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hibit n affinely independent permutations σ (and prove that they are affinely independent).)

Exercise 3-12. A stable set S (sometimes, it is called also an independent set) in a graph
G = (V,E) is a set of vertices such that there are no edges between any two vertices in S.
If we let P denote the convex hull of all (incidence vectors of) stable sets of G = (V,E), it
is clear that xi + xj ≤ 1 for any edge (i, j) ∈ E is a valid inequality for P .

1.Give a graph G for which P is not equal to

{x ∈ R|V | : xi + xj ≤ 1 for all (i, j) ∈ E
xi ≥ 0 for all i ∈ V }

2.Show that if the graph G is bipartite then P equals

{x ∈ R|V | : xi + xj ≤ 1 for all (i, j) ∈ E
xi ≥ 0 for all i ∈ V }.

Exercise 3-13. Let ek ∈ Rn (k = 0, . . . , n − 1) be a vector with the first k entries being
1, and the following n− k entries being −1. Let S = {e0, e1, . . . , en−1,−e0,−e1, . . . ,−en−1},
i.e. S consists of all vectors consisting of +1 followed by −1 or vice versa. In this problem
set, you will study conv(S).

1.Consider any vector a ∈ {−1, 0, 1}n such that (i)
∑n

i=1 ai = 1 and (ii) for all j =

1, . . . , n−1, we have 0 ≤∑j
i=1 ai ≤ 1. (For example, for n = 5, the vector (1, 0,−1, 1, 0)

satisfies these conditions.) Show that
∑n

i=1 aixi ≤ 1 and
∑n

i=1 aixi ≥ −1 are valid
inequalities for conv(S).

2.How many such inequalities are there?

3.Show that any such inequality defines a facet of conv(S).

(This can be done in several ways. Here is one approach, but you are welcome to
use any other one as well. First show that either ek or −ek satisfies this inequality at
equality, for any k. Then show that the resulting set of vectors on the hyperplane are
affinely independent (or uniquely identifies it).)

4.Show that the above inequalities define the entire convex hull of S.

(Again this can be done in several ways. One possibility is to consider the 3rd technique
described above.)

3.5 Total unimodularity

Definition 3.12 A matrix A is totally unimodular (TU) if every square submatrix of A has
determinant −1, 0 or +1.
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The importance of total unimodularity stems from the following theorem. This theorem
gives a subclass of integer programs which are easily solved. A polyhedron P is said to be
integral if all its vertices or extreme points are integral (belong to Zn).

Theorem 3.12 Let A be a totally unimodular matrix. Then, for any integral right-hand-side
b, the polyhedron

P = {x : Ax ≤ b, x ≥ 0}
is integral.

Before we prove this result, two remarks can be made. First, the proof below will in
fact show that the same result holds for the polyhedrons {x : Ax ≥ b, x ≥ 0} or {x : Ax =
b, x ≥ 0}. In the latter case, though, a slightly weaker condition than totally unimodularity
is sufficient to prove the result. Secondly, in the above theorem, one can prove the converse
as well: If P = {x : Ax ≤ b, x ≥ 0} is integral for all integral b then A must be totally
unimodular (this is not true though, if we consider for example {x : Ax = b, x ≥ 0}).
Proof: Adding slacks, we get the polyhedron Q = {(x, s) : Ax + Is = b, x ≥ 0, s ≥ 0}.
One can easily show (see exercise below) that P is integral iff Q is integral.

Consider now any bfs of Q. The basis B consists of some columns of A as well as some
columns of the identity matrix I. Since the columns of I have only one nonzero entry per
column, namely a one, we can expand the determinant of AB along these entries and derive
that, in absolute values, the determinant of AB is equal to the determinant of some square
submatrix of A. By definition of totally unimodularity, this implies that the determinant of
AB must belong to {−1, 0, 1}. By definition of a basis, it cannot be equal to 0. Hence, it
must be equal to ±1.

We now prove that the bfs must be integral. The non-basic variables, by definition, must
have value zero. The vector of basic variables, on the other hand, is equal to A−1B b. From
linear algebra, A−1B can be expressed as

1

detAB

Aadj
B

where Aadj
B is the adjoint (or adjugate) matrix of AB and consists of subdeterminants of AB.

Hence, both b and Aadj
B are integral which implies that A−1B b is integral since | detAB| = 1.

This proves the integrality of the bfs. 4

Exercise 3-14. Let P = {x : Ax ≤ b, x ≥ 0} and let Q = {(x, s) : Ax+ Is = b, x ≥ 0, s ≥
0}. Show that x is an extreme point of P iff (x, b−Ax) is an extreme point of Q. Conclude
that whenever A and b have only integral entries, P is integral iff Q is integral.

In the case of the bipartite matching problem, the constraint matrix A has a very special
structure and we show below that it is totally unimodular. This together with Theorem
3.12 proves Theorem 1.6 from the notes on the bipartite matching problem. First, let us
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restate the setting. Suppose that the bipartition of our bipartite graph is (U, V ) (to avoid
any confusion with the matrix A or the basis B). Consider

P = {x :
∑

j

xij = 1 i ∈ U
∑

i

xij = 1 j ∈ V

xij ≥ 0 i ∈ U, j ∈ V }
= {x : Ax = b, x ≥ 0}.

Theorem 3.13 The matrix A is totally unimodular.

The way we defined the matrix A corresponds to a complete bipartite graph. If we were
to consider any bipartite graph then we would simply consider a submatrix of A, which is
also totally unimodular by definition.
Proof: Consider any square submatrix T of A. We consider three cases. First, if T has a
column or a row with all entries equal to zero then the determinant is zero. Secondly, if there
exists a column or a row of T with only one +1 then by expanding the determinant along
that +1, we can consider a smaller sized matrix T . The last case is when T has at least two
nonzero entries per column (and per row). Given the special structure of A, there must in
fact be exactly two nonzero entries per column. By adding up the rows of T corresponding
to the vertices of U and adding up the rows of T corresponding to the vertices of V , one
therefore obtains the same vector which proves that the rows of T are linearly dependent,
implying that its determinant is zero. This proves the total unimodularity of A. 4

We conclude with a technical remark. One should first remove one of the rows of A
before applying Theorem 3.12 since, as such, it does not have full row rank and this fact
was implicitly used in the definition of a bfs. However, deleting a row of A still preserves its
totally unimodularity.

Exercise 3-15. If A is totally unimodular then AT is totally unimodular.

Exercise 3-16. Use total unimodularity to prove König’s theorem.

The following theorem gives a necessary and sufficient condition for a matrix to be totally
unimodular.

Theorem 3.14 Let A be a m × n matrix with entries in {−1, 0, 1}. Then A is TU if and
only if for all subsets R ⊆ {1, 2, · · · , n} of rows, there exists a partition of R into R1 and R2

such that for all j ∈ {1, 2, · · · ,m}:
∑

i∈R1

aij −
∑

i∈R2

aij ∈ {0, 1,−1}.
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We will prove only the if direction (but that is the most important as this allows to prove
that a matrix is totally unimodular).
Proof: Assume that, for every R, the desired partition exists. We need to prove that the
determinant of any k × k submatrix of A is in {−1, 0, 1}, and this must be true for any k.
Let us prove it by induction on k. It is trivially true for k = 1. Assume it is true for k − 1
and we will prove it for k.

Let B be a k× k submatrix of A, and we can assume that B is invertible (otherwise the
determinant is 0 and there is nothing to prove). The inverse B−1 can be written as 1

det(B)
B∗,

where all entries of B∗ correspond to (k − 1)× (k − 1) submatrices of A. By our inductive
hypothesis, all entries of B∗ are in {−1, 0, 1}. Let b∗1 be the first row of B and e1 be the
k-dimensional row vector [1 0 0 · · · 0], thus b∗1 = e1B

∗. By the relationship between B and
B∗, we have that

b∗1B = e1B
∗B = det(B)e1B

−1B = det(B)e1. (5)

Let R = {i : b∗1i ∈ {−1, 1}}. By assumption, we know that there exists a partition of R
into R1 and R2 such that for all j:

∑

i∈R1

bij −
∑

i∈R2

bij ∈ {−1, 0, 1}. (6)

From (5), we have that
∑

i∈R
b∗1ibij =

{
det(B) j = 1
0 j 6= 1

(7)

Since
∑

i∈R1
bij −

∑
i∈R2

bij and
∑

i∈R b
∗
1ibij differ by a multiple of 2 for each j (since b∗1i ∈

{−1, 1}), this implies that ∑

i∈R1

bij −
∑

i∈R2

bij = 0 j 6= 1. (8)

For j = 1, we cannot get 0 since otherwise B would be singular (we would get exactly the 0
vector by adding and subtracting rows of B). Thus,

∑

i∈R1

bi1 −
∑

i∈R2

bi1 ∈ {−1, 1}.

If we define y ∈ Rk by

yi =





1 i ∈ R1

−1 i ∈ R2

0 otherwise

we get that yB = ±e1. Thus

y = ±e1B−1 = ± 1

detB
e1B

∗ = ± 1

detB
b∗1,

which implies that detB must be either 1 or -1. 4


