CIRCULAR PLANAR GRAPHS AND RESISTOR NETWORKS
E. B. CURTIS , D. INGERMAN AND J. A. MORROW *

Abstract. We consider circular planar graphs and circular planar resistor networks. Associated
with each circular planar graph T there is a set 7(T') = {(P; @)} of pairs of sequences of boundary
nodes which are connected through I'. A graph I is called critical if removing any edge breaks at least
one of the connections (P; Q) in 7(T). We prove that two critical circular planar graphs are Y — A
equivalent if and only if they have the same connections. If a conductivity v is assigned to each edge
in T', there is a linear from boundary voltages to boundary currents, called the network response. This
linear map is represented by a matrix A,. We show that if (T', v) is any circular planar resistor network
whose underlying graph [ is critical, then the values of all the conductors in I' may be calculated from
A,. Finally, we give an algebraic description of the set of network response matrices that can occur
for circular planar resistor networks.
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1. Introduction. This article is a continuation of [5], [6] and [7], and was inspired
by [1] and [2]. Some related results have been announced in [3].

A graph with boundary is a triple I' = (V, Vg, E), where (V, E) is a finite graph
with V' = the set of nodes, ' = the set of edges, and Vp is a nonempty subset of V

called the set of boundary nodes. I' is allowed to have multiple edges (i.e., more than
one edge between two nodes) or loops (i.e., an edge joining a node to itself).

A circular planar graph is a graph with boundary which is embedded in a disc D in

the plane so that the boundary nodes lie on the circle C' which bounds D, and the rest of
I"is in the interior of D. The boundary nodes can be labelled vy, ..., v, in the (clockwise)
circular order around C. A pair of sequences of boundary nodes (P;Q) = (p1,. .., pk;
G, --.,qx) such that the sequence (py1,...,pk,qk,...,q1) is in circular order is called a
circular pair.

A circular pair (P;Q) = (p1,-.-,Pk; G1,---,qx) of boundary nodes is said to be
connected through I' if there are k disjoint paths ay,...,a; in I', such that «; starts

at p;, ends at ¢; and passes through no other boundary nodes. We say that « is a
connection from P to (). The notion of a connection between a pair of sequences
of boundary nodes appears in [1] and [2]. The definition of a well-connected critical
graph was given in [1]. In this paper, we consider graphs which are not necessarily
well-connected.

For each circular planar graph I', let 7(I") be the set of all circular pairs (P; Q) of
boundary nodes which are connected through TI'.
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There are two ways to remove an edge from a graph:
(1) By deleting an edge.

(2) By contracting an edge to a single node. (An edge joining two boundary nodes
is not allowed to be contracted to a single node).

We say that removing an edge breaks the connection from P to ) if there is a

connection from P to () through T', but there is not a connection from P to () after the
edge is removed. A graph I' is called critical if the removal of any edge breaks some

connection in 7 (T').

THEOREM 1. Suppose I'y and 'y are two critical circular planar graphs. Then
(1) = 7(I'y) if and only if 'y and I'y are Y — A equivalent.

A conductivity on a graph I is a function 4 which assigns to each edge e in F a pos-
itive real number ~v(e). A resistor network (I',v) consists of a graph with boundary

together with a conductivity function ~.

Suppose (I',7v) is a resistor network with n boundary nodes. There is a linear
map from boundary functions to boundary functions, constructed as follows. To each
function f = {f(v;)} defined at the boundary nodes, there is a unique extension of f
to all the nodes of I' which satisfies Kirchhoft’s current law at each interior node. This
function then gives a current [ where I(v;) is the current into the network at boundary
node v;. The linear map which sends f to [ is called the Dirichlet-to-Neumann map in
[5], [6] and [7]. This map is represented by a n x n matrix, A, (= A(I',7)), called the
network response.

THEOREM 2. Suppose (I',7) is a circular planar resistor network which is critical
as a graph. Then the values of the conductors are uniquely determined by, and can be
calculated from A.,.

In this situation we say « is recoverable from A,.

Notation: Suppose A = {a,:} is a matrix, P = (p1,...,px) is an ordered subset
of the rows, and @ = (¢i1,...,¢n) is an ordered subset of the columns. Then A(P;Q)
denotes the £ x m matrix obtained by taking the entries of A which are in rows py,...,px
and columns ¢y, ..., q,. Specifically, for each 1 <1 < kand 1 < j <m,

A(P§ Q)i,j = Up;q;

A pair of sequences of indices (P; Q) = (p1,. .., Pk; G1,- - -, q) is called a circular pair
if a cyclic permutation of (p1,..., Pk, @k ..., q1) is in order. If (P; Q) is a circular pair
of indices, A(P; @) is called a circular minor of A.




DEFINITION 1.1. For each integer n > 2, let 0, be the set of n x n symmetric
matrices M for which the sum of the entries in each row is 0, and which satisfy the
following condition.

If M(P;Q) is a k x k circular minor of M, then (—1)*det M(P;Q) > 0.

This condition says that if M € Q,, and (P; Q) is a circular pair of indices, then
the matrix —M(P; @) is totally non-negative as in [9]. This condition implies that if

M € ), each off-diagonal entry is non-positive and each diagonal entry is non-negative.

THEOREM 3. Suppose M is in Q,,. Then there is a circular planar graph with a
conductivity v so that M = A(T',v).

DEFINITION 1.2. Suppose I' is a circular planar graph with n boundary nodes,
and m = m(I') is the set of circular pairs (P; Q) which are connected through I'. A
subset Q(m) of Q,, is defined by the following condition. For each circular pair of indices

(P3Q) = (P Prs a1, - - k)5
(a) If (P; Q) € m, then (—1)*det M(P; Q) > 0.
(b) If (P;Q) ¢ m, then det M(P; Q) = 0.

Let (I', v) be a critical circular planar resistor network and 7(I') = 7. In §4, we show
that the network response matrix A, is in (7). In §12, we show that if M € Q(x), then
there is a conductivity v on I' so that M = A,. More generally, we have the following.

THEOREM 4. Suppose ' is a critical circular planar graph with N edges and
7 = n(T). Then the map which sends v to A, is a diffeomorphism of (R*)" onto Q(m).

REMARK 1. Theorems 1, 2, 3, and 4 show that there is a close relationship between
circular planar resistor networks and matrices. The set of network response matrices
for all circular planar graphs with n boundary nodes is €2,,, which is the disjoint union
of the sets Q(m). For each M € Q,,, let 7 = {(P; @)} be the set of circular pairs (P; Q)
of indices for which det M (P; Q) # 0. Associated with this 7, there is a circular planar
graph I" with 7(I') = 7, and there is a conductivity v on I' with A(I',y) = M. The
graph I" may be chosen to be critical, and then I" is unique to within ¥ — A equivalence.
If a graph I' is chosen in this Y — A equivalence class, then the conductivity v on T’
which gives M = A(T",v) is unique.

REMARK 2. For each of the sets m, let N(7) be the number of edges in a critical
graph with 7(I') = . Suppose I' be a circular planar graph with N edges. Then
I' is critical if and only if N = N(x(I')). If I' is not critical, then there is a critical
graph I, with 7(I'") = #(I'). The graph I" may be obtained from I' by removal (by
deletion and/or contraction) of N — N(7w(I')) edges. If v is a conductivity on I, there
AT, ).

is a conductivity 7" on I” so that A(I",4’)
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This paper is almost entirely self-contained. In addition to matrix algebra, the
proofs make use of the medial graphs of Steinitz and Theorem 5.2 of [7]. In §2, Schur
complements are used to prove a determinant identity, originally due to Dodgson, that
is used extensively in §10. For (A,7v) a resistor network, the response matrix A, is
constructed in §3. The important properties of A, are established in §4. §5 describes
Y — A and A — Y transformations of planar graphs. The medial graph of a circular
planar graph, is defined in §6. In §7, the methods of Steinitz are used to show that
in each Y — A equivalence class of critical circular planar graphs there is a standard
represenative. In §8, we define three ways to adjoin an edge to a graph and we describe
the effects of each of these adjunctions on the response matrices. Theorem 2 was proven
in [7] for the standard representative of a well-connected critical circular planar graph.
§9 of the present paper makes use of [7] to prove Theorem 2 for an arbitrary critical
graph. §10 uses Dodgson’s identity to prove some facts about the matrices M in Q,. In
§11, we show that removing a boundary edge or boundary spike from a critical graph
results in another critical graph. In §12, we prove Theorems 3 and 4. In §13, we prove
Theorem 1.

2. The Schur Complement. Suppose M is a square matrix and D be a non-
singular square submatrix of M. For convenience, assume that D is the lower right
hand corner of M, so that M has the block structure:

ve[e2)

The Schur complement of D in M is the matrix M/D = A — BD™'C. The Schur
complement satisfies the following determinantal identity:
det M = det(M/D) - det D

If £ is a non-singular square submatrix of D, then
4



det M = det(M/D) - det(D/FE) - det £
In this situation, the following quotient formula is due to Haynsworth ([4]).
M/D = (M/E)/(D/E)

Let A = {a;;} be a n x n matrix, and ajy is a non-zero entry. The 1 x 1 matrix
with entry ap is denoted [ay x]. For the Schur complement, A/[a k], we have

det A = (—1)"*ay, ;. - det(A/[anz])

Suppose A is a n X n matrix, with n > 2. If ¢ and j are any two indices, Alz; 7] will
denote the (n —1) x (n — 1) matrix obtained by deleting row ¢ and column j. Similarly,
if (h,7) and (j, k) are indices, then A[h,1; j, k] will denote the (n —2) x (n — 2) matrix
obtained by deleting rows & and : and columns 7 and k. We shall make extensive use

of the following identity, due to Dodgson [8].
LEMMA 2.1. For any indices [h,1;7,k] with 1 <h <i<nand1<j<k<n,
det A - det Alh,1; 7, k] = det A[h; 5] - det A[i; k] — det A[h; k] - det Alz; 5]

Proof. By re-ordering the rows and columns, we may assume that the indices are

(h,i) = (1,2) and (j,k) = (1,2). Let B = A[1,2;1,2]. Then A has the form:

b
A= d
z

g o 8

e &

where = and y are 1 x (n — 2) row vectors, w and z are (n — 2) x 1 column vectors.
Temporarily assume that B is non-singular. For the Schur complement A/B we have:

A/B = la—:z:B_lw b—:z:B_lz]

c—yB~'w d—yB7'z
det(A/B) = (a—zB 'y)(d—-yB'z)—(b— 2B '2)(c—yB 'w)
= det(A[2;2]/B) - det(A[l;1]/B) — det(A[1;2]/B) - det(A[2; 1]/ B)
Using the determinantal identity for Schur complements, we have
det A - det B = det A[2;2] - det A[1; 1] — det A[1;2] - det A[2;1]

This is a polynomial relation which holds for the n? values of the entries of A whenever
det B # 0. Therefore it is an identity in the coefficients of A. [

=

o]



3. Resistor Networks. In this section we construct the response matrix A(I', )
for a resistor network (I',v). This is done first when I' is connected as a graph; the
response matrix for a general network is obtained by taking the direct sum of the
response matrices of the connected components.

Suppose (I',v) = (V, Va, E,v) is a connected resistor network, with d vertices num-
bered vy,...,v4. The Kirchhoff matrix K = K(I',7) is the d x d matrix K constructed
as follows.

(1) If ¢ # j then K;; = — ) ~(e), where the sum is taken over all edges e joining v;
to v;. (If there is no edge joining v; to v;, then K;; =0.)
(2) K;; =Y ~v(e), where the sum is taken over all edges e with one endpoint at v;

and the other endpoint not v;.

The Kirchhoff matrix has the following interpretation. If u is a voltage defined at
the nodes of I', then ¢ = Ku is the resulting current flow. In coordinates, if u = {u(v;)},
then ¢; = 3°; K; ju(v;) is the current flowing into the network at node v;.

If a function f is imposed at the boundary nodes, the function u which satisfies
Kirchhoff’s current law ¢; = 0 at each interior node v;, and which agrees with f at the
boundary nodes, is called the potential due to f.

Suppose there are N edges numbered eq,...,ex. A d x N matrix ) is constructed
as follows. If e is an edge joining v; to v; with ¢« < 7, then

Qix = +y7(e)
Qir = —\/7(ek)

Qrr = 0, otherwise

A calculation shows that K = @Q - Q7. Thus K is positive semi-definite. Suppose
z = (z1,...,74). Then zKz? = 0 if and only if 2Q = 0. Let e = v;v; be an edge in T

Then z¢) = 0 implies that
zi/y(e) —zj/v(e) =0

Thus z; = z;. Since I' is connected as a graph, KTz = 0 if and only if z; = x; for all
vertices v; and v;.

LEMMA 3.1. Suppose (I',7) is a connected resistor network. Let P = (p1,...,px) be
a non-empty proper subset of the vertices. Then the matriz K(P; P) is positive definite.

Proof. Let A = K(P;P), and suppose y = (y1,...,yx) is a vector with yAyT = 0.
Let @ = (z1,...,24) be the vector with z,, = y; for 1 <i <k, and and z; = 0 if j is
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not in P. Then xKzT = yAy” = 0. Since P is a proper subset of V, at least one of the
x; 1s 0. Since I' is connected, all the x; must be 0. Hence the y; are 0 also. 0O

Suppose (I',v) = (V, VB, F,~) is a connected resistor network. Let [ =V — Vg
be the set of interior nodes. By Lemma 3.1, if I is not empty, the matrix K(/,7) is
nonsingular.

THEOREM 3.2. Suppose (I',v) is a connected resistor network. Then the nelwork
response matriz A, is the Schur complement

A, = K/K(I; 1)

Proof. If I is the empty set, K/K(I; ) is defined to be to be K, and A, = K.
Otherwise, [ is nonempty. For convenience, assume the nodes are numbered so that
Ve = {v1,ve,...,0,}, and [ = {vu41,0042,...,v4}. Let D = K(I;1I). Then K has a

block structure:

. [aB
]‘_lc D]

Suppose that f = {f(v;);: =1,...,n} isa function imposed at the boundary nodes. Let
g={g(vi);i =n+1,...,d} be the resulting potential at the interior nodes. Kirchhoff’s
current law says that the sum of the currents into each interior node is 0. Thus

A B Fl1 _|ec

C D g| |0
This implies that (A — BD™'C) f = c. Therefore the response matrix representing the
Dirichlet-to-Neumann map is A, = A— BD™!'C. [

If A=(a1,...,a5) and B = (by,...,b;) are two sequences of nodes, A + B stands
for the sequence (ay,...,as,b1,...,b).

LEMMA 3.3. Suppose (I',v) is a connected resistor network, and let A., be its
response matriz. Let P and @) be two sequences of boundary nodes of I'. Then the
submatriz A, (P; Q) is obtained as the Schur complement

M(P;Q)=K(P+L;Q+1)/K(I;1)

Proof. This follows from Theorem 3.2 and the definition of Schur complement. O

Suppose I' = (V, Vg, F) is a connected graph with n boundary nodes. Let p be one
of the boundary nodes. Let I = (V',V}, E’) be the graph with V! =V, V= Vg —p
and £’ = E. That is [ is the same as I', except that p is declared to be an interior
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node. If v is a conductivity on I', we assign the same values to the conductors in I".
Let Al denote the response matrix for I'. By Theorem 3.2,

AN =K/K(I+p;I+p)

Suppose P = (p1,...,px) and @ = (qu,...,qx) are two sequences of boundary nodes,
and p is a boundary node not in P U Q).

LEMMA 3.4. In this situation,
(1) ALP;Q)=A(P+p;Q+p)/A(pip)
(2)  detAL(P;Q) = det Ay(P + p; @ + p)/ det A (p; p)

Proof. The first follows from the Haynsworth quotient formula. The second follows
from the determinantal identity for Schur complements. O

4. Connections and Determinants. Suppose I' = (V, Vg, F) is a connected
graph with boundary. I' is not assumed to be planar. Let I = V — Vg denote the set
of interior nodes. If p and g are two boundary nodes, a path from p to g through I' is
a sequence of edges p,ry,ry,r2,...,7y,q in ' where the r; are distinct interior nodes.
Suppose P = (p1,...,pxr) and @ = (qu,...,qx) are two disjoint sets of boundary nodes.
A connection from P to @) through I' is a set a = (a4, ..., ax) of disjoint paths through
', where for each 1 <@ < k, a; is a path from P; to Q,(;), and 7 is an element of the
permutation group Si. Let C(P; Q) be the set of connections from P to Q). For each
a=(ay,...,a) in C(P;Q), let

7o be the permutation of (g1, ¢z, . .., qx) which results at the endpoints of the paths

(a1, Qg,...,a);
E,, be the set of edges in «;
Jo be the set of interior nodes which are not the ends of any edge in «.

LEMMA 4.1. Let (I',v) be a connected resistor network. Let P = (p1,pa,...,Pk)
and Q = (q1, G2, - - -, qx) be two disjoint sequences of boundary nodes. Then

det A(P;Q) - det K(I,1) = (—1)* > sgn(r) > II ~(e) - det K(Ju; Jn)
TESk a € C(P;Q) &P

Ta =T

Proof. Let v = k+ k', where k' is the number of interior nodes in I'. Let the interior
nodes be numbered r; for : = k4 1,...,k + k’. By taking the Schur complement with
respect to K(1, 1), we have

det A(P;Q) -det K(I,I)=det K(P+ 1;Q + I)
8



The v x v matrix K(P 4+ [;Q + I) is denoted M = {m;;}. Then

det M = Z sgn(o) H M o (i)
sES, i=1

Here S, denotes the symmetric group on v symbols. For each 1 <1 < k, let n; be the

first index j for which 0/(7) < k. For each 1 <1 < k,and 0 < j < n;, let a(z 7) = a’(a).

Let 7 be the permutation of 1,2,...,k where 7(¢) = a(i,n;). Thus each o € S, gives a

diagram of the following form:

1=a(1,0) % a(1,1) % a(1,2) % ... % a(l,ny) = 7(1)

2 =a(2,0) > a(2,1) % a(2,2) & ... 5 a(2,n9) = 7(2)

k=a(k,0) s a(k, 1) a(k,2) > ... % a(k,ng) = 7(k)

Let A be the subset of {1,2,...,v} consisting of the a(i,7) for 1 <i <k 0 <5 < n,.
Let ¢t = ) " n;, which is the cardinality of A. Let B be the set {1,2,...,v} — A. Then
o may be expressed as a product ¢ = ¢ - u, where ¢ is a permutation of A, and p is a
permutation of B. Let ¢ be expressed as a product of disjoint cycles ¢ = ¢y -po-.. .- ds.
Then sgn(c) = (—1)"*sgn(p). Then 7 will also be expressed as a product of s cycles.

T =1 -y, and sgn(7) = (—1)*7%. Thus sgn(o) = (—1)**'sgn(7)sgn(u).

The diagram above determines a set o = (aq,...,a;) of sequences of nodes in T,
where «; is the sequence a(7,0),a(z,1),...,a(i,n;). For each 1 < <k, a(s,0) = p; and
a(i,n;) = qr(). For each 1 <@ <k, and 0 < j < ny, a(i, ) is the interior node ry ;).
The product H m; o(;) can be non-zero only if a = (a1, g, ..., a) forms a connection

i=1
through I' from P to Q). For each oo € C(P;Q), let S(a) be the set of o € S, for which

the connection is a. As o varies over S(«), p varies over the permutations of .J,. Then

v

S osen(o) [Tmivey = Y (=D)*sgn(r) T (=~(e)) - sgn(p) - IT ming

c€S(a) i=1 c€S(a) e€Elq 1€Jq

= (=1)sgn(r)- [ v(e)- det K(Js; ).

eel,

For each 7 € Si, take the sum over all @ which induce this 7. Then take the sum over
all 7 € S, and the proof is complete. 0O

This answers a question raised by [2]. In particular, it follows from Lemma 4.1 that
if det A(P; @) = 0, then either
9



(1) There is no connection from P to Q;

or (2) There are (at least) two connections o and 3 from P to @, with permutations
7, and 73 of opposite sign.

The following theorem is very important for our purposes. It first was proved for
well-connected circular planar networks in [7], and for general circular planar networks
in [1]. The proof we give here is based on Lemma 4.1.

THEOREM 4.2. Suppose ' is a circular planar resistor network and (P;Q) =
(P1y- vy PESG1y - -+ Gi) Bs @ circular pair of sequences of boundary nodes.

(a) If (P; Q) are not connected through I', then det A(P; Q) = 0.
(b) If (P;Q) are connected through T, then (—1)* det A(P; Q) > 0.

Proof. We first consider the case when I' is connected as a graph. By Lemma
3.1, K(I,I) is positive definite, so det K(.J,.JJ) > 0 for all J C I. The sequence
(p1y- -y Py Gky - -, q1) is in circular order around the boundary of I'. If there is a con-
nection from P to (), it must connect p; to ¢; for 1 < < k. Thus each 7 which appears
in Lemma 4.1 is the identity permutation, so all the terms in the sum have the same
sign. In the general case, I' is a disjoint union of connected components I';, and A(T', v)
is a direct sum of the A(I';,~;) . O

When we say that removal of an edge e from I' breaks the connection from P to
(), we mean that P and @) are connected through I' (possibly in many ways), and that
P and @) are not connected through the graph I which is the graph I" with e removed.
By Theorem 4.2, this is equivalent to the two assertions that det A(P; @) # 0, and
det A'(P; Q) = 0.

An edge e between a pair of adjacent boundary nodes is called a boundary edge. If

r is a boundary node which is joined by an edge to only one other node p which is an
interior node, the edge rp is called a boundary spike.

COROLLARY 4.3. Suppose I' is a connected circular planar resistor network and
e = pq is a boundary edge, such that deleting e breaks the connection between a circular

pair (P;Q) = (p1,.. ., pk;q1,---,qi). Then pq is either p1q1 or prqy, and
det A(P; Q) = —7(e) - det A(P — p; Q — q)
Proof. The edge pg must be either p1q; or prgr. As the two cases are similar,

WLOG assume the former. We consider det K(P + I;Q + 1) as a linear function F(z)
of the first column z of K(P + I;Q + ). Let £ = y(e). Then z = x + y, where

5] L]
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Then F(z) = F(z)+ F(y). But F(y) =0, since P and @ are not connected through T’
after p1q; is deleted. Thus

det K(P+LQ+1)=—(det K(P—pi +1;Q — g1 + )

The result follows by taking the Schur complement with respect to K(I; 1), and using
Lemma 3.3. O

COROLLARY 4.4. Suppose I' is a connected circular planar resistor network and rp
is boundary spike joining a boundary node r to an interior node p. Suppose thal con-
tracting rp breaks the connection between a circular pair (P;Q) = (p1y. .« P G1y- -+, Gr)-

Thenr ¢ PUQ, and

det A(P +r;Q 4+ 1) = ~(pr) - det A(P; Q)

Proof. 1t is clear that r ¢ PUQ. Let £ = y(pr). Then K(P+r+1;Q+r + 1) has
a submatrix K (r,p;r, p) which has the form:

K(r,p;r,p) = l ¢ _51

_f w
The remaining entries of K(P +r+ I;Q 4+ r + I) in the column corresponding to r are

0, and the remaining entries of K(P +r 4+ [;Q + r+ I) in the row corresponding to r
are 0. Thus

det K(P+r+15;Q+r+1)=¢det K(P+ L;Q+ 1) —Edet K(P+ 1 —p;Q + 1 —p)

The assertion of the corollary follows upon dividing by K (I; ), interpreting each of the
terms as the determinant of a Schur complement, and using Lemma 3.3. O

5. Y - A Transformations. Suppose I' = (V, Vi, F) is a circular planar graph,
and s is a trivalent interior node with incident edges sp, sq and sr, as in F1G 1A.

Fig 1A Fig 1B
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A'Y — A transformation removes the vertex s, the edges sp, sq, sr, and adds three new

edges pq, gr, and rp as in F1G 1B. Similarly, if pgr is a triangle in I" as in Fi1G 1B, then
a A — Y transformation removes the edges pq, gr, and rp, inserts a new vertex s, and
adds three new edges ps, gs, and rs, to arrive at F1G 1A. All other nodes are fixed
during the transformation.

We say that two circular planar graphs I'y and T’y are Y — A equivalent if I'y can

be transformed to I'; by a sequence of Y — A or A — Y transformations.

LEMMA 5.1. IfT'y and 'y are two circular planar graphs which are Y —A equivalent,
then w(I'y) = w(I'2).

Proof. Suppose I'y is transformed into I'y where the Y of FiG 1A is replaced by the
triangle of F1G 1B. Let « and # be disjoint paths in I'; where « passes through p and
(3 passes through edges rs and sq. The corresponding paths in I'y are @ and 3, where
(' is the same as [ except that the two edges rs and sq are replaced by the single edge
rq. O

LEMMA 5.2. Suppose I'y and 'y are two circular planar graphs which are Y — A
equivalent. Then 'y is critical if and only if I'y is critical.

Proof. Suppose I'y is transformed into I'y; where the Y of FiG 1A is replaced by the
triangle of F1G 1B. Assume that I'y is not critical. We need to consider three cases.

(1) Suppose € is an edge in I'; which is not ps, ¢gs, or rs and e can be removed
without breaking a connection in m(I'y). Then removal of the same edge in I'y breaks
no connection in w(I'y).

(2) Suppose deletion of ps breaks no connection in m(I'1). Then deletion of pr
breaks no connection in 7(I'y).

(3) Suppose contraction of ps breaks no connection in 7(I'y). Then deletion of rq
breaks no connection in 7(I'y).

Assume that I'y is not critical. Again there are three cases.

(4) Suppose e is an edge in 'y which is not pgq, gr, or rp and e can be removed
without breaking a connection in m(I'y). Then removal of the same edge in I'y breaks
no connection in w(I'y).

(5) Suppose deletion of rq breaks no connection in m(I'y). Then contraction of ps
breaks no connection in 7 (I'y).

(6) Suppose contraction of rq breaks no connection in m(I'z). Then contraction of
rs breaks no connection in 7(I'y). O
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LEMMA 5.3. Suppose I'y and 'y are two circular planar graphs which are Y — A
equivalent. If v1 is a conductivity on 'y then there is a conductivity v on 'y, with

A(Fla’h) = A(F%'Y?)'

Proof. Suppose I'y is transformed into I'y where the Y of FiG 1A is replaced by
the triangle of F1G 1B. Suppose v1(ps) = a, y1(qs) = b, y1(rs) = ¢. The corresponding
conductivity v, on I'y is

ab
n(Pe) =

be
wlr) = e

ac
wir) =

and v3(e) = y1(e) for all other edges.

Suppose I'y is transformed into I'y where the triangle of FiG 1B is replaced by the Y
of F1G 1A. Suppose v1(pq) = a, v1(qr) = b, y1(rp) = ¢. The corresponding conductivity
9 on 'y is

ab+ ac+ be
Y2(ps) = ——F——
ab+ ac + be
'72((]8) = f
ab+ ac+ be
VQ(TS) = T

and vo(e) = 71(e) for all other edges. If u is a function defined at the nodes of I'y
which satisfies Kirchhoff’s current law, the same function (omitting the point s) satisfies
Kirchhoff’s current law on I'y. Hence A(I'1,v1) = A(I'2,42). O

LEMMA 5.4. Suppose I'y and 'y are two circular planar graphs which are Y — A
equivalent. If v1 is recoverable from A(I'1,y1), then vy is recoverable from A(T'y,v2).

Proof. This follows from Lemma 5.3. O

6. Medial graphs. Suppose I' = (V, Vg, E) is a circular planar graph with n
boundary nodes. I' is assumed to be embedded in in the plane so that the boundary
nodes vy, vy, ...,v, occur in clockwise order around a circle C' and the rest of I' is in
the interior of C'. The construction of the medial graph M(I') is similar to that in [10]
(p 239). The medial graph M(T") depends on the embedding. First, for each edge e of
I', let m. be its midpoint. Next, place 2n points {1, s, ...%s, on C so that

< <tlg<lzg<v<...<tgp1 <v, <tg, <1y

in the clockwise circular order around C'.
13



1) The vertices of M(I') consist of the points m. for e € E, and the points ¢; for
12,...,2n

(
=1
(2) The edges in M(I') are as follows. Two vertices m. and my are joined by an
edge whenever e and f have a common vertex and e and f are incident to the same
face in I'. There is also one edge for each point ¢; as follows. The point ty; is joined by
an edge to m, where e is the edge of the form e = v;r which comes first after arc v;ty;
in clockwise order around v;. The point {3;_; is joined by an edge to my where f is the
edge of the form f = v;s which comes first after arc v;{3;_1 in counter-clockwise order
around v;.

The vertices of the form m. of M(I') are 4-valent; the vertices of the form ¢; are
I-valent. An edge uv of M(I') has a direct extension vw if the edges uv and vw separate

the other two edges incident to the vertex v. A path wouy...u in M(T') is called a
geodesic arc if each edge u;_yu; has edge u;u;4q1 as a direct extension. A geodesic arc
Ugtiy - . . uy 1s called a geodesic if either

(1) up and uy are points on the circle C.

or (2) ur = ug and ug_qux has ugu; as direct extension.
A subgraph £ of M(T') is called a lens provided that:

(1) £ consists of a simple closed path path wouy ... ugvevy . .. v and all the nodes
and edges of M(I') in the bounded connected component of the complement of £ in
the plane.

(2) wouy ... ugve and vovy . .. V,Ug are two geodesic arcs such that no inner edge of
L is incident to ug or vg.

If each geodesic in M(I') begins and ends on C, has no self-intersection, and if
M(T) has no lenses, we say that M(I") is lensless.

A triangle in M(T') is a triple { f, g, h} of geodesics which intersect to form a triangle
with no other intersections within the configuration, as in Fig 2A.

g h g h
f
Fig 2a Fig 2B
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Suppose {f,g,h} form a triangle as in FIG 2A. A motion of {f,g,h} consists of
replacing this configuration with that of Fic 2B.

LEMMA 6.1. Two circular planar graphs are Y — A equivalent if and only if their
medial graphs are equivalent under motions.

Proof. Each Y — A transformation of I' corresponds to a motion on M(I'). Con-
versely, a motion on M(I') corresponds to a Y — A transformation of I'. O

We shall make extensive use of the following Lemma. Our proof is an adaptation
of a proof of Steinitz to our situation; see [10] and [11].

LEMMA 6.2. Suppose I' is a circular planar graph, for which M(T') is lensless.
Suppose g and h intersect at p. Suppose g intersects C' at q and h intersects C' at r.
Assume F ={f1,..., fm} 1s a sel of geodesics with the property that for each 1 <1 < 'm,
fi intersects g between p and q if and only if f; intersects h between p and r. Then a
finite sequence of motions will remove all members of F from the sector gpr.

Proof. For each « = 1,...,m, let v; be the point of intersection (if there is one) of
fi with g between p and ¢q. For each f; which intersects another of the f; within sector
gpr, let D; be the first point of intersection on f; after v; in sector gpr. Let D = {D;}
be the set of points obtained in this way. If D is empty, let f; be the geodesic in F such
that v; is closest to p, and {g, h, f;} form a triangle. A motion will remove f; from sector
gpr. Otherwise, D is nonempty. Each point D; € D is the point of intersection of two
of the geodesics, say f; and f;. Let D be a point in D for which the number of regions
within the configuration formed by f; and f; and ¢ is a minimum. This minimum must
be one, or there would be another geodesic which intersects f; between v; and D or
which intersects f; between v; and D. Then {g, fi, f;} form a triangle. A motion will
reduce the number of regions within sector gpr. After a finite number of motions, no f;
crosses into the sector. [

LEMMA 6.3. Suppose I' is a circular planar graph, for which M(T') has a lens.
Then I is Y — A equivalent to a graph I which has either a pair of edges in series, or
a pair of edges in parallel.

Proof. Suppose g and h are two geodesics which intersect at p; and p; to form a
lens £. WLOG assume that £ is a lens with the fewest number of regions inside L.
Each geodesic f which intersects g between p; and p, also intersects h between p; and
pa2, or there would be a lens with fewer regions than £. An argument similar to that
of 6.2 shows that all of these f may be removed from £. Thus I' is Y — A equivalent
to a graph I for which M(I") has an empty lens. This empty lens corresponds either
to a pair of edges in series (if there is a vertex of I'" within £), or to a pair of edges in
parallel (if there is no vertex of IV within £). 0O

LEMMA 6.4. If 1 is a eritical circular planar graph, then M(I') is lensless.
15



Proof. 1f there were a lens, a closed geodesic or a geodesic with a self-intersection in
M(T), then I would be Y — A equivalent to a graph I with a pair of edges in series or
in parallel, or with an interior pendant or an interior loop. In each case an edge could
be removed from I without breaking any connection, so I'" would not be critical, and
hence also I' would not be critical. O

In §13, we show that if M(I") is lensless, then I' is critical.

7. Standard Graphs. Suppose I' is a circular planar graph with n boundary
nodes which is embedded in the plane so that the boundary nodes vq,...,v, occur in
clockwise order on a circle C' and the rest of I' is in the interior of C'. Assume the
medial graph M(T") is lensless. Then M(I') has n geodesics each of which intersects C
twice. The n geodesics intersect €' in 2n distinct points. These 2n points are labelled
t1,...,ta,, so that

< <tlg<lzg<v<...<tgp1 <V, <tg, <1y

in the circular order around C'. The geodesics are labelled as follows. Let g; be the
geodesic which begins at ¢;. The remaining geodesics are labelled g3, g3, ..., g, so
that if ¢+ < 7, then the first point of intersection of g; with ' occurs before the first
point of intersection of g; with C in the clockwise order starting from ¢;. For each
1= 1,2,...,2n, let z; be the number associated with the geodesic which intersects C'
at ;. In this way we obtain a sequence z = zy,z2g,..., 22, called the z-sequence for
M(T). Each of the numbers from 1 to n occurs in z exactly twice. If ¢ < j, and if the
occurrences of 7 and j appear in z in the order

we say that ¢ and j interlace in z; otherwise, we say that ¢ and j do not interlace in z.

Suppose z = z1,29,...,22, 1s a sequence which contains each of the the numbers
1,2,...,n twice. Assume that if ¢+ < 7, the first occurrence of ¢ comes before the first
occurrence of j. Associated with this sequence, there is a standard arrangement A(z),
of n pseudolines {g;} in the disc, constructed as follows. Place 2n points in clockwise
order around the circle C' and label them x4, ..., z, and yy, ..., y, as follows. The points
labelled x; and y; are to be placed at positions corresponding to the two occurrences of
¢ in the sequence zy, ..., z9,, with z; < y;. We join each z; to y; by a geodesic g;. If
¢ and 7 interlace in z, then g; will be made to intersect g;; the point of intersection is
denoted (1, j), with the convention that z(j,7) denotes the same point as z(1, 7).

First, join x; to y; by a pseudoline g;. After ¢1,..., ¢._1 have been placed within
C', the pseudoline g,, joining z,, to y,, is placed as follows. For each 1 < m — 1, if m
interlaces ¢ in z, place a point z(z,m) on g; closer to y; than any previously placed point
on g;. Now let g, join z,, to y, passing through the points x(i, m) which have just
been placed. The points y; which are between z,, and y,, occur in the same order on
C as the points z(i, m) occur on g,.
16



When all the pseudolines ¢, ..., g, are in place, the arrangement A(z) has sequence
z. The intersection points x(¢, 7) occur as follows. For each 1 < m — 1, the points z(i, 7)
which are on g; appear between x; and y; so that:

(1) If i < 5 < k, then (7, j) appears before z(i, k).
(2) If j <@ < k, then (7, j) appears before z(i, k).

3 If ] < k < Z then X I ] and X Z k a ear on g; in the same Order as ; and
J 3 yJ ) PP g Y
Yr appear in z.

Let {z1,..., 2, } U{y1,. .. uyn} = {t1,...,l2,} where t; < ... <y, in the clockwise
order around the circle C'. Place n boundary points vy,...,v, on C so that the points

< <lyg<lzg<vy<...<lgp1 <v, <y,

are in clockwise circular order on C'. Next color the regions formed by M(I'(z)) inside
C' in two colors, black and white, with each v; in a black region. To obtain the standard
graph I'(z), for which M(I'(z)) = A(z), we must assume that each of the black regions
contains at most one of the vertices v;. After a vertex has been placed in each black
region, they are joined by edges, with one edge passing through each of the points

(1,7)-

LEMMA 7.1. Let I' be a connected circular planar graph with n boundary nodes.
Assume M(T') is lensless. Let z = z1,zq,... 29, be the z-sequence associated with T,
and let T'(z) be the standard graph constructed above. Then I' is Y — A equivalent to
I'(2).

Proof. We make motions in M(T') to transform it to A(z). Geodesic g; intersects
the outer circle C' at two points z; and y;, with z; < y;. The points zy,z9,..., 2, and
Y1, Y2 - .., Y, occur in the order of z around C. If ¢ and j interlace in z, the geodesic
g;j intersects g;. Let z(1,j) = z(j,1) be the point of intersection of g; with g;, and let
S(7,7) be the sector formed by ;, x(¢,7) and x;. The location of the points z(z,7) is
changed by the motions of M(T').

Let k be the first index for which g; intersects a previous geodesic. Then g must
intersect gx_;. Consider the geodesics from the set {gg+1, grt2, - - - go} Which intersect g
between z(k — 1,k) and ;. Any such geodesic also intersects gz_1 between z(k — 1,k)
and z;_;. Lemma 6.2 implies that finite sequence of motions will remove gry1,..., 9,
from the sector S(k — 1,k). This process is repeated to remove all intersections of
k41, - -+, gn from the sectors S(i, k) for i =k —2,..., 1.

We perform a similar process at steps & + 1,...,n — 1. After step (m — 1), the
geodesics are in position so that if ¢+ < 5 < m, the geodesics ¢, gm+1, Grt1, - - - g have
no intersections within any of the sectors S(7,j). Note that for each 1 < i < m, if g,
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intersects g;, then for all 7 < m the point of intersection (i, m) is between (1, j) and
y; on g;. Also the set of points

{zm,x(m,1),...x(m,m —1),yn}

occur in the following order along ¢,,: if j < m and k < m, with j # k , then x(m,j)
and xz(m, k) appear in the same order along g,, as y; and y, appear in z.

For step(m), Lemma 6.2 implies that we can remove geodesics gm11, - . ., gn from the
sectors S(j,m) for 1 < j < m. These geodesics are removed from the sectors S(j,m)
in the same order in which the z(m,j) appear on g,,.

Continue until m = n — 1, when all intersections are as in A(z). O

THEOREM 7.2. Suppose I'y and 'y are two connected circular planar graphs, each
with n boundary nodes. Assume the medial graphs M(T'y) and M(T'y) are lensless.
Then Ty and T'y are Y — A equivalent if and only if M(I'y) and M(T'y) and have the

same zZ-Sequence.

Proof. A'Y — A transformation does not change the z-sequence. Conversely, if
M(Ty) and M(T'y) and have the same z-sequence, then I'; and I'y are each be Y — A
equivalent to the same standard graph I'(z). O

When the sequence z is 1,...,n,1,...n, the standard standard arrangement A(z)
is denoted A,, and the standard graph I'(z) is denoted ¥,.. In A, every pseudoline g;
intersects every other pseudoline, and there are tn(n — 1) points of intersection z(i, j).
For each 1 < < n, the points

i, 1), 2(0,2), . .x(i, e — 1), x(i, e+ 1), . x(e,n), y
occur in order along g;.

The standard graph ¥, has %n(n — 1) edges. The graphs ¥g and Y7 are shown in
Fig 3.

U4
®

U3 V4 U3 Us

U2 Us U2 Vg

0 Ve 0 U7

Y6 Y7
Fig 3
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Asin [1], a circular planar graph is called well-connected if every circular pair (P; Q)

is connected through I'.

PROPOSITION 7.3. For each integer n > 3, the graph ¥, is critical and well-
connected.
Proof. The proof is left to the reader. O

COROLLARY 7.4. Let n = 4m + 3, and let C(m,4m + 3) be the circular graph
of [7]. Suppose that I is a circular planar graph with n boundary nodes, Assume that
M(T) is lensless and has z-sequence 1,...,n, 1,...,n. Then ' is Y — A equivalent to
C(m,4m + 3). In particular, ¥, and C(m,4m +3) are Y — A equivalent.

Proof. The medial graph M(C(m,4m + 3)) is lensless. The z-sequence is 1, ...
1,....n. By Lemma 7.2, I" and C'(m,4m + 3) are Y — A equivalent. O

8. Adjoining edges. Let (I',y) be a circular planar resistor network with n
boundary nodes vy,...v,. We will describe three ways to adjoin an edge to I', and
the effect of each on the matrix A(I',~v). In this section, A(T") stands for A(T',v), with

the conductivity + implicit from the context.

(1) Let p and ¢ be two adjacent boundary nodes. For convenience of notation, we
make a cyclic re-labelling of the boundary nodes, so that p = vy and ¢ = vy. We add an
edge pq so that the new graph is still be a circular planar graph with n boundary nodes.
We call this process adjoining a boundary edge. If a boundary edge pq is adjoined to

I', with y(pq) = &, the resulting resistor network is denoted T¢(I).

Suppose M = {m;;} is an n X n matrix, and ¢ is a real number. We define a new
matrix Te(M) as follows.

11 = mi1+¢€
22 = Mmaa+E
1,2 = M1 — 5
21 = Mo — 5
Te(M);,; = m;; otherwise
Clearly, T_¢ o T; = identity. From the definition of the Kirchhofl matrix, we have

K(Te(1)) = Te(K(T))
From Theorem 3.2, it follows that

A(Te(T)) = Te(A(T))

A(T) = T¢(A(Te(T))

Suppose given (I',v) and £&. Then A(T') uniquely determines A(T¢(I')). Also, A(T¢(T))
uniquely determines A(T").
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(2) Let p be a boundary node. By a cyclic re-labelling of the boundary nodes,
assume that p = vy. We place a new vertex vy on the boundary circle C', between v,, and
vy, and adjoin a new edge vov; to I'. The new graph is a circular planar graph with n+1
boundary nodes. We call this process adjoining a boundary spike without interiorizing.

If a boundary spike vov; is adjoined to I', without interiorizing the vertex vy, and with
v(vov1) = &, the resulting resistor network is denoted Pg(T").

Suppose M = {m;;} is an n x n matrix, written in block form:

. miy1 a
=
If ¢ a real number, let P:(M) be the (n 4+ 1) x (n + 1) matrix, with indices 0 <7 <n
and 0 < j < m,

4 —£ 0
P(M) =] = mii+§& a
0 b C

Then by Theorem 3.2,
A(Pe(T) = Pe(A(T))

Suppose given (I',v) and £&. Then A(I') uniquely determines A(P¢(T')). Also, A(Pe(T))
uniquely determines A(T").

(3) Let p be a boundary node. By a cyclic re-labelling of the boundary nodes, as-
sume that p = v;. We adjoin a boundary spike rv; to I', then declare vy to be an interior
node, and renumber so that r is the first boundary node. The new graph is a circular
planar graph with n boundary nodes. We call this process adjoining a boundary spike.

If a boundary spike rv; is adjoined to I', with v(rvy) = £, the resulting resistor network

is denoted S¢(T').

Suppose M = {m;;} is an n x n matrix, written in block form:

. miy1 a
i

For any real number £, the (n+1) x (n+ 1) matrix P¢(M) has been defined in (2). The
indexing is 0 < < nand 0 < 7 <n. If the (1,1) entry § = my1 + £ is not 0, we take
the Schur complement of P:(M) with respect to this entry, to obtain

f_ﬁ af
Se(M) = Peflmas + €] = [ L5, ]
) C )

A calculation shows that S_g o S¢ = identity. From the definition of the Kirchhoff
matrix in §3,

K(Se(I) = K(F(T))
20



Thus A(Se(I')) is the Schur complement of P¢(K(I')) with respect to the block corre-
sponding to I U {v;}. From Theorem 3.2 and Lemma 3.4, it follows that

A(Se(I)) = Se(A(I)
A(T) = S-¢(A(S¢(T))

Suppose given (I',v) and the positive real number £&. Then A(T') uniquely determines
A(Se(T'). Also A(S¢(T")) uniquely determines A(I").

REMARK 8.1 We have adjoined the boundary edge at vyvy for convenience of no-
tation. The construction 7¢(I') may be made at any pair of boundary nodes p and ¢
which are adjacent in the circular order. The construction T¢(M) may be made at any
pair of indices of which are adjacent in the circular order. Similarly the constructions
Pe(T') or S¢(I') may be made at any boundary node, and P¢(M) or S¢(M) may be made
at any index. In each case, the location of the nodes (or indices) where the construction
is to be made will be clear from the context.

9. Recovering Conductivities.

LEMMA 9.1. Suppose I' is a circular planar graph with n boundary nodes for which
the medial graph M(T') is lensless. Assume that the z-sequence for the medial graph
M(T) is not the sequence 1,2,...,n,1,2,...,n. Then either

b ]

(1) There is a boundary node where a boundary spike may be adjoined to T', so that
after the adjunction, the resulting graph 1" is lensless.

or (2) There is a pair of consecutive boundary nodes where a boundary edge may be
adjoined, so that after the adjunction, the resulling graph I is lensless.

Proof. Let t be a number in the sequence such that two repetitions of ¢ are closest
in the circular order around C'. By a cyclic relabelling, we may assume that { = 1, so
that the z-sequence for M(T') is

z=12....om, 1, 2pn40,..., 22,

with m < n. Let h be the first index for which zj; is not in the set {1,2,...,m}.
Then zj_1 and z; are a pair of numbers which do not interlace in z (see §7). The
corresponding geodesics in M(I') do not cross. We now make the single alteration in
M(T') so that these two geodesics do cross, and the new z-sequence is

1,200 ,my 1 Zmg0, ooy Zhy Bty e v -5 220

The new medial graph is lensless. This change in the medial graph corresponds to
adjoining either a boundary edge or a boundary spike to I'. 0O

LEMMA 9.2. Suppose I' is a circular planar graph with n boundary nodes for which
the medial graph M(1') is lensless. There is a sequence of circular planar graphs I' = T'g,
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I'y, [y, ..., I'y, where each U';y;1 is obtained from I'; by adjoining a boundary edge or a
boundary spike, and where I'y is Y — A equivalent to the standard graph X,,.

Proof. We adjoin boundary edges or boundary spikes until the z-sequence for the
medial graph M(I'y)is 1,2,...,n,1,2,...,n. By Corollary 7.4, I'y is Y — A equivalent
to X,,. O

Proof. of Theorem 2. By taking connected components, we need only consider the
case when I' is connected. First let (I',v) be a resistor network whose underlying graph
is the graph C'(m,4m + 3) of [7]. In Theorem 5.2 of [7] we showed that for this graph,
the conductivity v may be recovered from A,. By Corollary 5.4, any resistor network
whose underlying graph is Y — A equivalent to C'(m,4m + 3) is also recoverable. In
particular, any conductivity on ¥y4,,,3 is recoverable.

Next suppose (I',7v) is any connected critical circular planar resistor network with
n boundary nodes. If n is not of the form 4m + 3, first adjoin 1, 2, or 3 boundary
spikes without interiorizing as in §8, to obtain a resistor network which does have
4m + 3 boundary nodes. Combining this with Lemma 9.2, we obtain a sequence of
circular planar resistor networks I' = T'y, I'y, 'y, ..., 'y, where I'y i1s a graph with
4m 4+ 3 boundary nodes, which is ¥ — A equivalent to ¥4,,43. Each I';4; is obtained
from I'; by adjoining a boundary edge, or adjoining a boundary spike (with or without
interiorizing). The resistor network I'; is recoverable, and hence each of the resistor
networks I'; for & > 1 > 0 is also recoverable. In particular, the resistor network I' = I'y
is recoverable. [

10. Totally Non-negative Matrices. We continue the notations of §1 and §2.
Specifically, let A = {a;;} be a matrix. If P = (p1,...,px) is an ordered subset of the
rows, and @ = (q1,...,¢n) is an ordered subset of the columns, then A(P;Q) is the
k x m sub-matrix of A with

A(P§ Q)i,j = Up;,q;

A[P; @] is the matrix obtained by deleting the rows for which the index is in P, and
deleting the columns for which the index is in Q. The empty set is ¢. Thus A[¢; 1]
refers to the matrix A with the first column deleted.

Following [9], a rectangular matrix A is called totally non-negative (abbreviation:
TNN) if every square minor has determinant > 0. The following facts about TNN
matrices will be needed in §11 and §12.

LEMMA 10.1. Suppose A = {a;;} is an m x m matriz which is TNN and non-
singular. Then any principal minor is non-singular.

Proof. Induction on m. For m = 1, there is nothing to prove. Let m > 1. The entry

ay must be > 0, else either the first row or the first column of A would be entirely 0,

contradicting the assumption that A is non-singular. By the determinantal formula for
22



Schur complements, the Schur complement A/[a 1] is non-singular and TNN. Similarly
Amm > 0, A/[@m,m] is non-singular and TNN. By the inductive assumption, every
principal minor of A/[a; ;] is non-singular. Let A(P; P) be a principal minor of A,
where P = (p1,...,px) is an ordered subset of the index set (1,2,...,m). If 1 €
P, A(P; P)/la1,] is a principal minor of A/[a;,] and hence is non-singular. Thus
det A(P; P) # 0, so A(P;P) is non-singular. Similarly if m € P, A(P;P) is non-
singular. Otherwise, P contains neither 1 nor m,and k < m—2. Let Q = (1,p1,...,pm).
The k+ 1 x k4 1 matrix A(Q; @) is TNN and non-singular. A(P; P) is a principal

minor of A(Q;Q), so is non-singular by induction. 0O

LEMMA 10.2. Suppose that A = {a;;} is an m x m matriz, and suppose that
as1 < 0 for some index s with 1 < s < m. Assume also that

(i) Alé;1] is TNN.
(it) A(s+1,...,m;1,...,m) is TNN.
(i) A(l,...,s—1;2,...,m,1) is TNN.

Then
(1) (=1)°det A > 0.

(2) If it is further assumed that det A[s; 1] > 0, then (—1)*det A > 0.

Proof. Induction on m. The assertion of (1) for m = 2 is immediate. For m > 2,
first consider the case s = 1, with a1, < 0. If all the cofactors of the entries in the
first column are 0, then det A = 0. If the only non-zero cofactor of an entry in the first
column is A[l; 1], then

det A=ay;-det A[l;1] <0

Otherwise, suppose det A[t;1] > 0 with ¢ > 1. A[l1,¢;1,2] is a principal minor of A[t;1]
which is assumed to be TNN; so det A[1,¢;1,2] > 0 by Lemma 10.1. Dodgson’s identity
(Lemma 2.1) gives

(1) det A -det A[1,¢;1,2] = det A[1;1] - det A[¢; 2] — det A[1;2] - det At; 1]

det A[1;2] and det A[t; 1] are non-negative by assumption (ii). By the inductive assump-
tion det A[t;2] < 0. Hence det A < 0.

The case s = m is similar, by considering the matrix A(1,...,m;2,...,m,1). The
only negative entry is in the last column. Assumption (iii) is used in place of (ii).

This leaves the case when 1 < s < m. If the only non-zero cofactor of an entry in
the first column is A[s; 1], then

det A = (—1)"*! . a,; - det A[s;1]
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If another cofactor is non-zero, WLOG, assume det A[t;1] > 0 with 1 < s < t < m.
Then A[l,¢;1,2] is a principal minor of A[t; 1], so det A[1,¢;1,2] > 0 by Lemma 10.1.
Dodgson’s identity (Lemma 2.1) gives

det A -det A[1,¢;1,2] = det A[1;1] - det A[¢; 2] — det A[1;2] - det A[t; 1]

The factors det A[1; 1] and det A[¢; 1] are non-negative. By the inductive assumption,
(—1)*det A[¢;2] > 0 and (—1)*"'det A[1;2] > 0. In every case, (—1)* det A > 0.

The proof of (2) is also by induction on m. For m = 2, the assertion is immediate.
Let m > 2. If the only non-zero cofactor of an entry in the first column is A[s; 1], then

(=1)°det A = —asq -det A[s;1] >0

If more than one cofactor is non-zero, WLOG, assume det A[s; 1] > 0 and det A[¢;1] > 0
with 1 < s <t < m. Then det A[l,s;1,2] > 0 and det A[1,¢;1,2] > 0 by Lemma 10.1.
By the inductive assumption, (—1)*~!det A[1;2] > 0, and equation (1) shows that
(=1)*det A>0. O

LEMMA 10.3. Suppose A is a k+ 1 X k matriz which ts TNN. Suppose that for
some pair of integers s and t with 1 < s <t <k+1,

(i) det A[s;¢] =0
(i) det A[t; ¢] # 0
Then the rank of A(s+1,...,k+1;1,...,k) is <k —s.

Proof. For each 1 =1,...,k+ 1, let R; be the i-th row of A, considered as a vector
in R*¥. Assumption (ii) implies that {R;,..., R, ... Rpy1} form a basis for RF. Hence,

Rt = Z :L‘ZRZ
1#£t

In this sum, z; = 0, else {Ry, ..., BA’,S, ... Ry} would also be a basis for R, contra-
dicting assumption (i). Then

det A[1;¢] = (=1)" - 21 - det A[t;¢] > 0

Hence (—1)"z1 > 0, because det A[t; @] > 0. A[s, ;] is a principal minor of A[t; @], so
det Als,1;s] > 0 by Lemma 10.1. Then

det A[1,s;8] = (—1)""" - zy - det A[s, ;5] > 0
Hence (—1)""'zy > 0, Thus z; = 0. Similarly, zo =0, ..., z;_y = 0. Thus
Rt = Z :L’ZRZ
1>S
i1 £
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This implies rank A(s+1,...,k+1;1,...,k) <k —s. 0O

Notation. Let P = (p1,p2,...,pr) be a sequence of distinct indices. If p € P, then
P — p denotes the sequence obtained by deleting the index p from P. If p ¢ P, then
p + P denotes the sequence (p,p1,---,pr). Also u(P;Q) stands for det M(P;Q), and
W' (P; Q) stands for det M'(P; Q).

Recall the definition of the set €, from §1. With our conventions, this means that
if M € Q, and (P;Q) is a circular pair of indices, then the matrix —M(P; @) is TNN.

LEMMA 10.4. Let M € Q,, and suppose thal myy, is a non-zero diagonal entry.
Then the Schur complement M' = M /[my 4] is in Q,_;.

Proof. If (1,...,n) isthe indexing set for M, it is convenient to regard the deleted
set (1,... h, ... ,n) as the indexing set for M'. Let (P;Q) = (p1,---,Pkiq1,-- -, Qk)
be a circular pair of indices for M'. Then h ¢ P U Q. By interchanging P and @ if
necessary, and by a cyclic re-labelling of the indices, we may assume that 1 < h < ¢; in
the circular order. Let B = (by,...,bgy1), be the set P Uk with the circular ordering,
where by = h with 1 <s<k+1. Thus 1 <by <...bgy1 < qr < ...q < n. The matrix

A=—-M(B;bs+ Q)
satisfies the conditions of Lemma 10.2. Hence (—1)*det A > 0, so
(1) (B b, + Q) > 0

Taking the Schur complement with respect to the entry my, which is in the (s, 1)
position of M(B;b, + Q), we find that (—1)*/(P;Q) > 0. O

REMARK 10.5. If (=1)*u(P;Q) > 0, then part (2) of Lemma 10.2 shows that
(=1)*H1+* 4 (B; b, + Q) > 0. Therefore (—1)5u/'(P; Q) > 0.

LEMMA 10.6. Suppose M € Q,,. Let B = (by,...,bgy1), and and Q = (qu,...qx)
be two sequences of indices, with with 1 < by < ... < by < bpy1 < qp < ... < q1 < n.
Suppose for some pair of indices (s,t) with 1 < s <t < k+1, that u(B —bs5;Q) =0
and (B —b;Q) # 0. Let By = (bsg1,...,bk41), and Let Qo = (qst1,...,qx). Then
(Bo ~ b Qo) £ 0, and

pn(Bsbs + Q) = (—1) 1(Bo — bi; Qo)

Proof. For 0 <r <s, let

Br - (bl, ce 7brybs+17 ce ,bk+1)
QT = (q17' <o Qrs Qs - - 7qk)
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Then u(B, — b;Q,) # 0 because M (B, — bs; Q) is a principal minor of M (B — b:; Q).
Dodgson’s identity (Lemma 2.1) gives

:LL(BT-H; bs + QT—I-I) ) :LL(B — by QT) =
,M(Br; Qr+1) . ,u(B - bta bs + QT) - ,M(Br+1 - bl‘a QT) ' ILL(BT’7 bs + Qr)
(B Qry1) = 0 by Lemma 10.3, so the first term on the RHS is 0, and

,M(Br—}-l; b.s —I' Qr—}-l) _ _,M(Bra bs —I' Qr)
((Bryr — be; Q1) p(Br — by Q)

Repeated use of this identity gives the result. O

LEMMA 10.7. Suppose M € Q,, p and q are adjacent indices, and £ > 0. Let
Te(M) be the matriz constructed in §8 (see also Remark 8.1). Then Te(M) € Q,,.

Proof. The circular determinants in M’ = T¢(M) are equal to the circular de-
terminants in M except for the ones which correspond to circular pairs (P;Q) =
(p1y- oy PE; Gy - - qr) Where p = pp and ¢ = g, or p = p; and ¢ = ¢;. Each of these
determinants has the form

C a
"(P; = det
I ( 7@) € b d—¢

C a
= detlb d]—fdet(C)

= W(P;Q)—E&u(P —p;Q —q)

(2) (1) (P;Q) = (1) u(P; Q) — E(—1)* 'u(P —p;Q —q) 2 0

U

REMARK 10.8. If either (—1)*u(P;Q) > 0 or (=1)* (P — p;Q — q) > 0, then
(—=1)*u'(P; Q) > 0; otherwise p/(P; Q) = 0. Thus the signs of the circular determinants
in M’ are determined by the signs of the circular determinants in M.

LEMMA 10.9. Suppose M € Q,,, and £ > 0. Let P:(M) be the matriz constructed
in §8. Then Pe(M) € Q,41.

Proof. Let M' = P:(M), and let (P;Q) = (p1,...,pk;q1,--.,qx) be a circular pair
of indices from the set (0,1,...,n).

(1) If0 ¢ PUQ, then p'(P;Q) = pu(P; Q).

(2) If0 € Pand 1 ¢ Q, then ¢/(P;Q) = 0.
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(3)If0€ Pand 1 € Q, then 0 = pg, | = qx, and p/(P; Q) = —Ep(P — pr; Q — ).
(4) The situation is similar if 0 € Q. O

LEMMA 10.10. Suppose M € Q,,, and € > 0. Let S¢(M) be the matriz constructed
in §8. Then S¢(M) € Q.

Proof. Let (P;Q) = (p1,---,Pk;q1,---,q) be a circular pair of indices. Let p be
the index where the adjunction is made (see Remark 8.1). By interchanging P and @ if
necessary, and by a circular re-labelling of the indices, we may assume that 1 < p < gy
in the circular order. Let M’ = Sg(M).

(1) If p € P, then the formula for S¢(M), shows that

{(P;Q) = ( )N(P;Q)

£+ myp,
(2) Suppose that p ¢ P and (—1)*u(P;Q) > 0. Then (—1)*S¢(M)(P;Q) > 0, by
Remark 10.5.

(3) Suppose that p ¢ P, u(P;Q) =0, and (P —p; + p; Q) =0, for all 1 < j < k.
Then the proof of Lemma 10.2 shows that x/(P; Q) = 0.

(4) Finally, suppose that p ¢ P, that u(P;Q) = 0, and that u(P — p; + p; Q) # 0
for some 7 with 1 < 5 < k. Let B = (b1,...,brt1) be the set P U p with the circular
ordering. That is, p = b, for some s, and p; = b for some ¢, and WLOG, may assume
s < t. Pe(M)(B,bs + Q) and M(B,bs + Q) differ only at the (s,1) position, and the
cofactor of that entry is u(P; @), assumed to be 0. Therefore,

det P:(M)(B;b, + Q) = u(B;bs + Q)

Recall that Se¢(M) is the Schur complement of P:(M) with respect to the entry m,, ,+¢,
which is in the (s, 1) position of P:(M)(B;bs + Q). Then

(=1 (mpp + &) - p/(P:Q) = det Pe(M)(B;b, + Q)

= pu(B;bs+ Q)

_ (_1)5M(B — by; Q) ) M(Bo; by + QO)
1(Bo — by; Qo)

The last equality uses Lemma 10.6. Thus (—1)*M’(P; Q) > 0 and if u(Bo; bs + Qo) # 0,
then (=1)*M'(P;Q) > 0. O

REMARK 10.11. (1) and (2) show that if (=1)*u(P;Q) > 0, then (—1)*u/'(P; Q) >
0. Together with (3) and (4), this shows that the signs of the circular determinants in
M’ are determined by the signs of the circular determinants in M.

LEMMA 10.12. Let I' be a circular planar graph with n boundary nodes.
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(1) Suppose a boundary edge pq is adjoined to I', as in §8. Let I" = T¢(I') and
' =na(I"). If M € Q(m), then T;(M) € Q(n').

(2) Suppose a boundary spike rp is adjoined to I' at node p, without interiorizing
as in §8. Let I = Pe(l') and n" = n(I"). If M € Q(m), then P:(M) € Q(n').

(3) Suppose p is a boundary node of I', and a boundary spike rp is adjoined with
p then declared interior, as in §8. Let I" = S¢(T') and n' = =n(1"). If M € Q(r), then
Se(M) € Q(n").

Proof. The three processes are similar, so for definiteness, suppose that the op-
eration is S¢. Let 4 be an arbitrary conductivity on I'. By §8, statement (1) is true
if M = A(T',5). Next, suppose M is any matrix in Q(7), and let M’ = S¢(M). By
Remark 10.11, the signs of the circular determinants in M’ are determined by the signs
of the circular determinants in M. Hence they have the same signs as the circular

determinants in S¢(A(I',v)). Since Se(A(l',7)) € Q(n’), we have M’ € Q(n’) also. O

11. Removing edges. Suppose that I" is a circular planar graph with n boundary
nodes. Recall from §1, that there are two ways to remove an edge from I' called deletion
and contraction. In either case the new graph will be a circular planar graph with n
boundary nodes.

LEMMA 11.1. Suppose I' is a critical circular planar graph and pq is a boundary
edge. Let I'y be the graph obtained after deletion of pq. Then I'y is also critical.

Proof. Let e # pg be an edge in I'. Since I' is critical, removal of e will break some
connection in I'. If this connection also exists in I';, then removal of e from I'; breaks
this connection in I'y. Suppose that removal of e from I' breaks a connection (P; Q)
that is not present in I'y. This connection must use the edge pq, so (P; Q) has the form
(P;Q)= (p1,--yPr;q1,s---,qx), where p, = p and g, = ¢q. Thus removal of e breaks the
connection of (P'; Q') = (p1,...,pr—1;q1,- -, qr—1) in I';. O

LEMMA 11.2. Suppose I is a critical circular planar graph with a boundary spike
rp where r is a boundary node of I'. Let Iy be the graph obtained after contracting rp
to p. Then I'y is also critical.

Proof. Let e be an edge in I' with e # pr. Let I be the graph with e removed,
either by deletion or contraction. Similarly, let I'} be the graph I'; with e removed. Let
~ be a conductivity on I'; and by restriction v gives a conductivity on I'y, IV and I'}. Let
(P; Q) be a pair of sequences of boundary nodes. Then A(P;Q), N(P;Q), A (P; Q) and
A (P; Q) will denote the subdeterminants of A(I'), A(1”), A(I'y) and A(I"}) respectively.

Suppose that removal of e breaks a connection in I' that persists in I'y. Then
removal of e from I'y breaks the same connection in I';.
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Suppose removal of e from I' breaks a connection (P;Q) = (p1,.. ., Pk;q1s - k)
in I' which does not persist in I'y. Then r ¢ PU Q. WLOG, assume that ¢; < p < ¢
in the circular order around I'y. Let B = (by,...,bx11) be the set P U p with the
circular ordering around the boundary of I'y, and suppose p = b,. The assumptions
that A(P; Q) # 0 and A\ (P; @) = 0 imply that each connection from @ to P through
I' must use p = bs. Such a connection either connects ¢,_; to bs_; through b or
connects g5 to bsyy through bs. WLOG, assume the latter. Let By = (bst1,...,bgs1),
and Qo = (¢s41,---,qx). Hence A\j(B — byy1;Q) # 0 and A (By; b, + Qo) # 0. Both
(B — bsy1; Q) and (Bo; bs + Qo) are circular pairs. Suppose removal of e from I'; does
not break either connection. Then X (B — byy1;Q) # 0 and X (Bo; bs + Qo) # 0. We
have assumed A (P;Q) = 0; that is A\ (B — bs; Q) = 0. Hence X\{(B — bs; Q) = 0. By
Lemma 10.6, with ¢t = s + 1,

N(p+Pip+Q) = (=1)°"N(B;b: 4+ Q)

_)\’1(3 — boy1; Q)N (Bo; bs + Qo)
/\ll(BO - bs-}-l; QO)

£ 0

Let £ = y(pr). Then A’ is the Schur complement of P:(A}) with respect to the entry
ANi(p,p)+¢&. Part (4) of the proof of Lemma 10.10 shows that X'(P; @) # 0. This would

contradict the assumption that removal of e from I' breaks the connection (P; Q). O

LEMMA 11.3. Suppose I' is a non-trivial circular planar graph for which M(I') is
lensless. Then 1" has either a boundary edge or a boundary spike.

Proof. Refer to §7 for the notation. Let ¢ be a number in the z-sequence for M(I')
such that there are no repetitions of any other number between two occurrences of .
WLOG, assume that t = 1, so that a portion of the z-sequence is

1,2...,m, 1, 249, ...

Let h be the portion of the outer circle C' for I' which lies between z; and y;. Then A
contains the points z,...z,,. Consider h, g; and the family {gs,...¢x»}. The proof of
Lemma 6.2 shows that there is a triangle 7' formed by h and two of the geodesics from
the set {g1, ...gm}. The triangle T in M(I') corresponds in I' either to a boundary
spike (if there is a vertex of I' inside T'), or to a boundary to boundary edge (if there is
no vertex of I' inside 7). O

Lemmas 11.3, 11.1 and 11.2, together with Corollaries 4.3 and 4.4 show that there
is an algorithm for calculating the conductivity of any critical circular planar graph.

12. Surjectivity.

THEOREM 12.1. Suppose I' is a critical circular planar graph with n boundary
nodes and m = n(I'). Let M be any matriz in Q(n). Then there is a conductivity v on
I' with A(T',v) = M.
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Proof. of Theorem 12.1. We first consider the case where n = 4m + 3 and the
z-sequence for the medial graph M(T') is 1,...,n,1,...,n. Corollary 7.4 shows that
I'is Y — A equivalent to the graph C(m,n) of [7]. By Theorem 6.2 of [7] there is
a conductivity v" on C(m,n) with A(C(m,n),4") = M. By Lemma 5.3, there is a
conductivity v on I with A(T',v) = M.

Next suppose (I',7) is any connected critical circular planar resistor network with
n boundary nodes. If n is not of the form 4m + 3, first adjoin 1, 2, or 3 boundary spikes
without interiorizing as in §8, to obtain a resistor network which does have 4m + 3
boundary nodes. Combining this with Lemma 9.2, we obtain a sequence of circular
planar resistor networks I' = T'g, 'y, Iy, ..., I'x, where I'y is a graph with 4m + 3
boundary nodes, and which is Y — A equivalent to 4,,43. Each I';11 is obtained from
I'; by one of the operations T, P or S§. For each i = 0,1,...,k, let m; = x(I';). Given
a matrix M in Q(m), there is an analogous sequence of matrices M = My, My, ..., Mg,
where each matrix M, is obtained from M; by one of the operations M,y = T¢(M,),
Mi-}—l = Pg(MZ) or Mi—i—l = Sg(MZ)

Let o, denote the set of connections in a well-connected circular planar graph with
n boundary nodes. By Lemma 5.1 and Proposition 7.3, 7(X,) = 0,. By Lemma 10.12,
My, € Q(o,). Using the first part of the proof, there is a conductivity v on I'y so that
A(Tx,v%) = My. The graph I'y is obtained from I'y_; by one of the operations 7, P or
S. The processes are similar, so for definiteness, suppose that the operation is S¢ and

Mk = Sg(Mk_l).

In going from 'y to I'y_;, removal of the spike breaks a connection in I'y. By
Lemma 4.4, the value of this spike can be calculated as the ratio of two non-zero sub-
determinants of A(I'y) = Mj. Moreover, the computed value is the same as the value ¢
that was used to construct My from Mj;_;. By §11, removal of the spike with conduc-
tivity & from TI'y, results in a critical graph T'y_1, with A(T'x—;) = Mj_;. Continuing the
argument on I'y_q, ..., I'o = T', we find that A(T') =M. O

Proof. of Theorem 4. As in the proof of Theorem 12.1, there is a sequence of the
operations 7, P, and § which, when applied to the graph I'; give a graph I';, which is
Y — A equivalent to the graph C'(m,4m + 3) of [7]. Let U be the composite of these
operations, and let U be the composite of the corresponding operations 7', P and S
applied to the matrix A(I',v). With an ordering of the N edges in I', the conductivity
7 is represented by a point in (R*)YN. Similarly, with an ordering of the N; edges in T,
the conductivity 73 is represented by a point in (R*)N+. Let 7 = 7(T) and 7, = 7(T'%).
With these conventions, there is a commutative diagram:
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(R*)Y ()N
A Ay
U
Q) Q)
Fic 4

By Theorem 12.1, the map A is surjective. By Theorems 4.2 and 5.2 of [7], the map Ay
is a diffeomorphism. For the differentials, we have

dAp odU = dU o dA
Since d\; and dif are 1-1, dA is 1-1. By Theorem 2, A is 1-1. &~! is the inverse of U

which is well-defined and continuous on its image in (R¥)™. Then
ANt =UT oA U
Thus A~! is continuous. It follows that A is a diffeomorphism of (R*)Y onto Q(7). O

LEMMA 12.2. Suppose M € Q,,, with at least one circular determinant equal to 0.
Let € > 0 be given. Then there is a matric M' € Q,,, with |M' — M||» < €, and

(1) 1(P:Q) 0 whenever (P Q) # 0
(2) For at least one circular pair (P;Q), u(P;Q) =0 and '(P; Q) # 0.

Proof. Asin §10, u(P; Q) stands for det M (P; @) and p'( P; Q) stands for det M'(P; Q).
Let (P;Q) = (p1,---,pk;q1,---,qk) be a circular pair of indices for which the minor
M (P; Q) has determinant 0, has minimum order k, and for which ¢z — py is a minimum.

(1) If gx — pr. = 1, let M" = Te¢(M), where the chosen indices are py and ¢x. By
Remark 10.8, ¢/(P;Q) # 0. Also by Remark 10.8, p/(R;S) # 0 whenever (R;S) is a
circular pair for which p(R;S) # 0. If £ is sufficiently small, then |[M' — M| < €.

(2) If g —pr. > 1, 1let p=pr + 1 and M’ = S¢(M) where the chosen index is p. By
Remark 10.11, p/'(R; S) # 0 whenever (R;S) is a circular pair for which p(R;S) # 0.
Dodgson’s identity (Lemma 2.1) gives

P +p;Q+p) - p(P —p; Q —qi) =
P =pe+p;Q—ar+p) - p(PQ) — (P = pr +p;Q) - (P Q — g + p)
Using the assumption u(P; Q) = 0, we have

(P —pr+p;Q) - p(P;Q — qr + p)
(P —pr;Q — qr)
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Each of the factors on the RHS of (3) is non-zero because of the assumption of the
minimality of (P;Q). Therefore p/'(P;Q) # 0. If £ is taken sufficiently large, then
IM'— M| <€ O

Proof. of Theorem 3. Recall from §7 the graph ¥, = (V, Vg, F), with n boundary
nodes, and let o0 = w(X¥,). Since ¥, is well-connected, Q(o) is the subset of €,
consisting of those M which satisfy (—1)*det M(P;Q) > 0 for each k x k circular

subdeterminant of M.

Lemma 12.2 implies that €, is the closure of Q(¢) in the space of n x n matrices.
Thus for any M € Q,,, there is a sequence of matrices M; € Q(c) which converge to
M. Theorem 4 shows that for each integer 1, there is a conductivity v; on ¥, with
M, = A(X,,7). By taking a subsequence if necessary, we may assume for each edge
e € F that lim,;_ vi(e) is either 0, a finite non-zero value or oo.

Let Fy be the subset of £ for which lim v;(e) = 0.

11— 00

Let Fi be the subset of E for which lim v;(e) = y(e) is a finite non-zero value.

(mde el

Let E., be the subset of I for which zliglo vi(€e) = oo.

Let I' = (W, Vg, E1) be the graph obtained from ¥, = (V, Vg, F) by deleting the
edges of Fy and contracting each edge of F., to a point. The vertex set W for I' is the
set of equivalence classes of vertices in V', where p ~ ¢ if pg € F.,. Note that distinct
boundary nodes of Vg cannot belong to the same equivalence class, because the M;
are bounded. Thus we may consider Vg as a subset of W. Each edge e € F; joins a
pair of points of W, so the edgeset of I is £;. The restrictions of 7; and v to F; give
conductivities on I'. We shall show that M = A(T", v).

Suppose f is a function defined on the set of boundary nodes Vg of I'. Let

Q(f) =inf 3 y(e)(Aw(e))”

EEEl

where Aw(pq) = w(p) —w(q), and the infimum is taken over all functions w defined on
the nodes of I' which agree with f on Vg. This infimum is attained when w = u is the
potential function on the resistor network (I',v), with boundary values f. Similarly, for
each integer 1, let

Qi(f) =inf _ ~i(e)(Aw(e))®

e€E1

This infimum is attained when w = w; is the potential function on (I', ;) with boundary
values f. Then lim; ., u; = u, because the 7; and v are conductivities (non-zero, and

finite) on I'; with lim;e v; = . Therefore Q(f) = lim;40 Q:(f)
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For each integer i, let
Si(f) = inf Y yi(e)(Aw(e))?
ecl

where the infimum is taken over all functions w defined on the nodes of ¥,, which agree
with f on Vg. This infimum is attained when w = w; is the potential function on the
resistor network (¥,,,v;), with boundary values f. The maximum principle implies that
| wi(p) | < max | f(p) |. By taking a subsequence if necessary, we may assume that
for each node p, w;(p) converges to a finite value w(p). The assumption that the M,
converge to M guarantees that for each function f, the S;(f) are bounded. Thus for
each edge e = pq € E., we have w(p) = w(q). Let

= Y vile)(Awi(e))?

eEEl

and

R(f) = lim Ri(f) = }_ ~(e)(Aw(e))”

1—00 =y

Let F be the set of functions v = {v(p)} defined for all nodes of ¥,, which which agree
with f on Vp, and for which v(p) = v(q) whenever pg € F,. Let

P(f) = mf Z% 2

eEE

We have

P(f) = Si(f) = Ri(f)

and

N+ 3 o) Aude)? = P(f) > Qif)

EEEO

The maximum principle implies that the | uw;(p) | are bounded by max | f(p) |. For
each edge e € Fy, we have lim;_,., v:(€¢) =0 , so

Q(f) = lim Qi(f) = lim Pi(f) > Tim R;(f) = R(f)

1—00 1—00 1—00

But R(f) > Q(f). s0 R(f) = Q(f). Thus
lim Si(f) = Q(f) = lim < ,Mi(f) > = < J.M(]) >

11— 00 i—00
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13. Equivalence.

LEMMA 13.1. Suppose that ' is a circular planar graph. Then 1" is critical if and
only if the medial graph M(T') is lensless.

Proof. Lemma 6.4, shows that if ' is critical, then M(T") is lensless. Conversely,
suppose M(T') is lensless. Let z = z123- - 23, be the z-sequence for M(T') as in §8. If
z=1,...,n,1,...,n, then I'is Y — A equivalent to the graph ¥, of §8, which is critical
and well-connected. Suppose that z is not the sequence 1,...,n,1,....n. By Lemma
9.2, there is a sequence of graphs I'g,I'y,..., 'y, where I'y = T', each I';;; is obtained
from I'; by adjoining a boundary edge or a boundary spike, and I'; is ¥ — A equivalent
to the standard graph ¥,. By Lemmas 5.2 and 7.3, Iy is critical. By Lemmas 11.1 and
11.2, each of the graphs I'y_1, 'y, ..., g is critical; in particular, I' = I'g is critical. O

LEMMA 13.2. A circular planar graph U is recoverable if and only if it is eritical.

Proof. By Theorem 2, if T" is critical, then I' is recoverable. Suppose that I' is not
critical. By Lemma 13.1, M(I') has a lens. By 6.3, I' is Y — A equivalent to a graph
I'" with two edges in parallel or two edges in series. 1" cannot be recoverable, so by
Lemma 5.4, I' is not recoverable either. 0O

Proof. of Theorem 1. Suppose that I'y and I'y; are two critical circular planar
graphs with 7(I'y) = 7(I'z). Let conductivities be put on both I'; and I';. By Lemma
9.2, and Lemma 13.1, there is a sequence of critical graphs I'y = Fy, Fi,..., I}, each
Fi+1 is obtained from F; by adjoining a boundary edge or a boundary spike, and £} is
Y — A equivalent to ¥,,. We perform the same operations on I'y; to produce a sequence
I'y = Ho, Hy,..., Hy. For each i, let m; = w(F;). We apply the results of §8 and §12
to conclude that A(H;) € Q(m). Hence n(H;) = w(Fi). Continuing, we see that
n(H;) = n(F;) fori =1,2,...,k. Each F;1; has more connections than Fj, so each H, 44
has more connections than H;. By Corollaries 4.3 and 4.4, the edge adjoined to H; is
recoverable. Working back from Hj; to Hy which is critical and hence recoverable, we
find that each Hj is recoverable, and hence critical.

Suppose the z-sequence for Hy were not 1,...,n,1,...,n. Then a boundary edge
or boundary spike could be adjoined to Hj to give another graph Hjy,y with more
connections than Hy. But n(Hy) = m(Fy) which is the maximal set of connections
for circular planar graphs with n boundary nodes, so the z-sequence for M(H}) is
1,...n,1,...n.

The process of going from Fj to Fy = I'y by removing edges is the same as going
from Hy to Hy = I';. Each step of this process preserves equality of the z-sequences
of the medial graphs M(F;) and M(H;). Thus M(I'y) and M(T'y) have the same

z-sequence, and by Lemma 7.2 are Y — A equivalent. [
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