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Theorem 3.10 If the face associated with aTi x ≤ bi for i ∈ I< is not a facet then the
inequality is redundant.

And this one shows that facets are necessary:

Theorem 3.11 If F is a facet of P then there must exists i ∈ I< such that the face induced
by aTi x ≤ bi is precisely F .

In a minimal description of P , we must have a set of linearly independent equalities
together with precisely one inequality for each facet of P .

Exercises

Exercise 3-6. Prove Corollary 3.7.

Exercise 3-7. Show that if rank(A) < n then P = {x ∈ Rn : Ax ≤ b} has no vertices.

Exercise 3-8. Suppose P = {x ∈ Rn : Ax ≤ b, Cx ≤ d}. Show that the set of vertices of
Q = {x ∈ Rn : Ax ≤ b, Cx = d} is a subset of the set of vertices of P .

(In particular, this means that if the vertices of P all belong to {0, 1}n, then so do the
vertices of Q.)

Exercise 3-9. Given two extreme points a and b of a polyhedron P , we say that they
are adjacent if the line segment between them forms an edge (i.e. a face of dimension 1) of
the polyhedron P . This can be rephrased by saying that a and b are adjacent on P if and
only if there exists a cost function c such that a and b are the only two extreme points of P
minimizing cTx over P .

Consider the polyhedron (polytope) P defined as the convex hull of all perfect matchings
in a (not necessarily bipartite) graph G. Give a necessary and sufficient condition for two
matchings M1 and M2 to be adjacent on this polyhedron (hint: think about M1 4M2 =
(M1 \M2) ∪ (M2 \M1)) and prove that your condition is necessary and sufficient.)

Exercise 3-10. Show that two vertices u and v of a polyhedron P are adjacent if and
only there is a unique way to express their midpoint (1

2
(u + v)) as a convex combination of

vertices of P .

3.4 Polyhedral Combinatorics

In one sentence, polyhedral combinatorics deals with the study of polyhedra or polytopes as-
sociated with discrete sets arising from combinatorial optimization problems (such as match-
ings for example). If we have a discrete set X (say the incidence vectors of matchings in a
graph, or the set of incidence vectors of spanning trees of a graph, or the set of incidence vec-
tors of stable sets1 in a graph), we can consider conv(X) and attempt to describe it in terms

1A set S of vertices in a graph G = (V,E) is stable if there are no edges between any two vertices of S.
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of linear inequalities. This is useful in order to apply the machinery of linear programming.
However, in some (most) cases, it is actually hard to describe the set of all inequalities defin-
ing conv(X); this occurs whenever optimizing over X is hard and this statement can be made
precise in the setting of computational complexity. For matchings, or spanning trees, and
several other structures (for which the corresponding optimization problem is polynomially
solvable), we will be able to describe their convex hull in terms of linear inequalities.

Given a set X and a proposed system of inequalities P = {x : Ax ≤ b}, it is usually easy
to check whether conv(X) ⊆ P . Indeed, for this, we only need to check that every member
of X satisfies every inequality in the description of P . The reverse inclusion is more difficult.
Here are 3 general techniques to prove that P ⊆ conv(X) (if it is true!) (once we know that
conv(X) ⊆ P ).

1. Algorithmically. This involves linear programming duality. This is what we did
in the notes about the assignment problem (minimum weight matchings in bipartite
graphs). In general, consider any cost function c and consider the combinatorial opti-
mization problem of maximizing cTx over x ∈ X. We know that:

max{cTx : x ∈ X} = max{cTx : x ∈ conv(X)}
≤ max{cTx : Ax ≤ b}
= min{bTy : ATy = c, y ≥ 0},

the last equality coming from strong duality. If we can exhibit a solution x ∈ X (say the
incidence vector of a perfect matching in the assignment problem) and a dual feasible
solution y (values ui, vj in the assignment problem) such that cTx = bTy we will have
shown that we have equality throughout, and if this is true for any cost function c, this
implies that P = conv(X).

This is usually the most involved approach but also the one that works most often.

2. Focusing on extreme points. Show first that P = {x : Ax ≤ b} is bounded (thus a
polytope) and then study its extreme points. If we can show that every extreme point
of P is in X then we would be done since P = conv(ext(P )) ⊆ conv(X), where ext(P )
denotes the extreme points of P (see Theorem 3.9). The assumption that P is bounded
is needed to show that indeed P = conv(ext(P )) (not true if P is unbounded).

In the case of the convex hull of bipartite matchings, this can be done easily and this
leads to the notion of totally unimodular Matrices (TU), see the next section.

3. Focusing on the facets of conv(X). This leads usually to the shortest and cleanest
proofs. Suppose that our proposed P is of the form {x ∈ Rn : Ax ≤ b, Cx = d}. We
have already argued that conv(X) ⊆ P and we want to show that P ⊆ conv(X).

First we need to show that we are not missing any equality. This can be done for exam-
ple by showing that dim(conv(X)) = dim(P ). We already know that dim(conv(X)) ≤
dim(P ) (as conv(X) ⊆ P ), and so we need to argue that dim(conv(X)) ≥ dim(P ).
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This means showing that if there are n− d linearly independent rows in C we can find
d+ 1 affinely independent points in X.

Then we need to show that we are not missing a valid inequality that induces a facet
of conv(X). Consider any valid inequality αTx ≤ β for conv(X) with α 6= 0. We can
assume that α is any vector in Rn \ {0} and that β = max{αTx : x ∈ conv(X)}. The
face of conv(X) this inequality defines is F = conv({x ∈ X : αTx = β}). Assume that
this is a non-trivial face; this will happen precisely when α is not in the row space of
C. We need to make sure that if F is a facet then we have in our description of P an
inequality representing it. What we will show is that if F is non-trivial then we can
find an inequality aTi x ≤ bi in our description of P such that (i) F ⊆ {x : aTi x = bi}
and (ii) aTi x ≤ bi defines a non-trivial face of P (this second condition is not needed if
P is full-dimensional), or simply that every optimum solution to max{αTx : x ∈ X}
satisfies aTi x = bi, and that this inequality is not satisfied by all points in P . This
means that if F was a facet, by maximality, we have a representative of F in our
description.

This is a very simple and powerful technique, and this is best illustrated on an example.

Example. Let X = {(σ(1), σ(2), · · · , σ(n)) : σ is a permutation of {1, 2, · · · , n}}.
We claim that

conv(X) = {x ∈ Rn :
∑n

i=1 xi =
(
n+1
2

)
∑

i∈S xi ≥
(|S|+1

2

)
S ⊂ {1, · · · , n}}.

This is known as the permutahedron.

Here conv(X) is not full-dimensional; we only need to show that we are not missing
any facets and any equality in the description of conv(P ). For the equalities, this can
be seen easily as it is easy to exhibit n affinely independent permutations in X. For
the facets, suppose that αTx ≤ β defines a non-trivial facet F of conv(X). Consider
maximizing αTx over all permutations x. Let S = arg min{αi}; by our assumption
that F is non-trivial we have that S 6= {1, 2, · · · , n} (otherwise, we would have the
equality

∑n
i=1 xi =

(
n+1
2

)
). Moreover, it is easy to see (by an exchange argument)

that any permutation σ whose incidence vector x maximizes αTx will need to satisfy
σ(i) ∈ {1, 2, · · · , |S|} for i ∈ S, in other words, it will satisfy the inequality

∑
i∈S xi ≥(|S|+1

2

)
at equality (and this is a non-trivial face as there exist permutations that do

not satisfy it at equality). Hence, F is contained in a non-trivial face corresponding to
an inequality in our description, and hence our description contains inequalities for all
facets. This is what we needed to prove. That’s it!

Exercises

Exercise 3-11. Consider the set X = {(σ(1), σ(2), · · · , σ(n)) : σ is a permutation of
{1, 2 · · · , n}}. Show that dim(conv(X)) = n− 1. (To show that dim(conv(X)) ≥ n− 1, ex-


