certain nodes. Throughout this procedure we apply Kirchoff's Law at northern neighbors. Thus, the following assumption is helpful: if $f(p)$ was found while determining $\gamma_{i}, i<j$, then $f\left(p^{\prime}\right)$ is known (where p^{\prime} is the northern neighbor of p) and so are the potentials at all other neighbors of p^{\prime}.

Consider now figure (16).

By our definition of the wedge, W_{v}, we know $f(q)=0$. Assume $f\left(p_{1}\right), f\left(p_{2}\right)$ were determined for $i=j-1, j-2$, respectively. We would like to apply Kirchoff's Law at node q; however, $f\left(p_{3}\right)$ is yet to be determined. In order to find $f\left(p_{3}\right)$, we must consider the northern neighbor. Call it p^{\prime}.

If p^{\prime} is a boundary node it is trivial to determine $f(p)$. Otherwise, we must apply Kirchoff's Law at p^{\prime}. By our assumption, we know $f\left(p_{1}^{\prime}\right), f\left(p_{2}\right), f\left(p_{2}^{\prime}\right)$. However, we do not know $f\left(p^{\prime}\right)$. Thus, we must also apply Kirchoff's Law at p_{1}^{\prime}, where $f\left(p_{1}^{\prime}\right)$ is known. In addition, we don't know $f\left(p_{3}^{\prime}\right), f\left(p_{4}^{\prime}\right)$ and
we must apply Kirchoff's Law at these nodes as well. Since N, the number of steps along an edge, is finite, the northern neighbors will ultimately be boundary nodes. Therefore, we have defined a recursive procedure for finding $f\left(p_{3}\right)$ (see figure (16)). Thus, we can find γ_{j}^{\prime}. Similarly, we could solve for $\gamma_{j}^{\prime \prime}$.

Likewise, we could use such a recursive to find $f(q)$, see figure (18). Applying Kirchoff's Law at node p allows us to solve for γ_{j}.

Assume, now, we wish to find γ_{j} when j is odd and γ_{i} is known for all $i<j$.

By definition of the wedge, W_{v}, we know $f(q)=0$. Kirchoff's Law applied at q implies

$$
\begin{gathered}
0=f\left(p^{\prime}\right) \gamma_{j}+f(p) \gamma_{j-1} \\
\gamma_{j}=-\gamma_{j-1} \frac{f(p)}{f\left(p^{\prime}\right)}
\end{gathered}
$$

$f(p)$ was determined when we solved for γ_{j-1}. Thus, we need only to find $f\left(p^{\prime}\right)$. Note, if p is a boundary node, then finding $f\left(p^{\prime}\right)$ is trivial; otherwise, we must apply Kirchoff's Law at the northern neighbor of p^{\prime}. Call it p_{1}.

Assume the nodes are as labelled in figure (20).
Then $f\left(p_{4}\right)$ is known since $f(p)$ is known and $f\left(p_{1}\right), f\left(p_{2}\right), f\left(p_{3}\right)$ were determined for $i=j-1$. Therefore, only $f\left(p_{1}^{\prime}\right)$ is unknown. As before, we apply a recursive procedure to find $f\left(p_{1}^{\prime}\right)$ and,thus, $f\left(p^{\prime}\right)$. Hence, we can determine γ_{j} when j is odd.

It can be shown that when j is odd and we have determined γ_{j-1}, γ_{j}, then we have also found the potentials at nodes necesary to meet the assumption made in finding γ_{j+1}. Thus, the process which has been described for finding the conductivity across the resistors of figure (13c) is legitimate.

Once we have determined all of the unknown conductances our wedge, we increment i. After $i=N-h-1$ we move to the next edge. Finally, when we've considered all edges, we increment v. The algorithm is complete after $v=N-2$.

5 Results

Two types of tests were performed. First,we considered various conductivity distributions within the cubic lattice, then we considered the matrix Λ whose entries were computed with decreasing accuracy. Note that γ refers to the conductivity.

5.1 Conductivity Distributions

For the cubic lattice with $N=5$ and conductivity equal to 1 throughout, the conductivity was reconstructed with 100% accuracy across all 240 resistors.

Low conductivity was reconstructed in the center of a 5 by 5 by 5 cubic lattice. Sometimes the region of low conductivity was only partially closed. This means that the conductivity across one or more of the resistors at the center of the network was the same as the conductivity across a resistor in the background. The results are shown in Table 1.

Table1

γ values in the center	γ values in the backgr.	accuracy range	comments
10^{-2}	1	$99.9 \%-100 \%$	closed region
10^{-2}	1	$97.3 \%-100 \%$	region open on 3 sides
10^{-3}	1	$99.9 \%-100 \%$	closed region
10^{-3}	1	$99.6 \%-100 \%$	region open on 1 side
10^{-3}	1	2 negative values, rest: $18.9 \%-100 \%$	region open on 2 sides
10^{-4}	1	$88.5 \%-100 \%$	closed region
10^{-4}	1	$56.4 \%-100 \%$	region open on 1 side
10^{-4}	1	$58.9 \%-100 \%$	region open on 2 sides

High conductivity was reconstructed in the center of a 5 by 5 by 5 cubic lattice; the results are shown in Table 2.

Table2

γ values in the center	γ values in the backgr.	accuracy range	no. of neg. values	comments
9	1	$99.4 \%-100 \%$	-	closed region
9	1	$98.7 \%-100 \%$	-	region open on 3 sides
99	1	$72.4 \%-100 \%$	-	closed region
99	1	$93.4 \%-100 \%$	2	region open on 1 side
99	1	$66.2 \%-100 \%$	2	region open on 2 sides
999	1	$3.8 \%-100 \%$	-	closed region
999	1	$3.5 \%-100 \%$	1	region open on 1 side

High conductivity, surrounded by a region of low conductivity, was reconstructed in the center of a 5 by 5 by 5 cubic lattice. The conductivity across resistors in the background was 1 . The results are shown in Table 3.

Table3

γ values in center	γ values around center	accuracy range in center	accuracy range around center	accuracy range in background
10^{1}	10^{-1}	1 value negative	1 value negative	100%
		$96.2 \%-99.2 \%$	$98 \%-100 \%$	
10^{1}	10^{-2}	1 value negative	1 value negative	100%
		$0.02 \%-58.8 \%$	$26 \%-100 \%$	
10^{2}	10^{-1}	1 value negative	1 value negative	100%
		$67.4 \%-81.7 \%$	$72.2 \%-100 \%$	
10^{3}	10^{-1}	1 value negative	1 value negative	100%
		$34.7 \%-40.6 \%$	$33.3 \%-100 \%$	

5.2 Inaccurate Λ

In this test, the entries of Λ were rounded off to various numbers of decimal places. In each case, the conductivity across all resistors was 1 . The results are shown in Table 5.

Table4

No. of Decimal Places in Λ	largest recovered grid	accuracy range
2	$3 \times 3 \times 3$	$76 \%-100 \%$
3	$3 \times 3 \times 3$	$90 \%-100 \%$
4	$4 \times 4 \times 4$	$74.5 \%-100 \%$
5	$4 \times 4 \times 4$	$98.4 \%-100 \%$
6	$4 \times 4 \times 4$	$99.7 \%-100 \%$
7	$4 \times 4 \times 4$	$99.8 \%-100 \%$
8	$5 \times 5 \times 5$	$62.9 \%-100 \%$
9	$5 \times 5 \times 5$	$97.2 \%-100 \%$
10	$5 \times 5 \times 5$	$99.7 \%-100 \%$

6 Computer Code

Given the conductivity throughout a cubic lattice, the following program creates a matrix Λ by solving the Dirichlet for various sets of boundary data as outlined in the section "The Dirichlet to Neumann Map". Λ is the matrix which is used as intial data in the program which reconstructs the conductivity.

```
INTEGER N,MaxN,i,j,k,p,q,r,row,col,lev,IND,ii,jj,kk,temp
PARAMETER (MaxN = 10)
INTEGER IWORK((MaxN-1)**3)
DOUBLE PRECISION Bnd(6,(MaxN-1)**2),C(6,(MaxN-1)**2)
DOUBLE PRECISION gamma(2*MaxN-1,2*MaxN-1,2*MaxN-1)
DOUBLE PRECISION U((MaxN-1)**3),WORK((MaxN-1)**3),g
DOUBLE PRECISION A((MaxN-1)**3,2*(MaxN-1)**2+1)
DOUBLE PRECISION Lambda(6*(MaxN-1)**2,6*(MaxN-1)**2)
READ *,N
    DO 120 k=1,2*N-1
        DO 110 i=1,2*N-1
            READ *,(gamma(i,j,k), j=1,2*N-1)
        CONTINUE
    120 CONTINUE
    DO 780 p=1,6
```

C
C
C

```
DO 770 q=0,N-2
```

 DO \(760 \mathrm{r}=1, \mathrm{~N}-1\)
 C

$$
\operatorname{Bnd}(p, q *(N-1)+r)=1 d 0
$$

C
C For $A x=b$, Create b
C

```
        DO 200 i=1,(N-1)**3
            U(i) = OdO
            IF (i.LE.(N-1)**2) THEN
                g = gamma(2*((i-1)/(N-1)+1), 2*mod}(i-1,N-1)+2,1
                U(i) = U(i) + g*Bnd(1,i)
```

 END IF
 C
IF (i.GT. $(\mathrm{N}-2) *(\mathrm{~N}-1) * * 2)$ THEN
$\mathrm{g}=\operatorname{gamma}(2 *(\bmod (\mathrm{i}-1,(\mathrm{~N}-1) * * 2) /(\mathrm{N}-1))+2$,
$2 * \bmod (\mathrm{i}-1, \mathrm{~N}-1)+2,2 * \mathrm{~N}-1)$
$\mathrm{U}(\mathrm{i})=\mathrm{U}(\mathrm{i})+\mathrm{g} * \operatorname{Bnd}(3, \mathrm{i}-(\mathrm{N}-2) *(\mathrm{~N}-1) * * 2)$
END IF
C
IF $((\bmod (i-1,(N-1) * * 2)+1)$. LE. $(N-1))$ THEN
$\mathrm{g}=\operatorname{gamma}(1,2 * \bmod (\mathrm{i}-1, \mathrm{~N}-1)+2,2 *((\mathrm{i}-1) /(\mathrm{N}-1) * * 2)+2)$
$\mathrm{U}(\mathrm{i})=\mathrm{U}(\mathrm{i})+\mathrm{g} * \operatorname{Bnd}(4,(\mathrm{i}-1) /(\mathrm{N}-1)+\bmod (\mathrm{i}-1,(\mathrm{~N}-1) * * 2)+1)$
END IF
C
IF $((\bmod (\mathrm{i}-1,(\mathrm{~N}-1) * * 2)+1) . \mathrm{GT} .(\mathrm{N}-1) *(\mathrm{~N}-2))$ THEN
$\mathrm{g}=\operatorname{gamma}(2 * \mathrm{~N}-1,2 * \bmod (\mathrm{i}-1, \mathrm{~N}-1)+2,2 *((\mathrm{i}-1) /(\mathrm{N}-1) * * 2)+2)$
$\mathrm{U}(\mathrm{i})=\mathrm{U}(\mathrm{i})+\mathrm{g} * \operatorname{Bnd}(2,(\mathrm{i}-1-(\mathrm{N}-1) *(\mathrm{~N}-2)) /(\mathrm{N}-1)$
1
$+\bmod (\mathrm{i}-1-(\mathrm{N}-1) *(\mathrm{~N}-2),(\mathrm{N}-1) * * 2)+1)$
END IF
C
IF (mod (i,N-1).EQ.0) THEN
$\mathrm{g}=\operatorname{gamma}(2 *((\bmod (\mathrm{i}-1,(\mathrm{~N}-1) * * 2)+1) /(\mathrm{N}-1)), 2 * \mathrm{~N}-1$,
$2 *((i-1) /(N-1) * * 2)+2)$
$U(i)=U(i)+g * \operatorname{Bnd}(5, i /(N-1))$
END IF
C
IF (mod $(\mathrm{i}-1, \mathrm{~N}-1) . \mathrm{EQ} .0)$ THEN
$\mathrm{g}=\operatorname{gamma}(2 *(\bmod (\mathrm{i},(\mathrm{N}-1) * * 2) /(\mathrm{N}-1))+2,1,2 *(\mathrm{i} /(\mathrm{N}-1) * * 2)+2)$

```
                    U(i) = U(i) + g*Bnd(6,i/(N-1) +1)
                        END IF
                CONTINUE
C
C Fill The Matrix A of Ax=b
C
```

```
DO 350 i=1,(N-1)**3
```

DO 350 i=1,(N-1)**3
row = 2*(mod(i-1,(N-1)**2)/(N-1)+1)
row = 2*(mod(i-1,(N-1)**2)/(N-1)+1)
col = 2*(mod(i-1,N-1)+1)
col = 2*(mod(i-1,N-1)+1)
lev = 2*((i-1)/(N-1)**2) + 1
lev = 2*((i-1)/(N-1)**2) + 1
C
A(i,(N-1)**2+1) = gamma(row,col,lev)+gamma(row,col,lev+2)
+ gamma(row,col-1,lev+1) + gamma(row,col+1,lev+1)
+ gamma(row-1,col,lev+1) + gamma(row+1,col,lev+1)
C
IF (i.GT. (N-1)**2) THEN
A(i,1) = -gamma(row,col,lev)
END IF
C
IF (i.LE. ($\mathrm{N}-2$) $*(\mathrm{~N}-1) * * 2)$ THEN $\mathrm{A}(\mathrm{i}, 2 *(\mathrm{~N}-1) * * 2+1)=-\operatorname{gamma}(\mathrm{row}, \mathrm{col}, \mathrm{lev}+2)$
END IF
C
IF ((i.GT. (N-1)).AND. ((mod (i-1, (N-1) $* * 2)+1)$. GE.N)) THEN
A(i,N**2-3*N+3) = -gamma(row-1,col,lev+1)
END IF
C
IF $(((\bmod (\mathrm{i}-1,(\mathrm{~N}-1) * * 2)+1)$. LE. $(\mathrm{N}-1) *(\mathrm{~N}-2))$. AND.
3 (i.LE. (N-1) $N \mathrm{~N} *(\mathrm{~N}-2)$)) THEN $\mathrm{A}(\mathrm{i},(\mathrm{N}-1) * * 2+\mathrm{N})=-\operatorname{gamma}(\mathrm{row}+1, \mathrm{col}, \mathrm{lev}+1)$
END IF
C
IF ((i.NE.1).AND. (mod (i-1,N-1).NE.0)) THEN $\mathrm{A}(\mathrm{i},(\mathrm{N}-1) * * 2)=-\operatorname{gamma}(\mathrm{row}, \mathrm{col}-1, \mathrm{lev}+1)$
END IF
C
IF ((mod (i,N-1).NE.0).AND.(i.LE. (N-1) $* * 3-1)$) THEN $\mathrm{A}(\mathrm{i},(\mathrm{N}-1) * * 2+2)=-\operatorname{gamma}(\mathrm{row}, \mathrm{col}+1, \mathrm{lev}+1)$
END IF

```
```

 350 CONTINUE
 C
C PRINT *
C PRINT *
C PRINT *,'Bonudary Node \#',(p-1)*(N-1)**2 + q*(N-1) + r,':'
C
C Solve The Matrix Equation Ax=b For x
C
CALL DNBFS(A, (MaxN-1)**3,(N-1)**3,(N-1)**2,
4
(N-1)**2,U,1,IND,WORK,IWORK)
C
C Using x and Bnd, Find C
C
DO 410 i=1,6
DO 400 j=1,(N-1)**2
C(i,j) = Od0
row = 2*((j-1)/(N-1)+1)
col = 2*(mod(j-1,N-1)+1)
IF (i.EQ.1) THEN
C(i,j) = gamma(row,col,1)*(Bnd(i,j) - U(j))
ELSE IF (i.EQ.2) THEN
C(i,j) = gamma(2*N-1,col,row)*
(Bnd(i,j)-U(j+(N-1)*(N-2)*(1+(j-1)/(N-1))))
ELSE IF (i.EQ.3) THEN
C(i,j) = gamma(row, col, 2*N-1)*(Bnd(i,j) -U(j+(N-2)*(N-1)**2))
ELSE IF (i.EQ.4) THEN
C(i,j) = gamma(1,col,row)*
(Bnd(i,j)-U(j+(N-1)*(N-2)*((j-1)/(N-1))))
ELSE IF (i.EQ.5) THEN
C(i,j) = gamma(col, 2*N-1,row)*(Bnd(i,j)-U(j*(N-1)))
ELSE IF (i.EQ.6) THEN
C(i,j) = gamma(col,1,row)*(Bnd(i,j)-U((j-1)*(N-1)+1))
END IF
CONTINUE
CONTINUE
C
C DO 500 i=0,N-2
C
WRITE (*,910) (C (1, (N-1)*i+j), j=1,N-1)
C 500
CONTINUE

```
```

C PRINT *
C
C
C 510
C
C
C
C
C
C
C
C 5
C 520
C
C
C 530
C
C PRINT *
C
C
C }54
C
C
C
C }55
C
710
720
730
temp = (p-1)*(N-1)**2 + q*(N-1) + r
DO 730 ii=1,6
DO 720 jj=0,N-2
DO 710 kk=1,N-1
Lambda((ii-1)*(N-1)**2+jj*(N-1)+kk, temp)=C(ii,jj*(N-1)+kk)
CONTINUE
CONTINUE
CONTINUE
C

```
```

$\operatorname{Bnd}(p, q *(N-1)+r)=0 d 0$

```
\(\operatorname{Bnd}(p, q *(N-1)+r)=0 d 0\)
DO 750 i=1, \((\mathrm{N}-1) * * 3\)
DO 750 i=1, \((\mathrm{N}-1) * * 3\)
    DO \(740 \mathrm{j}=1,2 *(\mathrm{~N}-1) * * 2+1\)
    DO \(740 \mathrm{j}=1,2 *(\mathrm{~N}-1) * * 2+1\)
        \(A(i, j)=0 d 0\)
```

 \(A(i, j)=0 d 0\)
    ```
```

 740 CONTINUE
 750 CONTINUE
 C
760 CONTINUE
770 CONTINUE
780 CONTINUE
C
PRINT *,N
PRINT *
DO }893\mathrm{ i=1,6*(N-1)**2
WRITE (*,940) (Lambda(i,k), k=1,6*(N-1)**2)
893 CONTINUE
C
STOP
C 910 FORMAT(, ,,30X,10F15.6)
C 930 FORMAT(, ,,14F15.6)
940 FORMAT(, ,,490F22.16)
END

```

The following is the main program for reconstructing the conductivity within a cubic lattice. It calls on four primary subroutines: NewL1,2,3; cube, move, PGamma. Cube is the subroutine which actually reconstructs the conductances. However, it only does so for the edge containing nodes 1 through \(N-1\). Thus, the subroutines, NewL1,2,3 rearrange the matrix \(\Lambda\) appropriately so that subroutine cube can be applied to the other edges as well. The subroutine "move" moves information about the conductivity found on one egde to a matrix containing information about the conductivity found on another edge. Finally, the subroutine PGamma prints the known information about the conductivity.
The subroutine cube and its subroutines are also printed. A description of how they work can be found in the setion titled "Algorithm".
```

INTEGER N,MaxN,i,j,temp,h,v,sft
PARAMETER (MaxN = 6)
DOUBLE PRECISION L1 (6* (MaxN-1)**2,6*(MaxN-1)**2)
DOUBLE PRECISION L2(6*(MaxN-1)**2,6*(MaxN-1)**2)
DOUBLE PRECISION L3(6*(MaxN-1)**2,6*(MaxN-1)**2)
DOUBLE PRECISION L4(6*(MaxN-1)**2,6*(MaxN-1)**2)
DOUBLE PRECISION L5(6*(MaxN-1)**2,6*(MaxN-1)**2)

```
```

 DOUBLE PRECISION L6(6*(MaxN-1)**2,6*(MaxN-1)**2)
 DOUBLE PRECISION L7 (6*(MaxN-1)**2,6*(MaxN-1)**2)
 DOUBLE PRECISION L8(6*(MaxN-1)**2,6*(MaxN-1)**2)
 DOUBLE PRECISION L9(6*(MaxN-1)**2,6*(MaxN-1)**2)
 DOUBLE PRECISION L10(6*(MaxN-1)**2,6*(MaxN-1)**2)
 DOUBLE PRECISION L11(6*(MaxN-1)**2,6*(MaxN-1)**2)
 DOUBLE PRECISION L12(6*(MaxN-1)**2,6*(MaxN-1)**2)
 DOUBLE PRECISION G1(2*MaxN-1,2*MaxN-1,2*MaxN-1)
 DOUBLE PRECISION G2(2*MaxN-1,2*MaxN-1,2*MaxN-1)
 DOUBLE PRECISION G3(2*MaxN-1,2*MaxN-1,2*MaxN-1)
 DOUBLE PRECISION G4(2*MaxN-1,2*MaxN-1,2*MaxN-1)
 DOUBLE PRECISION G5(2*MaxN-1,2*MaxN-1,2*MaxN-1)
 DOUBLE PRECISION G6(2*MaxN-1,2*MaxN-1,2*MaxN-1)
 DOUBLE PRECISION G7(2*MaxN-1,2*MaxN-1,2*MaxN-1)
 DOUBLE PRECISION G8(2*MaxN-1,2*MaxN-1,2*MaxN-1)
 DOUBLE PRECISION G9(2*MaxN-1,2*MaxN-1,2*MaxN-1)
 DOUBLE PRECISION G10(2*MaxN-1,2*MaxN-1,2*MaxN-1)
 DOUBLE PRECISION G11(2*MaxN-1,2*MaxN-1,2*MaxN-1)
 DOUBLE PRECISION G12(2*MaxN-1,2*MaxN-1,2*MaxN-1)
 C
READ *,N
C
DO 100 i=1,6*(N-1)**2
READ *,(L1(i,j), j=1,6*(N-1)**2)
100 CONTINUE
C
CALL NewL3(L2,L1,N)
CALL NewL3(L3,L2,N)
CALL NewL3(L4,L3,N)
CALL NewL2(L9,L1,N)
CALL NewL1(L10,L9,N)
CALL NewL2(L5,L9,N)
CALL NewL3(L8,L5,N)
CALL NewL3(L7,L8,N)
CALL NewL3(L6,L7,N)
CALL NewL2(L12,L5,N)
CALL NewL1(L11,L12,N)
C
h = 0

```
```

sft = 3*(N-1)**2
DO 850 v=0,N-2
temp = mod(v,2)
IF ((v.NE.(N-2)).AND.(temp.EQ.1)) THEN
h = h + 1
END IF

```
C
    CALL cube (L1, G1, N,sft,h,v)
    CALL move ( \(4, \mathrm{G} 2, \mathrm{G} 1, \mathrm{~N}, \mathrm{v}, \mathrm{h}\) )
    CALL move (3, G3, G1, N, v,h)
    CALL move ( \(2, \mathrm{G} 4, \mathrm{G} 1, \mathrm{~N}, \mathrm{v}, \mathrm{h}\) )
    CALL move ( \(9, \mathrm{G} 12, \mathrm{G} 1, \mathrm{~N}, \mathrm{v}, \mathrm{h})\)
    CALL move (12,G9,G1,N,v,h)
    CALL move (5, G5, G1, \(\mathrm{N}, \mathrm{v}, \mathrm{h}\) )
C
    CALL cube (L2,G2,N,sft,h,v)
    CALL move ( \(2, \mathrm{G} 1, \mathrm{G} 2, \mathrm{~N}, \mathrm{v}, \mathrm{h}\) )
    CALL move(3,G4,G2,N,v,h)
    CALL move ( \(4, \mathrm{G} 3, \mathrm{G} 2, \mathrm{~N}, \mathrm{v}, \mathrm{h}\) )
    CALL move ( \(5, \mathrm{G} 6, \mathrm{G} 2, \mathrm{~N}, \mathrm{v}, \mathrm{h}\) )
    CALL move (15, G10, G2, \(\mathrm{N}, \mathrm{v}, \mathrm{h}\) )
    CALL move (16,G9,G2,N,v,h)
C
    CALL cube (L3,G3,N,sft,h,v)
    CALL move (3, G1, G3, N, v,h)
    CALL move ( \(2, \mathrm{G} 2, \mathrm{G} 3, \mathrm{~N}, \mathrm{v}, \mathrm{h}\) )
    CALL move ( \(4, \mathrm{G} 4, \mathrm{G} 3, \mathrm{~N}, \mathrm{v}, \mathrm{h}\) )
    CALL move ( \(9, \mathrm{G} 10, \mathrm{G} 3, \mathrm{~N}, \mathrm{v}, \mathrm{h}\) )
    CALL move ( \(5, \mathrm{G} 7, \mathrm{G} 3, \mathrm{~N}, \mathrm{v}, \mathrm{h}\) )
    CALL move (12,G11,G3,N,v,h)
C
    CALL cube (L4,G4,N,sft,h,v)
    CALL move ( \(4, \mathrm{G} 1, \mathrm{G} 4, \mathrm{~N}, \mathrm{v}, \mathrm{h}\) )
    CALL move ( \(2, \mathrm{G} 3, \mathrm{G} 4, \mathrm{~N}, \mathrm{v}, \mathrm{h}\) )
    CALL move (3, G2,G4,N,v,h)
    CALL move (5,G8,G4,N,v,h)
    CALL move (15,G12,G4,N,v,h)
    CALL move ( \(16, \mathrm{G} 11, \mathrm{G} 4, \mathrm{~N}, \mathrm{v}, \mathrm{h})\)
C
\[
\begin{aligned}
& \text { CALL cube }(L 5, G 5, \mathrm{~N}, \mathrm{sft}, \mathrm{~h}, \mathrm{v}) \\
& \text { CALL move }(5, \mathrm{G} 1, \mathrm{G} 5, \mathrm{~N}, \mathrm{v}, \mathrm{~h}) \\
& \text { CALL move }(9, \mathrm{G} 9, \mathrm{G} 5, \mathrm{~N}, \mathrm{v}, \mathrm{~h}) \\
& \text { CALL move }(3, \mathrm{G} 7, \mathrm{G} 5, \mathrm{~N}, \mathrm{v}, \mathrm{~h}) \\
& \text { CALL move }(2, \mathrm{G} 6, \mathrm{G} 5, \mathrm{~N}, \mathrm{v}, \mathrm{~h}) \\
& \text { CALL move }(4, \mathrm{G} 8, \mathrm{G} 5, \mathrm{~N}, \mathrm{v}, \mathrm{~h}) \\
& \text { CALL move }(12, \mathrm{G} 12, \mathrm{G} 5, \mathrm{~N}, \mathrm{v}, \mathrm{~h})
\end{aligned}
\]
            CALL cube (L6,G6,N,sft,h,v)
CALL move ( \(6, \mathrm{G} 1, \mathrm{G} 6, \mathrm{~N}, \mathrm{v}, \mathrm{h}\) )
CALL move (5,G2,G6,N,v,h)
CALL move (4,G5,G6,N,v,h)
CALL move (2,G7,G6,N,v,h)
CALL move ( \(3, G 8, G 6, N, v, h\) )
CALL move (15, G9, G6, N, v,h)
CALL move (16,G10, G6,N,v,h)
C
CALL cube (L7,G7,N,sft,h,v)
CALL move ( \(7, \mathrm{G} 1, \mathrm{G} 7, \mathrm{~N}, \mathrm{v}, \mathrm{h}\) )
CALL move ( \(5, \mathrm{G} 3, \mathrm{G} 7, \mathrm{~N}, \mathrm{v}, \mathrm{h}\) )
CALL move (12, G10, G7, \(\mathrm{N}, \mathrm{v}, \mathrm{h}\) )
CALL move ( \(9, \mathrm{G} 11, \mathrm{G} 7, \mathrm{~N}, \mathrm{v}, \mathrm{h}\) )
CALL move ( \(3, G 5, G 7, N, v, h\) )
CALL move (4,G6,G7,N,v,h)
CALL move ( \(2, \mathrm{G} 8, \mathrm{G} 7, \mathrm{~N}, \mathrm{v}, \mathrm{h}\) )
C
CALL cube (L8,G8,N,sft,h,v)
CALL move ( \(8, G 1, G 8, N, v, h\) )
CALL move ( \(5, \mathrm{G} 4, \mathrm{G} 8, \mathrm{~N}, \mathrm{v}, \mathrm{h}\) )
CALL move ( \(2, G 5, G 8, N, v, h\) )
CALL move ( \(4, G 7, G 8, N, v, h\) )
CALL move ( \(3, G 6, G 8, N, v, h\) )
CALL move (15,G11, G8, N, v,h)
CALL move (16,G12,G8,N,v,h)
C
CALL cube (L9,G9,N,sft,h,v)
CALL move ( \(9, \mathrm{G} 1, \mathrm{G} 9, \mathrm{~N}, \mathrm{v}, \mathrm{h}\) )
CALL move ( \(3, \mathrm{G} 10, \mathrm{G} 9, \mathrm{~N}, \mathrm{v}, \mathrm{h}\) )
CALL move (12, G5, G9, N, v,h)
```

 CALL move(5,G12,G9,N,v,h)
 CALL move(13,G6,G9,N,v,h)
 CALL move(14,G2,G9,N,v,h)
 C
CALL cube(L10,G10,N,sft,h,v)
CALL move(10,G1,G10,N,v,h)
CALL move(12,G3,G10,N,v,h)
CALL move(3,G9,G10,N,v,h)
CALL move(5,G11,G10,N,v,h)
CALL move(9,G7,G10,N,v,h)
CALL move(13,G2,G10,N,v,h)
CALL move(14,G6,G10,N,v,h)
C
CALL cube(L11,G11,N,sft,h,v)
CALL move(11,G1,G11,N,v,h)
CALL move(9,G3,G11,N,v,h)
CALL move(5,G10,G11,N,v,h)
CALL move(12,G7,G11,N,v,h)
CALL move(3,G12,G11,N,v,h)
CALL move(13,G8,G11,N,v,h)
CALL move(14,G4,G11,N,v,h)
C
CALL cube(L12,G12,N,sft,h,v)
CALL move(12,G1,G12,N,v,h)
CALL move(5,G9,G12,N,v,h)
CALL move(3,G11,G12,N,v,h)
CALL move(9,G5,G12,N,v,h)
CALL move(13,G4,G12,N,v,h)
CALL move(14,G8,G12,N,v,h)
c
850 CONTINUE
CALL PGamma(G1,N)
C
STOP
END

```
```

SUBROUTINE cube(Lambda,gma,N,sft,h,v)
INTEGER N,MaxN,h,v,i,k,l,m, check,sft,Cnt1,Cnt2,t
INTEGER Node(0:45),beta(45), Cnt,alIn,alC,alR,alL,tc
INTEGER x,y1,y2,z,st1,st2,n0,n1,n2,n3,n4,sst1,sst2
PARAMETER (MaxN = 6)
INTEGER In,In1(0:MaxN-2),In2(0:MaxN-2),t1,t2,t3, sub
DOUBLE PRECISION Current,tempc1,tempc2,C((MaxN-1)**2)
DOUBLE PRECISION gma(2*MaxN-1,2*MaxN-1,2*MaxN-1)
DOUBLE PRECISION vt((MaxN-1)**3),alph(45)
DOUBLE PRECISION Lambda(6*(MaxN-1)**2,6*(MaxN-1)**2)
DO 800 i=h+1,N-h-1
Node(0) = v*(N-1) + i
CALL Nodes1(N,Node,beta, Cnt,3*(N-1)**2,-2*(N-1)**2,v,i)
Cnt1 = Cnt - 1
Cnt2 = Cnt - 1

```
C
C
C
C
    DO \(250 \mathrm{j}=1\), v
        IF (mod \((j, 2) . E Q .0) ~ T H E N\)
            DO \(204 \mathrm{k}=1, \mathrm{j} / 2\)
                check \(=(\mathrm{v}-\mathrm{j}+\mathrm{k}) *(\mathrm{~N}-1)\)
                DO \(201 \mathrm{~m}=0,1\)
                    st1 = check - N + k + i + m
                    IF (st1.LE.check) THEN
                    C(st1) \(=\) Current (st1, Lambda, alph,Node, Cnt1)
                    END IF
                CONTINUE
                check \(=\) check \(-N+2\)
                DO \(202 \mathrm{~m}=0,1\)
                    st2 = check + k + i - 2 - m
                    IF ((st2.GE.check).AND.((m.EQ.1).OR.(k.NE.1))) THEN
                        C(st2) = Current (st2,Lambda,alph,Node, Cnt1)
                    END IF
                CONTINUE
            CONTINUE

C
```

DO 220 k=1,j/2
DO 215 l=1,j/2-k+1
check = (v-j+k+l-1)*(N-1) + (k-1)*(N-1)**2
x = 2*(v-j+k+l-1)
z = 2*k - 1
DO 205 m=0,1
st1 = check + l + i - N + m
y1 = 2*(i+l+m-1)
IF (st1.LE.check) THEN
IF (k.EQ.1) THEN
vt(st1) = -C(st1)/gma(x,y1,z)
ELSE
CALL Nbhr(N,st1,n0,n1,n2,n3,n4)
IF (k.EQ.2) THEN
vt(st1) = -vt(n0)*gma(x,y1,z-2)
ELSE
vt(st1) = -gma(x,y1,z-2)*(vt(n0)-vt(st1-2*(N-1)**2))
END IF
vt(st1) = vt(st1) - gma(x+1,y1,z-1)*(vt(n0)-vt(n1))
- gma(x-1,y1,z-1)*(vt(n0)-vt(n2))
IF (n3.LE.check) THEN
vt(st1) = vt(st1) - gma(x,y1+1,z-1)*(vt(n0)-vt(n3))
ELSE
vt(st1) = vt(st1) - gma(x,y1+1,z-1)*vt(n0)
END IF
IF (n4.GE.check-N+2) THEN
vt(st1) = vt(st1) - gma(x,y1-1,z-1)*(vt(n0)-vt(n4))
ELSE
vt(st1) = vt(st1) - gma(x,y1-1,z-1)*vt(n0)
END IF
vt(st1) = -vt(st1)/gma(x,y1,z) + vt(n0)
END IF
END IF
CONTINUE

```
```

check = check - N + 2

```
check = check - N + 2
DO 210 m=0,1
DO 210 m=0,1
    st2 = check + l + i - 2 - m
```

 st2 = check + l + i - 2 - m
    ```
C
```

 y2 = 2*(i-l-m+1)
 IF ((st2.GE.check).AND.((1.NE.1).OR.(m.EQ.1))) THEN
 IF (k.EQ.1) THEN
 vt(st2) = -C(st2)/gma(x,y2,z)
 ELSE
 CALL Nbhr(N,st2,n0,n1,n2,n3,n4)
 IF (k.EQ.2) THEN
 vt(st2) = -vt(n0)*gma(x,y2,z-2)
 ELSE
 vt(st2) = -gma(x,y2,z-2)*(vt(n0)-vt(st2-2*(N-1)**2))
 END IF
 vt(st2) = vt(st2) - gma(x+1,y2,z-1)*(vt(n0)-vt(n1))
 - gma(x-1,y2,z-1)*(vt(n0)-vt(n2))
 IF (n3.LE.check+N-2) THEN
 vt(st2) = vt(st2) - gma(x,y2+1,z-1)*(vt(n0)-vt(n3))
ELSE
vt(st2) = vt(st2) - gma(x,y2+1,z-1)*vt(n0)
END IF
IF (n4.GE.check) THEN
vt(st2) = vt(st2) - gma(x,y2-1,z-1)*(vt(n0)-vt(n4))

```
                ELSE
                    \(\mathrm{vt}(\mathrm{st2})=\mathrm{vt}(\mathrm{st} 2)-\operatorname{gma}(\mathrm{x}, \mathrm{y} 2-1, \mathrm{z}-1) * \mathrm{vt}(\mathrm{st} 2)\)
                END IF
                \(\mathrm{vt}(\mathrm{st2})=-\mathrm{vt}(\mathrm{st2}) / \operatorname{gma}(\mathrm{x}, \mathrm{y} 2, \mathrm{z})+\mathrm{vt}(\mathrm{n} 0)\)
            END IF
                END IF
                CONTINUE
            CONTINUE
CONTINUE
tempc1 \(=\mathrm{vt}(\mathrm{st} 1) * \operatorname{gma}(\mathrm{x}+1, \mathrm{y} 1, \mathrm{z}+1)\)
tempc2 \(=v t(s t 2) * \operatorname{man}(x+1, y 2, z+1)\)
IF (j.NE.2) THEN
    tempc1 \(=\) tempc1 \(+\operatorname{gma}(\mathrm{x}+2, \mathrm{y} 1, \mathrm{z}) * \mathrm{vt}(\mathrm{st} 1+\mathrm{N}-1-(\mathrm{N}-1) * * 2)\)
    tempc \(2=\operatorname{tempc} 2+\operatorname{gma}(\mathrm{x}+2, \mathrm{y} 2, \mathrm{z}) * \mathrm{vt}(\mathrm{st} 2+\mathrm{N}-1-(\mathrm{N}-1) * * 2)\)
END IF
\(\operatorname{gma}(\mathrm{x}+2, \mathrm{y} 1-1, \mathrm{z}+1)=-\mathrm{tempc} 1 / \mathrm{vt}(\mathrm{st} 1+\mathrm{N}-2)\)
\(\operatorname{gma}(x+2, y 2+1, z+1)=-t e m p c 2 / v t(s t 2+N)\)

IF (j.EQ.2) THEN
```

 tempc1 = -vt(st1+N-2)*gma(x+2,y1-2,z)
 ELSE
 tempc1 = - (vt(st1+N-2)-vt(st1+N-2-(N-1)**2))*gma(x+2,y1-2,z)
END IF
tempc1 = tempc1 - (vt(st1+N-2)-vt(st1-1))*gma(x+1,y1-2,z+1)
3 - vt(st1+N-2)*(gma(x+2,y1-1,z+1) + gma(x+2,y1-3,z+1)

+ gma(x+3,y1-2,z+1))
gma(}\textrm{x}+2,\textrm{y}1-2,\textrm{z}+2)=\mathrm{ tempc1/vt(st1+N-2)
ELSE
DO 225 k=1,1+(j-1)/2
st1 = (k-1)*(N-1)**2 + (v-j+k-1)*(N-1) + i
x = 2*(v-j+k)
y1 = 2*i
z = 2*k - 1
IF (k.EQ.1) THEN
C(st1) = Current(st1,Lambda,alph,Node,Cnt1)
vt(st1) = -C(st1)/gma(x,y1,z)
ELSE
CALL Nbhr(N,st1,n0,n1,n2,n3,n4)
IF (k.EQ.2) THEN
vt(st1) = -vt(n0)*gma(x,y1,z-2)
ELSE
vt(st1) = - (vt(n0)-vt(n0-(N-1)**2))*gma(x,y1, z-2)
END IF
IF (i.EQ.N-1) THEN
vt(st1) = vt(st1) - vt(n0)*gma(x,y1+1, z-1)
ELSE
vt(st1) = vt(st1) - (vt(n0)-vt(n3))*gma(x,y1+1,z-1)
END IF
IF (i.EQ.1) THEN
vt(st1) = vt(st1) - vt(n0)*gma(x,y1-1,z-1)
ELSE
vt(st1) = vt(st1) - (vt(n0)-vt(n4))*gma(x,y1-1,z-1)
END IF
vt(st1) = vt(st1) - (vt(n0)-vt(n1))*gma(x+1,y1,z-1)
- (vt(n0)-vt(n2))*gma(x-1,y1,z-1)
vt(st1) = -vt(st1)/gma(x,y1,z) + vt(n0)
END IF

```
C
```

 225
 C
C

```
```

 gma(1,2*i,2*(v+1)) = gma(1,2*i,2*(v+1))/alph(1)
    ```
```

 gma(1,2*i,2*(v+1)) = gma(1,2*i,2*(v+1))/alph(1)
    ```
```

 gma(x+1,y1,z+1) = -gma(x+2,y1,z)/vt(st1)
 IF (j.NE.1) THEN
 gma (x+1, y1, z+1) = gma(}\textrm{x}+1,\textrm{y}1,\textrm{z}+1)*vt(st1-(N-1)**2+N-1
 END IF
 END IF
 CONTINUE
 gma(1, 2*i,2*(v+1))=Current(sft+v*(N-1)+i,
 Lambda, alph,Node, Cnt2)
 In = 1
 In1(1) = 1
 In2(1) = 1
 In1(0) = 0
 In2(0) = 0
 t1 = N - i - 1
 t2 = i - 1
 alC = 2
 alIn = 1
 DO 350 j=1,v
 IF (mod}(j,2).EQ.0) THE
 DO 304 k=1,j/2
 check = (v-j+k)*(N-1)
 DO 301 m=0,1
 st1 = check - N + k + i + m
 IF (st1.LE.check) THEN
 C(st1) = Current(st1+sft,Lambda,alph,Node,Cnt2)
 END IF
 CONTINUE
 check = check - N + 2
 DO 302 m=0,1
 st2 = check + k + i - 2 - m
 IF ((st2.GE.check).AND.((m.EQ.1).OR.(k.NE.1))) THEN
 C(st2) = Current(st2+sft,Lambda,alph,Node,Cnt2)
 END IF
 CONTINUE
 CONTINUE
    ```

C
```

DO 320 k=1,j/2
IF (k.EQ.1) THEN
sub = In
ELSE IF (k.EQ.2) THEN
sub = In - 1
alR = alC - In1(In-1) - In2(In-1) - 1
alL = alC - In2(In-1)
END IF
DO 315 l=1,j/2-k+1
check = (v-j+k+l-2)*(N-1)**2 + k*(N-1)
z = 2*(v-j+k+l-1)
x = 2*k - 1
DO 305 m=0,1
st1 = check + l + i - N + m
y1 = 2*(i+l+m-1)
IF (st1.LE.check) THEN
IF (k.EQ.1) THEN
sst1 = (v-j+k+l-1)*(N-1) + (k-1)*(N-1)**2
sst1 = sst1 + l+ i -N +m
vt(st1) = alph(alR) - C(sst1)/gma(x,y1,z)
ELSE
CALL Nbhr2(N,st1,n0,n1,n2,n3,n4)
IF (k.EQ.2) THEN
vt(st1) = - (vt(n0)-alph(alR))*gma(x-2,y1,z)
ELSE
vt(st1) = -gma(x-2,y1,z)*(vt(n0)-vt(st1-2*(N-1)))
END IF
vt(st1) = vt(st1) - gma(x-1,y1,z+1)*(vt(n0)-vt(n1))
- gma(x-1,y1,z-1)*(vt(n0)-vt(n2))
IF (n3.LE.check) THEN
vt(st1) = vt(st1) - gma(x-1,y1+1,z)*(vt(n0)-vt(n3))
ELSE
vt(st1) = vt(st1) - gma(x-1,y1+1,z)*vt(n0)
END IF
IF (n4.GE.check-N+2) THEN
vt(st1) = vt(st1) - gma(x-1,y1-1,z)*(vt(n0)-vt(n4))
ELSE
vt(st1) = vt(st1) - gma(x-1,y1-1,z)*vt(n0)

```

END IF
```

 vt(st1) = -vt(st1)/gma(x,y1,z) + vt(n0)
    ```

END IF
END IF
IF (k.LE.2) THEN
\(a l R=a l R+1\)
END IF
CONTINUE
C
```

 check \(=\) check \(-\mathrm{N}+2\)
 DO \(310 \mathrm{~m}=0,1\)
 st2 = check - l + i - m
 \(\mathrm{y} 2=2 *(i-1-m+1)\)
 IF ((st2.GE.check).AND.((1.NE.1).OR.(m.EQ.1))) THEN
 IF (k.EQ.1) THEN
 sst2 \(=(\mathrm{v}-\mathrm{j}+\mathrm{k}+\mathrm{l}-1) *(\mathrm{~N}-1)+(\mathrm{k}-1) *(\mathrm{~N}-1) * * 2-\mathrm{N}+2\)
 sst2 \(=\) sst2 \(+1+i-2-m\)
 vt (st2) \(=\) alph (alL) \(-C(\) sst2 \() / \operatorname{gma}(x, y 2, z)\)
 ELSE
 CALL Nbhr2 (N, st2, n0, n1, n2, n3, n4)
 IF (k.EQ.2) THEN
 \(\mathrm{vt}(\mathrm{st2})=-(\mathrm{vt}(\mathrm{n} 0)-\mathrm{alph}(\mathrm{alL})) * \operatorname{gma}(\mathrm{x}-2, \mathrm{y} 2, \mathrm{z})\)
 ELSE
 \(\mathrm{vt}(\mathrm{st2})=\operatorname{gma}(\mathrm{x}-2, \mathrm{y} 2, \mathrm{z}) *(\mathrm{vt}(\mathrm{n} 0)-\mathrm{vt}(\mathrm{st} 2-2 *(\mathrm{~N}-1)))\)
 END IF
 \(\mathrm{vt}(\mathrm{st2})=\mathrm{vt}(\mathrm{st2})-\operatorname{gma}(\mathrm{x}-1, \mathrm{y} 2, \mathrm{z}+1) *(\mathrm{vt}(\mathrm{n} 0)-\mathrm{vt}(\mathrm{n} 1))\)
 - gma \((x-1, y 2, z-1) *(v t(n 0)-v t(n 2))\)
 IF (n3.LE.check+N-2) THEN
 \(\mathrm{vt}(\mathrm{st} 2)=\mathrm{vt}(\mathrm{st} 2)-\operatorname{gma}(\mathrm{x}-1, \mathrm{y} 2+1, \mathrm{z}) *(\mathrm{vt}(\mathrm{n} 0)-\mathrm{vt}(\mathrm{n} 3))\)
 ELSE
 \(\mathrm{vt}(\mathrm{st2})=\mathrm{vt}(\mathrm{st2})-\operatorname{gma}(\mathrm{x}-1, \mathrm{y} 2+1, \mathrm{z}) * \mathrm{vt}(\mathrm{n} 0)\)
 END IF
 IF (n4.GE.check) THEN
 $\mathrm{vt}(\mathrm{st2})=\mathrm{vt}(\mathrm{st2})-\operatorname{gma}(\mathrm{x}-1, \mathrm{y} 2-1, \mathrm{z}) *(\mathrm{vt}(\mathrm{n} 0)-\mathrm{vt}(\mathrm{n} 4))$
ELSE
vt (st2) $=\mathrm{vt}(\mathrm{st2})-\operatorname{gma}(\mathrm{x}-1, \mathrm{y} 2-1, \mathrm{z}) * \mathrm{vt}(\mathrm{st2})$
END IF
$\mathrm{vt}(\mathrm{st2})=-\mathrm{vt}(\mathrm{st2}) / \operatorname{gma}(\mathrm{x}, \mathrm{y} 2, \mathrm{z})+\mathrm{vt}(\mathrm{n} 0)$
END IF

```
```

 IF (k.LE.2) THEN
 alL = alL + 1
 END IF
 END IF
 CONTINUE
 IF (k.LE.2) THEN
 alL = alL - In1(sub) - In2(sub-1) - 2
 alR = alR - In1(sub-1) - In2(sub-1) - 2
 sub = sub - 1
 END IF
 CONTINUE
 CONTINUE
 C
tempc1 = vt(st1)*gma(x+1,y1,z+1)
tempc2 = vt(st2)*gma(x+1,y2,z+1)
IF (j.EQ.2) THEN
tempc1 = tempc1 + alph(3)*gma(x,y1,z+2)
tempc2 = tempc2 + alph(4)*gma(x,y2,z+2)
ELSE
tempc1 = tempc1 + gma(x,y1,z+2)*vt (st1-N+1+(N-1)**2)
tempc2 = tempc2 + gma(x,y2,z+2)*vt(st2-N+1+(N-1)**2)
END IF
gma(x+1,y1-1,z+2) = -tempc1/vt(st1+(N-1)**2-1)
gma(x+1,y2+1,z+2) = -tempc2/vt(st2+(N-1)**2+1)
C
t = (N-1)**2 - 1
IF (j.EQ.2) THEN
tempc1 = - (vt(st1+t)-alph(2))*gma(x,y1-2,z+2)
ELSE
tempc1 = -(vt(st1+t)-vt(st1+t-N+1))*gma(x,y1-2,z+2)
END IF
tempc1 = tempc1 - (vt(st1+t)-vt(st1-1))*gma(x+1,y1-2,z+1)
3-vt(st1+t)*(gma(x+1,y1-1,z+2) + gma(x+1,y1-3,z+2)
4 + gma(x+1,y1-2,z+3))
gma(x+2,y1-2,z+2) = tempc1/vt(st1+t)
C
ELSE
DO 325 k=1,1+(j-1)/2
st1 = (k-1)*(N-1) + (v-j+k-1)*(N-1)**2 + i

```
```

 z = 2*(v-j+k)
 y1 = 2*i
 x = 2*k - 1
 IF (k.EQ.1) THEN
 sst1 = (k-1)*(N-1)**2 + (v-j+k-1)*(N-1) + i
 C(sst1) = Current(sst1+sft,Lambda,alph,Node,Cnt2)
 vt(st1) = -C(sst1)/gma(x,y1,z) + alph(alC)
 ELSE
 CALL Nbhr2(N,st1,n0,n1,n2,n3,n4)
 IF (k.EQ.2) THEN
 tc = alC - In1(In-1) - In2(In-1) - 1
 vt(st1) = -(vt(n0)-alph(tc))*gma(x-2,y1,z)
 ELSE
 vt(st1) = -(vt(n0)-vt(n0-(N-1)))*gma(x-2,y1,z)
 END IF
 IF (i.EQ.N-1) THEN
 vt(st1) = vt(st1) - vt(n0)*gma(x-1,y1+1,z)
 ELSE
 vt(st1) = vt(st1) - (vt(n0)-vt(n3))*gma(x-1,y1+1,z)
 END IF
 IF (i.EQ.1) THEN
 vt(st1) = vt(st1) - vt(n0)*gma(x-1,y1-1,z)
 ELSE
 vt(st1) = vt(st1) - (vt(n0)-vt(n4))*gma(x-1,y1-1,z)
 END IF
 vt(st1) = vt(st1) - (vt(n0)-vt(n1))*gma(x-1,y1,z+1)
 - (vt(n0)-vt(n2))*gma (x-1,y1,z-1)
 vt(st1) = -vt(st1)/gma(x,y1,z) + vt(n0)
 END IF
 CONTINUE
 gma(x+1,y1,z+1) = gma(x,y1,z+2)/vt(st1)
 IF (j.NE.1) THEN
 gma(x+1,y1,z+1) = -gma(x+1,y1,z+1)*vt(st1+(N-1)**2-N+1)
 ELSE
 tc = alC - In1(In-1) - In2(In-1) - 1
 gma(x+1,y1,z+1) = -gma(x+1,y1,z+1)*alph(tc)
 END IF
 END IF
alC = alC + In1(In) + In2(In) + 1

```
```

 alIn = alIn + 2
 t3 = (alIn + 1)/2
 In = In + 1
 In1(In) = min(t1,t3)
 In2(In) = min(t2,t3)
 alR = alC
 alL = alC + In1(In) + 1
 CONTINUE
 alC = alC - In1(In-1) - In2(In-1) - 1
 IF (mod(v,2).EQ.1) THEN
 IF (v.EQ.1) THEN
 IF ((N.NE.3).OR.(i.NE.N-h-1)) THEN
 gma(x+1,y1+1,z) = -gma(x,y1+2,z)*alph(alC+1)
 gma(}\textrm{x}+1,y1+1,z)=\operatorname{gma}(\textrm{x}+1,\textrm{y}1+1,z)/vt(st1
 END IF
 IF ((i.EQ.(h+1)).AND.(N.NE.3)) THEN
 gma(x+1,y1-1,z) = -gma(x,y1-2,z)*alph(alC+In1(In-1)+1)/vt(st1)
 END IF
 ELSE
 gma (x+1,y1+1,z) = - (gma (x+1,y1+2, z-1)*vt(st1-(N-1)**2+1)
 2
+ gma(x,y1+2,z)*vt(st1-N+2))/vt(st1)
IF (i.EQ.(h+1)) THEN
gma(x+1,y1-1,z) = - (gma(x+1,y1-2,z-1)*vt(st1-(N-1)**2-1)
+ gma(x,y1-2,z)*vt(st1-N))/vt(st1)
END IF
END IF
END IF
8 0 0 ~ C O N T I N U E ~
RETURN
END

```
    SUBROUTINE Nodes1(N, node1, node2, cnt, side, add, v,i)
    INTEGER N,side, add,temp,j,k
    INTEGER node1 (0:45) , node2(45), cnt,v,i
C
    cnt \(=1\)
    DO \(200 \mathrm{j}=0\), v
        temp \(=(v-j) *(N-1)\)
```

 node1(cnt) = side + temp + i
 node2(cnt) = node1(cnt) + add
 cnt = cnt + 1
 DO 100 k=1,j
 IF ((temp+i+k).LE.(temp+N-1)) THEN
 node1(cnt) = side + temp + i + k
 node2(cnt) = node1(cnt) + add
 cnt = cnt + 1
 END IF
 CONTINUE
 DO 150 k=1,j
 IF ((temp+i-k).GE.(temp+1)) THEN
 node1(cnt) = side + temp + i -k
 node2(cnt) = node1(cnt) + add
 cnt = cnt + 1
 END IF
 CONTINUE
 200 CONTINUE
 RETURN
 END
 SUBROUTINE Alpha(Lambda,P,Q,n,al)
 INTEGER MaxN,i,j,x,y,z
 PARAMETER (MaxN = 6)
 INTEGER KR,JPVT(45),P(45),Q(0:45)
 DOUBLE PRECISION Lambda(6*(MaxN-1)**2,6*(MaxN-1)**2)
 DOUBLE PRECISION al(45),A(45,45),b(45)
 DOUBLE PRECISION QRAUX(45),WORK(45),RSD(45)
 C
x = Q(0)
DO 100 i=1,n
y = P(i)
b(i) = -Lambda(y,x)
DO 100 j=1,n
z = Q(j)
A(i,j) = Lambda(y,z)
CONTINUE
200 CONTINUE

```

C
CALL DQRANK (A, 45, \(\mathrm{n}, \mathrm{n}, 0, \mathrm{KR}, \mathrm{JPVT}, \mathrm{QRAUX}, \mathrm{WORK}\) )
CALL DQRLSS (A, 45, n, \(n, K R, b, a l, R S D, J P V T, Q R A U X) ~\)
C
RETURN
END

DOUBLE PRECISION FUNCTION Current ( \(x\), Lambda, alpha, nodes, cnt)
INTEGER \(x, \operatorname{MaxN}, \mathrm{cnt}, \mathrm{i}\), nodes \((0: 45)\)
PARAMETER (MaxN = 6)
DOUBLE PRECISION alpha(45)
DOUBLE PRECISION Lambda (6*(MaxN-1) \(* * 2,6 *(\operatorname{MaxN}-1) * * 2)\)
C
Current \(=\) Lambda \((x, \operatorname{nodes}(0))\)
DO 100 i=1, cnt
Current \(=\) Current + alpha(i)*Lambda(x,nodes(i))
100 CONTINUE
RETURN
END

SUBROUTINE Nbhr (N, start, n0, n1, n2, n3, n4)
INTEGER N, start, n0,n1,n2,n3,n4
C
\(\mathrm{n} 0=\) start \(-(\mathrm{N}-1) * * 2\)
\(\mathrm{n} 1=\mathrm{n} 0+\mathrm{N}-1\)
\(\mathrm{n} 2=\mathrm{n} 0-\mathrm{N}+1\)
\(\mathrm{n} 3=\mathrm{n} 0+1\)
\(\mathrm{n} 4=\mathrm{n} 0-1\)
C
RETURN
END

SUBROUTINE Nbhr2 (N, start, n0, n1, n2, n3, n4)
INTEGER N, start, n0, n1, n2, n3, n4
C
n0 \(=\) start \(-(\mathrm{N}-1)\)
\[
\begin{aligned}
& \mathrm{n} 1=\mathrm{n} 0-(\mathrm{N}-1) * * 2 \\
& \mathrm{n} 2=\mathrm{n} 0+(\mathrm{N}-1) * * 2 \\
& \mathrm{n} 3=\mathrm{n} 0+1 \\
& \mathrm{n} 4=\mathrm{n} 0-1
\end{aligned}
\]

C
RETURN
END```

