
MATLAB AND LATEX EXAMPLES

ERNIE AND RYAN
UNIVERSITY OF WASHINGTON

Abstract. This seems as good a place as any for an abstract. Our goal is

to present some examples that may facilitate the use of LATEX and MATLAB.

This document itself is the LATEX example. The .tex file this document was

created from is in fact included in the appendix (non-recursively of course). A

few tricky LATEX points are also emphasized.

We also present several pieces of MATLAB code that illustrate how to
write scripts, functions and even use the symbolic toolbox to tackle an example

inverse problem.

Date: June 2002.

1

2

Contents

1. Introduction 3
2. Example 1: Computing the Response Matrix 3
2.1. MATLAB Code for Computing Λ 4
3. Example 2: A Prime Number Generator in MATLAB 4
4. Example 3: A MATLAB script 5
5. Example 4: MATLAB’s symbolic manipulator 5
5.1. Producing Kirchhoff and response matrices 6
5.2. Recovering conductances via MATLAB 6
6. Some LATEX stuff 7
Appendix A. The Tex file for this document (almost) 9
References 18

MATLAB AND LATEX EXAMPLES 3

q4

t2

t1 t3¡
¡
¡

@
@

@

Figure 1. Y network

1. Introduction

We present four main examples:

(1) Our first example will be to write a simple MATLAB function that com-
putes the Dirichlet to Neumann map given the Kirchhoff matrix and the
number of boundary nodes. We will also present some background infor-
mation on this topic to show how it can be written up in LATEX.

(2) We present code for another MATLAB function that generates prime num-
bers. This is a good illustration of how flow control works in MATLAB.

(3) There is also a MATLAB script that generates the Kirchhoff matrix for an
example network (pictured in the script itself).

(4) We will also take advantage of MATLAB’s symbolic manipulator to solve
the inverse problem for a simple Y network as shown in figure 1.

Finally we will briefly illustrate how this document was produced in LATEXand
give some useful LATEX tricks, such as how to include graphics.

2. Example 1: Computing the Response Matrix

1 For a network with n nodes, the Kirchhoff matrix K is an n × n symmetric
matrix formed by taking for i 6= j

K(i, j) =

{

−γ(i, j) if there is an edge from i to j
0 if no such edge exists

}

Then the diagonal entries are chosen such that each row sums to zero. K operates
on the vector of potentials u to give a vector of currents φ coming out of each node.
(Ku = φ) Naturally the current out of interior nodes is set to zero to agree with
Kirchhoff’s Law. It’s useful to write the Kirchhoff matrix in the following block
form:

K =

[

A B
BT C

]

If all interior nodes are numbered such that they appear in the C block and all
boundary nodes are in the A block, then the response matrix is just the Schur
Compliment of K in C.

(1) Λ = A−BC−1BT

1Background information is from [1].

4 ERNIE AND RYAN UNIVERSITY OF WASHINGTON

It is shown in [1] that C is invertible because K is positive semi-definite. Λ acts on
the vector of boundary potentials to give the vector of boundary currents. This is
therefore the Dirichlet to Neumann map.

2.1. MATLAB Code for Computing Λ. The following assumptions are neces-
sary:

• The Kirchoff matrix K is given
• K has the block form as above
• We know there are n boundary nodes

The following is a function written for MATLAB that will compute Λ. Note
that functions and scripts are saved with a .m extension and can be run from the
prompt in MATLAB.

%function L = getL(K,n)

function L = getL(K,n)

A = K(1:n,1:n);

C = K((n+1):end,(n+1):end);

B = K(1:n,(n+1):end);

L = A - B*inv(C)*B’;

3. Example 2: A Prime Number Generator in MATLAB

This program does what the name suggests and also illustrates the syntax for
for loops and if statements in MATLAB.

%function p=prime(n)

function p=prime(n)

% First prime number.

p = 2; j = 1;

while length(p) < n

% Next number to consider.

j = j+2;

divisible = 0;

for i = 1:length(p)

if p(i) > sqrt(j)

break;

end

if mod(j,p(i)) == 0

divisible = 1;

break;

end

end

if divisible == 0

p(length(p)+1) = j;

MATLAB AND LATEX EXAMPLES 5

end

end

4. Example 3: A MATLAB script

An advantage (or disadvantage) of a script over a function is that the variables
are global. Any previously defined variable can be accessed by the script. Likewise,
variables created or altered by the script can be accessed at the prompt.

The following code created a Kirchhoff matrix for a stick-figure shaped electrical
network. It also computes the response matrix for this network by calling the
function getL, which was presented in example 1.

% Create Kirchhoff matrix and response matrix for stick figure matrix.

%

% 5 1 2

% \ | /

% 10--6--7 1 ~ 5 Boundary nodes

% | | 6 ~ 10 Interior nodes

% 9-----8

% / \

% 4 3

%

p = prime(10);

K = zeros(10,10);

for i = 1:10

if i <= 5

K(i,i+5) = -p(i);

elseif i <= 9

K(i,i+1) = -p(i);

else

K(6,10) = -p(10);

end

end

K = K + K’; for i = 1:10

K(i,i) = -sum(K(i,:));

end

L = getL(K,5);

5. Example 4: MATLAB’s symbolic manipulator

Symbolic variables can be declared using the syms command in MATLAB (see
help file, which contains a list of all commands in the symbolic toolbox). It’s often
useful to do symbolic calculations to eliminate round-off error, which can present
a problem even with double precision. Here, we demonstrate how MATLAB can
symbolically solve a small system of equations.

6 ERNIE AND RYAN UNIVERSITY OF WASHINGTON

There are of course limitations to this. Large systems quickly become too mem-
ory intensive. Symbolic calculations are naturally much more computationally in-
tensive. For example, symbolically computing determinants and inverses of matrices
is not at all practical for matrices larger than 6× 6. But MATLAB can easily solve
the system of three equations associated with the Y network as the following script
will demonstrate.

5.1. Producing Kirchhoff and response matrices. After declaring some sym-
bolic variables, the script symbolically defines Kirchhoff and response matrices for
the network.

K =









g14 0 0 −g14
0 g24 0 −g24
0 0 g34 −g34
−g14 −g24 −g34 g14 + g24 + g34









Λ =





−a− b a b
a −a− c c
b c −b− c





5.2. Recovering conductances via MATLAB. The script then symbolically
calculates the response matrix using K. When compared to Λ we have three equa-
tions corresponding to the three elements above the main diagonal. MATLAB then
solves for g14, g24 and g34 in terms of a, b and c. The unique solution to this system
indicates the network is recoverable, which we knew already.

Given a response matrix, we can substitute the values for a, b and c into the
following equations to recover the conductances.

g14 = −
ca+ bc+ ba

c

g24 = −
ca+ bc+ ba

b

g34 = −
ca+ bc+ ba

a
The script below demonstrates a use of the subs command by substituting values

from the following response matrix into the above equations.

ExampleL =





5/6 −1/3 −1/2
−1/3 4/3 −1
−1/2 −1 3/2





(This response matrix actually came from the Y network with g14 = 1, g24 = 2
and g34 = 3.)

The results fortunately agree with this.

%This script uses MATLAB’s symbolic manipulator to recover

%conductances for a Y network from its response matrix

clear all

%define conductances, K, L, and entries in L

syms g14 g24 g34 K L a b c real

%construct symbolic Kirchhoff matrix K

MATLAB AND LATEX EXAMPLES 7

K = sym(zeros(4,4));

K(1,4) = -g14;

K(2,4) = -g24;

K(3,4) = -g34;

K = K + K’;

for i = 1:4

K(i,i) = -sum(K(i,:));

end

K

%construct symbolic response matrix L

L = sym(zeros(3,3));

L(1,2) = a;

L(1,3) = b;

L(2,3) = c;

L = L + L’;

for i = 1:3

L(i,i) = -sum(L(i,:));

end

L

%calculate a response matrix A from K

syms A real

A = sym(getL(K,3));

%now solve the three equations we get by comparing L and A

%corresponds to entries above the main diagonal

[g14 g24 g34] = solve(A(1,2)-L(1,2), A(1,3)-L(1,3), A(2,3)-L(2,3),g14,g24,g34)

%now get the conductances for a specific L

exampleK = [1 0 0 -1;0 2 0 -2;0 0 3 -3;-1 -2 -3 6]

exampleL = getL(exampleK,3);

a = exampleL(1,2);

b = exampleL(1,3);

c = exampleL(2,3);

g14 = subs(g14)

g24 = subs(g24)

g34 = subs(g34)

6. Some LATEX stuff

See the appendix for the .tex file used to create this document. Most of the
LATEX commands are probably best learned by example, but here are a few of the
tricky points.

One thing to look for is the different ways to work in math mode, which makes it
possible to use mathematical symbols and characters and display equations prop-
erly. Numbered equations are designated by

\begin{equation} the equation \end{equation}

Other ways to declare math mode are with dollar signs or brackets, such as

8 ERNIE AND RYAN UNIVERSITY OF WASHINGTON

$math stuff$ or \[more math stuff \]

It is possible to make macros to simplify typing in LATEX commands. For example
\def\Rarrow{\longrightarrow} means typing \Rarrow has the same effect as
typing \longrightarrow

One can use the theorem environment by typing

\begin{theorem}The Theorem \end{theorem}

Custom environments can also be defined such as the proof environment below.

\newenvironment{myproof}{\textbf{Proof:} \textmd}{\Box}

The example below shows how this is displayed in LATEX.

Theorem 6.1. This statement is false.

Proof: Otherwise if it were true, then it wouldn’t be. ¤
When pasting in MATLAB code or other code, it is very useful to use the verba-

tim environment so that LATEX displays the code as is, ignoring special characters
such as $, & and #.

Encapsulated post script graphics can be inserted into LATEX documents with
the following code. (Figure 2 is the resulting graphic.)

\begin{figure}[h]

\begin{center}

\includegraphics[width=10cm]{comp.eps}

\caption{Frog licks monitor for unknown reason} \label{frog}

\end{center}

\end{figure}

Figure 2. Frog licks monitor for unknown reason

MATLAB AND LATEX EXAMPLES 9

Appendix A. The Tex file for this document (almost)

\documentclass[titlepage]{amsart}

\title{MATLAB and \LaTeX\ Examples}

\author{Ernie and Ryan \\ University of Washington}

\date{June 2002}

% Check if we are compiling under latex or pdflatex, and include the

% appropriate graphics package

\ifx\pdftexversion\undefined

\usepackage[dvips]{graphicx}

\else

\usepackage[pdftex]{graphicx}

\fi

% Need to do this if not using amsart class

%\usepackage{amsmath}

%\usepackage{amssymb}

\usepackage{verbatim} % needed to include source for this document at the end

%defining your own environment, not that you need it

\newenvironment{myproof}{\textbf{Proof:} \textmd}{\Box}

%user macros

\def\gam{γ}

\def\Lam{Λ}

\def\Rarrow{\longrightarrow}

%this command allows the margin at the bottom of the page to vary

\raggedbottom

%Apply the theorem environment to lemmas, theorems and conjectures

%\usepackage{amsthm}

\newtheorem{lemma}{Lemma}[section]

\newtheorem{theorem}{Theorem}[section]

\newtheorem{conjecture}{Conjecture}[section]

\begin{document}

\begin{abstract}

This seems as good a place as any for an abstract. Our goal is to

present some examples that may facilitate the use of \LaTeX\ and

MATLAB. This document itself \emph{is} the \LaTeX\ example. The

.tex file this document was created from is in fact included in

the appendix (non-recursively of course). A few tricky \LaTeX\

points are also emphasized.

We also present several pieces of MATLAB code that illustrate how

10 ERNIE AND RYAN UNIVERSITY OF WASHINGTON

to write scripts, functions and even use the symbolic toolbox to

tackle an example inverse problem.

\end{abstract}

%include the given information in the title page

\maketitle

%let latex automatically create a table of contents

\tableofcontents

%put the table of contents on its own page.

\newpage

\section{Introduction}

We present four main examples:

%create a numbered list

\begin{enumerate}

\item Our first example will be to write a simple MATLAB function

that computes the Dirichlet to Neumann map given the Kirchhoff

matrix and the number of boundary nodes. We will also present

some background information on this topic to show how it can be

written up in \LaTeX.

\item We present code for another MATLAB function that generates

prime numbers. This is a good illustration of how flow control

works in MATLAB.

\item There is also a MATLAB script that generates the Kirchhoff

matrix for an example network (pictured in the script itself).

\item We will also take advantage of MATLAB’s symbolic manipulator

to solve the inverse problem for a simple Y network as shown in

figure 1.

\end{enumerate}

%create a figure and draw a picture

\begin{figure}

\begin{center}

\begin{picture}(100,100)(0,0)

\put(50,50){\circle*{2}}

\put(52,50){4}

MATLAB AND LATEX EXAMPLES 11

\put(50,90){\circle*{5}}

\put(55,90){2}

\put(20,20){\circle*{5}}

\put(25,20){1}

\put(80,20){\circle*{5}}

\put(85,20){3}

\put (20,20){\line(1,1){30}}

\put (80,20){\line(-1,1){30}}

\put (50,50){\line(0,1){40}}

\end{picture}

\caption{Y network} \label{Y}

\end{center}

\end{figure}

Finally we will briefly illustrate how this document was produced

in \LaTeX and give some useful \LaTeX\ tricks, such as how to

include graphics.

\section{Example 1: Computing the Response Matrix}

\footnote{Background information is from \cite{book}.}

For a network with n nodes, the Kirchhoff matrix K

is an $n \times n$ symmetric matrix formed by taking for $i \neq

j$

\[K(i,j) = \left \{ \begin{array}{ll} -\gamma(i,j) & \mbox{if there is

an edge from i to j} \\ 0 & \mbox{if no such edge exists}

\end{array} \right\} \]

Then the diagonal entries are chosen such

that each row sums to zero. K operates on the vector of

potentials u to give a vector of currents ϕ coming out of

each node. ($Ku = \phi$)\ Naturally the current out of interior

nodes is set to zero to agree with Kirchhoff’s Law. It’s useful

to write the Kirchhoff matrix in the following block form:

\[K = \left[\begin{array}{ll} A & B \\ B^{T} & C \end{array} \right] \]

If all interior nodes are numbered such that they appear in the

C block and all boundary nodes are in the A block, then the

response matrix is just the Schur Compliment of K in C.

%the \begin{equation} command creates a numbered equation

\begin{equation} \Lambda = A - BC^{-1}B^{T} \end{equation}

It is shown in \cite{book}

that C is invertible because K is positive semi-definite. \Lam\

acts on the vector of boundary potentials to give the vector of

boundary currents. This is therefore the Dirichlet to Neumann map.

\subsection{MATLAB Code for Computing \Lam}

The following assumptions are necessary:

12 ERNIE AND RYAN UNIVERSITY OF WASHINGTON

%create a bulleted list

\begin{itemize}

\item The Kirchoff matrix K is given

\item K has the block form as above

\item We know there are n boundary nodes

\end{itemize}

The following is a function written for MATLAB that will compute

\Lam. Note that functions and scripts are saved with a .m

extension and can be run from the prompt in MATLAB.

%display the following text as is (like <pre> in html)

\begin{verbatim}

%function L = getL(K,n)

function L = getL(K,n)

A = K(1:n,1:n);

C = K((n+1):end,(n+1):end);

B = K(1:n,(n+1):end);

L = A - B*inv(C)*B’;

\end{verbatim}

\section{Example 2: A Prime Number Generator in MATLAB}

This program does what the name suggests and also illustrates the

syntax for for loops and if statements in MATLAB.

\begin{verbatim}

%function p=prime(n)

function p=prime(n)

% First prime number.

p = 2; j = 1;

while length(p) < n

% Next number to consider.

j = j+2;

divisible = 0;

for i = 1:length(p)

if p(i) > sqrt(j)

break;

end

if mod(j,p(i)) == 0

divisible = 1;

break;

end

MATLAB AND LATEX EXAMPLES 13

end

if divisible == 0

p(length(p)+1) = j;

end

end

\end{verbatim}

\section{Example 3: A MATLAB script}

An advantage (or disadvantage) of a script over a function is that

the variables are global. Any previously defined variable can be

accessed by the script. Likewise, variables created or altered by

the script can be accessed at the prompt.

The following code created a Kirchhoff matrix for a stick-figure

shaped electrical network. It also computes the response matrix

for this network by calling the function getL, which was presented

in example 1.

\begin{verbatim}

% Create Kirchhoff matrix and response matrix for stick figure matrix.

%

% 5 1 2

% \ | /

% 10--6--7 1 ~ 5 Boundary nodes

% | | 6 ~ 10 Interior nodes

% 9-----8

% / \

% 4 3

%

p = prime(10);

K = zeros(10,10);

for i = 1:10

if i <= 5

K(i,i+5) = -p(i);

elseif i <= 9

K(i,i+1) = -p(i);

else

K(6,10) = -p(10);

end

end

K = K + K’; for i = 1:10

K(i,i) = -sum(K(i,:));

end

14 ERNIE AND RYAN UNIVERSITY OF WASHINGTON

L = getL(K,5);

\end{verbatim}

\section{Example 4: MATLAB’s symbolic manipulator}

Symbolic variables can be declared using the syms command in

MATLAB (see help file, which contains a list of all commands in

the symbolic toolbox). It’s often useful to do symbolic

calculations to eliminate round-off error, which can present a

problem even with double precision. Here, we demonstrate how

MATLAB can symbolically solve a small system of equations.

There are of course limitations to this. Large systems quickly

become too memory intensive. Symbolic calculations are naturally

much more computationally intensive. For example, symbolically

computing determinants and inverses of matrices is not at all

practical for matrices larger than 6×6. But MATLAB can

easily solve the system of three equations associated with the Y

network as the following script will demonstrate.

\subsection{Producing Kirchhoff and response matrices}

After declaring some symbolic variables, the script symbolically

defines Kirchhoff and response matrices for the network.

\[K = \left[\begin{array}{llll} g_{14} & 0 & 0 & -g_{14} \\

0 & g_{24} & 0 & -g_{24} \\

0 & 0 & g_{34} & -g_{34} \\

-g_{14} & -g_{24} & -g_{34} &

g_{14} + g_{24} + g_{34}

\end{array} \right] \]

\[\Lambda = \left[\begin{array}{lll} -a-b & a & b \\

a & -a-c & c \\

b & c & -b-c \end{array} \right]

\]

\subsection{Recovering conductances via MATLAB}

The script then symbolically calculates the response matrix using

K. When compared to \Lam\ we have three equations corresponding to

the three elements above the main diagonal. MATLAB then solves

for g_{14}, g_{24} and g_{34} in terms of a, b and c. The

unique solution to this system indicates the network is

recoverable, which we knew already.

Given a response matrix, we can substitute the values for a, b and

c into the following equations to recover the conductances.

\[g_{14} = -\frac{ca+bc+ba}{c} \]

MATLAB AND LATEX EXAMPLES 15

\[g_{24} = -\frac{ca+bc+ba}{b} \]

\[g_{34} = -\frac{ca+bc+ba}{a} \]

%show how to calculate this by hand maybe

The script below demonstrates a use of the subs command by

substituting values from the following response matrix into the

above equations.

\[ExampleL = \left[\begin{array}{lll} 5/6 & -1/3 & -1/2 \\

-1/3 & 4/3 & -1 \\

-1/2 & -1 & 3/2 \end{array}

\right] \]

(This response matrix actually came from the Y network with

$g_{14}=1$, $g_{24}=2$ and $g_{34}=3$.)

The results fortunately agree with this.

\begin{verbatim}

%This script uses MATLAB’s symbolic manipulator to recover

%conductances for a Y network from its response matrix

clear all

%define conductances, K, L, and entries in L

syms g14 g24 g34 K L a b c real

%construct symbolic Kirchhoff matrix K

K = sym(zeros(4,4));

K(1,4) = -g14;

K(2,4) = -g24;

K(3,4) = -g34;

K = K + K’;

for i = 1:4

K(i,i) = -sum(K(i,:));

end

K

%construct symbolic response matrix L

L = sym(zeros(3,3));

L(1,2) = a;

L(1,3) = b;

L(2,3) = c;

L = L + L’;

for i = 1:3

L(i,i) = -sum(L(i,:));

end

16 ERNIE AND RYAN UNIVERSITY OF WASHINGTON

L

%calculate a response matrix A from K

syms A real

A = sym(getL(K,3));

%now solve the three equations we get by comparing L and A

%corresponds to entries above the main diagonal

[g14 g24 g34] = solve(A(1,2)-L(1,2), A(1,3)-L(1,3), A(2,3)-L(2,3),g14,g24,g34)

%now get the conductances for a specific L

exampleK = [1 0 0 -1;0 2 0 -2;0 0 3 -3;-1 -2 -3 6]

exampleL = getL(exampleK,3);

a = exampleL(1,2);

b = exampleL(1,3);

c = exampleL(2,3);

g14 = subs(g14)

g24 = subs(g24)

g34 = subs(g34)

\end{verbatim}

\section{Some \LaTeX\ stuff}

See the appendix for the .tex file used to create this document. Most of

the \LaTeX\ commands are probably best learned by example, but here are a few

of the tricky points.

One thing to look for is the different ways to work in math mode,

which makes it possible to use mathematical symbols and characters and

display equations properly. Numbered equations are designated by

\begin{verbatim}

\begin{equation} the equation \end{equation}

\end{verbatim}

Other ways to declare math mode are with dollar signs or brackets,

such as \begin{verbatim} $math stuff$ or \[more math stuff \] \end{verbatim}

It is possible to make macros to simplify typing in \LaTeX\ commands.

For example \verb+\def\Rarrow{\longrightarrow}+ means typing

\verb+\Rarrow+ has the same effect as typing \verb+\longrightarrow+

One can use the theorem environment by typing

\begin{verbatim}

\begin{theorem}The Theorem \end{theorem}

\end{verbatim}

Custom environments can also be defined such as the proof

environment below.

\begin{verbatim}

MATLAB AND LATEX EXAMPLES 17

\newenvironment{myproof}{\textbf{Proof:} \textmd}{\Box}

\end{verbatim}

The example below shows how this is displayed in \LaTeX.

\begin{theorem}

This statement is false.

\end{theorem}

\begin{myproof}

Otherwise if it were true, then it wouldn’t be.

\end{myproof}

When pasting in MATLAB code or other code, it is very useful to use

the verbatim environment so that \LaTeX\ displays the code as is, ignoring

special characters such as \$, \& and \#.

Encapsulated post script graphics can be inserted into \LaTeX\

documents with the following code. (Figure 2 is the resulting graphic.)

\begin{verbatim}

\begin{figure}[h]

\begin{center}

\includegraphics[width=10cm]{comp.eps}

\caption{Frog licks monitor for unknown reason} \label{frog}

\end{center}

\end{figure}

\end{verbatim}

\begin{figure}[h]

\begin{center}

\includegraphics[width=10cm]{comp.eps}

\caption{Frog licks monitor for unknown reason} \label{frog}

\end{center}

\end{figure}

\pagebreak

\appendix

\section{The Tex file for this document (almost)}

\verbatiminput{schur.tex} % include this document literally

%how to cite references

\begin{thebibliography}{99}

\bibitem{book}

Edward B. Curtis and James A. Morrow \emph{Inverse Problems for Electrical Networks.}

Series on applied mathematics - Vol. 13. World Scientific, \copyright 2000.

\end{thebibliography}

18 ERNIE AND RYAN UNIVERSITY OF WASHINGTON

\end{document}

References

[1] Edward B. Curtis and James A. Morrow Inverse Problems for Electrical Networks. Series on

applied mathematics - Vol. 13. World Scientific, c©2000.

