
Massachusetts Institute of Technology 18.433: Combinatorial Optimization
Michel X. Goemans February 4th, 2015

2. Lecture notes on non-bipartite matching

Given a graph G = (V,E), we are interested in finding and charaterizing the size of a
maximum matching. Since we do not assume that the graph is bipartite, we know that the
maximum size of a matching does not necessarily equal the minimum size of a vertex cover,
as it is the case for bipartite graphs (König’s theorem). Indeed, for a triangle, any matching
consists of at most one edge, while we need two vertices to cover all edges.

To get an upper bound on the size of any matching M , consider any set U of vertices.
If we delete the vertices in U (and all edges adjacent to it), we delete at most |U | edges of
the matching M . Moreover, in the remaining graph G \U , we can trivially upper bound the

size of the remaining matching by
∑k

i=1b |Ki|
2
c, where Ki, i = 1, · · · , k, are the vertex sets of

the connected components of G \ U . Therefore, we get that

|M | ≤ |U |+
k∑

i=1

⌊ |Ki|
2

⌋
. (1)

If we let o(G \ U) denote the number of odd components of G \ U , we can rewrite (1) as:

|M | ≤ |U |+ |V | − |U |
2

− o(G \ U)

2
,

or

|M | ≤ 1

2
(|V |+ |U | − o(G \ U)) . (2)

We will show that we can always find a matching M and a set U for which we have equal-
ity; this gives us the following minmax relation, called the Tutte-Berge min-max formula:

Theorem 2.1 (Tutte-Berge Formula) For any graph G = (V,E), we have

max
M
|M | = min

U⊆V

1

2
(|V |+ |U | − o(G \ U)) ,

where o(G \ U) is the number of connected components of odd size of G \ U .

Example: In the graph of Figure 2.1, a matching of size 8 can be easily found (find it), and
its optimality can be seen from the Tutte-Berge formula. Indeed, for the set U = {2, 15, 16},
we have o(G \ U) = 5 and 1

2
(|V |+ |U | − o(G \ U)) = 1

2
(18 + 3− 5) = 8.

To prove Theorem 2.1, we will first show an algorithm to find a maximum matching.
This algorithm is due to Edmonds [1965], and is a pure gem. As in the case of bipartite
matchings (see lecture notes on bipartite matchings), we will be using augmenting paths.
Indeed, Theorem 1.2 of the bipartite matching notes still hold in the non-bipartite setting; a
matching M is maximum if and only if there is no augmenting path with respect to it. The
difficulty here is to find the augmenting path or decide that no such path exists. We could
try to start from the set X of exposed (unmatched) vertices for M , and whenever we are

2. Lecture notes on non-bipartite matching February 4th, 2015 2

1

2

3 4

5 67

8 9

10 11

12 13
14

15 16

17 18

1

2

3 4

5 67

8 9

10 11

12 13
14

15 16

17 18

Figure 2.1: Top: graph. Bottom: the removal of vertices 2, 15 and 16 gives 5 odd connected
components.

2. Lecture notes on non-bipartite matching February 4th, 2015 3

wu z

Figure 2.2: An augmenting path. Thick edges are in the matching. The path is found by
starting from the exposed vertex u and following the dotted lines until a vertex (here z)
adjacent to an exposed vertex is found.

at a vertex u and see an edge (u, v) /∈ M followed by an edge (v, w) in M , we could put a
directed edge from u to w and move to w. If we get to a vertex that’s adjacent to an exposed
vertex (i.e. in X), it seems we have found an augmenting path, see Figure 2.2.

This is not necessarily the case, as the vertices of this ’path’ may not be distinct. We
have found a so-called flower, see Figure 2.3. This flower does not contain an augmenting
path. More formally, a flower consists of an even alternating path P from an exposed vertex
u to a vertex v, called the stem, and an odd cycle containing v in which the edges alternate
between in and out of the matching except for the two edges incident to v; this odd cycle is
called a blossom.

The algorithm will either find an augmenting path or a flower or show that no such items
exist; in this latter case, the matching is maximum and the algorithm stops. If it finds an
augmenting path then the matching is augmented and the algorithm continues with this new
matching. If a flower is found, we create a new graph G/B in which we shrink B into a
single vertex b; any edge (u, v) in G with u /∈ B and v ∈ B is replaced by an edge (u, b) in
G/B, all edges within B disappear and all edges within V \B are kept. Notice that we have
also a matching M/B in this new graph (obtained by simply deleting all edges of M within

B), and that the sizes of M and M/B differ by exactly |B|−1
2

(as we deleted so many edges
of the matching within B). We use the following crucial theorem.

Theorem 2.2 Let B be a blossom with respect to M . Then M is a maximum size matching
in G if and only if M/B is a maximum size matching in G/B.

To prove the theorem, we can assume that the flower with blossom B has an empty stem
P . If it is not the case, we can consider the matching M 4 P = (M \ P) ∪ (P \M) for
which we have a flower with blossom P and empty stem. Proving the theorem for M 4 P
also proves it for M as (M4P)/B = (M/B)4P and taking symmetric differences with an
even alternating paths does not change the cardinality of a matching.
Proof: (=⇒) Suppose N is a matching in G/B larger than M/B. Pulling N back to a
set of edges in G, it is incident to at most one vertex of B. Expand this to a matching N+

in G by adjoining 1
2
(|B| − 1) edges to match every other vertex in B. Then |N+| exceeds

|M | by the same amount that |N | exceeds |M/B|.
(⇐=) By contradiction. If M is not of maximum size in G then it has an augmenting

path P between exposed vertices u and v. As B has only one exposed vertex, we can assume
that u /∈ B. Let w be the first vertex of P which belongs to B, and let Q be the part of P

2. Lecture notes on non-bipartite matching February 4th, 2015 4

u

stem

u v

blossom

Figure 2.3: A flower. The thick edges are those of the matching. Top: Our dotted path
starting at an exposed vertex u and ending at a neighbor of an exposed vertex does not
correspond to an augmenting path.

2. Lecture notes on non-bipartite matching February 4th, 2015 5

from u to w. Notice that, after shrinking B, Q remains an augmenting path for M/B (since
b is exposed in G/B). This means that M/B is not maximum either, and we have reached
a contradiction. 4

Observe that the proof is algorithmic: If we have a bigger matching in G/B than M/B
then we also can find a bigger matching in G than M . Also remark that Theorem 2.2 does
not say that if we find a maximum matching M∗ in G/B then simply adding |B|−1

2
edges

from within B to M∗ to get M̂ will lead to a maximum matching in G. Indeed, this is not
true.

Exercise 2-1. Give an example of a graph G, a matching M and a blossom B for M such
that a maximum matching M∗ in G/B does not lead to a maximum matching in G. Explain
why this does not contradict Theorem 2.2.

Even

Odd

Even

Odd

Even
x

Figure 2.4: An alternating tree. The squiggly edges are the matching edges.

To find either an alternating path or a flower, we proceed as follows. We label all exposed
vertices to be Even, and keep all the other vertices unlabelled at this point. As we proceed,
we will be labelling more vertices to be Even as well as labelling some vertices to be Odd.
We maintain also an alternating forest — a graph in which each connected component is a
tree made up of edges alternating between being in and out of the matching. We process
the Even vertices one at a time, say we are currently processing u, and consider the edges
adjacent to u. There are several possibilities:

1. If there is an edge (u, v) with v unlabelled, we label v as Odd. As v cannot be exposed
(as otherwise it would have been already Even), we label its “mate” w (i.e. (v, w)
is an edge of the matching) as Even. (w was not previously labelled as we always
simultaneously label the two endpoints of a matched edge.) We have extended the
alternating tree we are building (see Figure 2.4).

2. Lecture notes on non-bipartite matching February 4th, 2015 6

2. If there is an edge (u, v) with v labelled Even and v belongs to another alternating
tree than u does, we have found an augmenting path (just traverse the 2 alternating
trees from u and v up to their roots) and augment the matching along it, and start
again from this new, larger matching. The two subpaths from u and from v to their
roots span disjoint sets of vertices, and therefore their union together with (u, v) indeed
form a valid augmenting path.

3. If there is an edge (u, v) with v labelled Even and v belongs to the same alternating
tree as u does, then the two subpaths from u and v to their common (exposed) root x
together with (u, v) form a flower. We shrink the blossom B into a vertex b. Observe
that we can keep our labelling unchanged, provided we let the new vertex b be labelled
Even. We recursively find a maximum matching in this graph G/B (and this may
result in further shrinkings) and when the algorithm terminates, we use Theorem 2.2
to expand it to a larger matching in the original graph. This larger matching is not
necessarily optimal (see the remark after Theorem 2.2) and we repeat the process to
find either an augmenting path or a flower with respect to the current matching.

Correctness. Now suppose that none of these possibilities apply any more for any of the
Even vertices. Then we claim that we have found a maximum matching M ′ in the current
graph G′ = (V ′, E ′) (which was obtained from our original graph G by performing several
shrinkings of blossoms B1, B2, · · · , Bk in succession). To show this, consider U = Odd and
consider the upper bound (2) for G′. As there are no edges between Even vertices (otherwise
2. or 3. above would apply) and no edges between an Even vertex and an unlabelled vertex
(otherwise 1. would apply), we have that each Even vertex is an (odd-sized) connected
component by itself in G′ \Odd. Thus o(G′ \Odd) = |Even|. Also, we have that |M ′| =
|Odd|+ 1

2
(|V ′|− |Odd|− |Even|), the second term coming from the fact that all unlabelled

vertices are matched. Thus,

1

2
(|V ′|+ |Odd| − o(G′ \Odd)) =

1

2
(|V ′|+ |Odd| − |Even|) = |M ′|,

and this shows that our matching M ′ is maximum for G′. Applying repeatedly Theorem 2.2,
we get that the algorithm constructs a maximum matching in G.

Running Time. The algorithm will perform at most n augmentations (of the matching)
where n = |V |. Between two augmentations, it will shrink a blossom at most n/2 times, as
each shrinking reduces the number of vertices by at least 2. The time it takes to construct
the alternating tree is at most O(m) where m = |E|, and so the total time is O(n2m).

Correctness of Tutte-Berge Formula. We can now prove Theorem 2.1. As we have
argued the Tutte-Berge formula holds for the graph obtained at the end of the algorithm.
Assume we have performed k blossom shrinkings, and let Gi = (Vi, Ei) be the graph obtained
after shrinking blossoms B1, · · · , Bi, and let Mi be the corresponding matching; the index

2. Lecture notes on non-bipartite matching February 4th, 2015 7

i = 0 corresponds to the original graph. For the final graph Gk = (Vk, Ek), we have seen
that the Tutte-Berge formula holds since

|Mk| =
1

2
(|Vk|+ |U | − o(Gk \ U)) ,

where U = Odd, and that each Even vertex corresponds to an odd connected component
of Gk \ U . Now, let’s see what happens when we unshrink blossoms, one at a time, and
let’s proceed by backward induction. Suppose we unshrink blossom Bi to go from graph Gi

to Gi−1. First notice that |Vi−1| = |Vi| + |Bi| − 1 and |Mi−1| = |Mi| + 1
2
(|Bi| − 1). Also,

as we unshrink blossom Bi, we add an even number of vertices (namely |Bi| − 1) to one of
the connected components of Gi \U , and therefore we do not change the number of odd (or
even) connected components. Thus, o(Gi \ U) = o(Gi−1 \ U). Thus, as we replace i with
i− 1, both the right-hand-side and left-hand-side of

|Mi| =
1

2
(|Vi|+ |U | − o(Gi \ U))

increase by precisely 1
2
(|Bi| − 1). Thus, by backward induction, we can show that for every

j = 0, · · · , k, we have

|Mj| =
1

2
(|Vj|+ |U | − o(Gj \ U)) ,

and the Tutte-Berge formula holds for the original graph (for j = 0). This proves Theorem
2.1.

The Tutte-Berge formula implies that a graph has a perfect matching if and only if for
every set U the number of odd connected components of G\U is at most |U |. This is known
as Tutte’s matching theorem.

Theorem 2.3 (Tutte’s matching theorem) G has a perfect matching if and only if, for
all U ⊆ V , we have o(G \ U) ≤ |U |.

Exercises

Exercise 2-2. Let G = (V,E) be any graph. Given a set S ⊆ V , suppose that there exists
a matching M covering S (i.e. S is a subset of the matched vertices in M). Prove that there
exists a maximum matching M∗ covering S as well.

Exercise 2-3. Let U be any minimizer in the Tutte-Berge formula. Let K1, · · · , Kk be
the connected components of G \ U . Show that, for any maximum matching M , we must
have that

1.M contains exactly b |Ki|
2
c edges from G[Ki] (the subgraph of G induced by the vertices

in Ki), i.e. G[Ki] is perfectly matched for the even components Ki and near-perfectly
matched for the odd components.

2.Each vertex u ∈ U is matched to a vertex v in an odd component Ki of G \ U .

