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3. Linear Programming and Polyhedral Combinatorics

Summary of what was seen in the introductory lectures on linear programming and
polyhedral combinatorics.

Definition 3.1 A halfspace in Rn is a set of the form {x ∈ Rn : aTx ≤ b} for some vector
a ∈ Rn and b ∈ R.

Definition 3.2 A polyhedron is the intersection of finitely many halfspaces: P = {x ∈ Rn :
Ax ≤ b}.

Definition 3.3 A polytope is a bounded polyhedron.

Definition 3.4 If P is a polyhedron in Rn, the projection Pk ⊆ Rn−1 of P is defined as
{y = (x1, x2, · · · , xk−1, xk+1, · · · , xn) : x ∈ P for some xk ∈ R}.

This is a special case of a projection onto a linear space (here, we consider only coordinate
projection). By repeatedly projecting, we can eliminate any subset of coordinates.

We claim that Pk is also a polyhedron and this can be proved by giving an explicit
description of Pk in terms of linear inequalities. For this purpose, one uses Fourier-Motzkin
elimination. Let P = {x : Ax ≤ b} and let

• S+ = {i : aik > 0},

• S− = {i : aik < 0},

• S0 = {i : aik = 0}.

Clearly, any element in Pk must satisfy the inequality aTi x ≤ bi for all i ∈ S0 (these inequal-
ities do not involve xk). Similarly, we can take a linear combination of an inequality in S+

and one in S− to eliminate the coefficient of xk. This shows that the inequalities:

aik

(∑

j

aljxj

)
− alk

(∑

j

aijxj

)
≤ aikbl − alkbi (1)

for i ∈ S+ and l ∈ S− are satisfied by all elements of Pk. Conversely, for any vector
(x1, x2, · · · , xk−1, xk+1, · · · , xn) satisfying (1) for all i ∈ S+ and l ∈ S− and also

aTi x ≤ bi for all i ∈ S0 (2)

we can find a value of xk such that the resulting x belongs to P (by looking at the bounds on
xk that each constraint imposes, and showing that the largest lower bound is smaller than
the smallest upper bound). This shows that Pk is described by (1) and (2), and therefore is
a polyhedron.
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Definition 3.5 Given points a(1), a(2), · · · , a(k) ∈ Rn,

• a linear combination is
∑

i λia
(i) where λi ∈ R for all i,

• an affine combination is
∑

i λia
(i) where λi ∈ R and

∑
i λi = 1,

• a conical combination is
∑

i λia
(i) where λi ≥ 0 for all i,

• a convex combination is
∑

i λia
(i) where λi ≥ 0 for all i and

∑
i λi = 1.

The set of all linear combinations of elements of S is called the linear hull of S and
denoted by lin(S). Similarly, by replacing linear by affine, conical or convex, we define the
affine hull, aff(S), the conic hull, cone(S) and the convex hull, conv(S). We can give an
equivalent definition of a polytope.

Definition 3.6 A polytope is the convex hull of a finite set of points.

The fact that Definition 3.6 implies Definition 3.3 can be seen as follows. Take P be
the convex hull of a finite set {a(k)}k∈[m] of points. To show that P can be described as
the intersection of a finite number of hyperplanes, we can apply Fourier-Motzkin elimination
repeatedly on

x−
∑

k

λka
(k) = 0

∑

k

λk = 1

λk ≥ 0

to eliminate all variables λk and keep only the variables x. Furthermore, P is bounded since
for any x ∈ P , we have

||x|| = ||
∑

k

λka
(k)|| ≤

∑

k

λk||a(k)|| ≤ max
k
||a(k)||.

The converse will be proved later in these notes.

3.1 Solvability of System of Inequalities

In linear algebra, we saw that, for A ∈ Rm×n, b ∈ Rm, Ax = b has no solution x ∈ Rn if
and only if there exists a y ∈ Rm with ATy = 0 and bTy 6= 0 (in 18.06 notation/terminology,
this is equivalent to saying that the column space C(A) is orthogonal to the left null space
N(AT )).

One can state a similar Theorem of the Alternatives for systems of linear inequalities.

Theorem 3.1 (Theorem of the Alternatives) Ax ≤ b has no solution x ∈ Rn if and
only if there exists y ∈ Rm such that y ≥ 0, ATy = 0 and bTy < 0.
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One can easily show that both systems indeed cannot have a solution since otherwise
0 > bTy = yT b ≥ yTAx = 0Tx = 0. For the other direction, one takes the insolvable system
Ax ≤ b and use Fourier-Motzkin elimination repeatedly to eliminate all variables and thus
obtain an inequality of the form 0Tx ≤ c where c < 0. In the process one has derived a vector
y with the desired properties (as Fourier-Motzkin only performs nonnegative combinations
of linear inequalities).

Another version of the above theorem is Farkas’ lemma:

Lemma 3.2 Ax = b, x ≥ 0 has no solution if and only if there exists y with ATy ≥ 0 and
bTy < 0.

Exercise 3-1. Prove Farkas’ lemma from the Theorem of the Alternatives.

3.2 Linear Programming Basics

A linear program (LP) is the problem of minimizing or maximizing a linear function over a
polyhedron:

Max cTx

subject to:

(P ) Ax ≤ b,

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn and the variables x are in Rn. Any x satisfying Ax ≤ b
is said to be feasible. If no x satisfies Ax ≤ b, we say that the linear program is infeasible,
and its optimum value is −∞ (as we are maximizing over an empty set). If the objective
function value of the linear program can be made arbitrarily large, we say that the linear
program is unbounded and its optimum value is +∞; otherwise it is bounded. If it is neither
infeasible, nor unbounded, then its optimum value is finite.

Other equivalent forms involve equalities as well, or nonnegative constraints x ≥ 0.
One version that is often considered when discussing algorithms for linear programming
(especially the simplex algorithm) is min{cTx : Ax = b, x ≥ 0}.

Another linear program, dual to (P ), plays a crucial role:

Min bTy

subject to:

(D) ATy = c

y ≥ 0.

(D) is the dual and (P ) is the primal. The terminology for the dual is similar. If (D)
has no feasible solution, it is said to be infeasible and its optimum value is +∞ (as we are
minimizing over an empty set). If (D) is unbounded (i.e. its value can be made arbitrarily
negative) then its optimum value is −∞.
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The primal and dual spaces should not be confused. If A is m×n then we have n primal
variables and m dual variables.

Weak duality is clear: For any feasible solutions x and y to (P ) and (D), we have that
cTx ≤ bTy. Indeed, cTx = yTAx ≤ bTy. The dual was precisely built to get an upper bound
on the value of any primal solution. For example, to get the inequality yTAx ≤ bTy, we need
that y ≥ 0 since we know that Ax ≤ b. In particular, weak duality implies that if the primal
is unbounded then the dual must be infeasible.

Strong duality is the most important result in linear programming; it says that we can
prove the optimality of a primal solution x by exhibiting an optimum dual solution y.

Theorem 3.3 (Strong Duality) Assume that (P ) and (D) are feasible, and let z∗ be the
optimum value of the primal and w∗ the optimum value of the dual. Then z∗ = w∗.

One proof of strong duality is obtained by writing a big system of inequalities in x and y
which says that (i) x is primal feasible, (ii) y is dual feasible and (iii) cTx ≥ bTy. Then use
the Theorem of the Alternatives to show that the infeasibility of this system of inequalities
would contradict the feasibility of either (P ) or (D).
Proof: Let x∗ be a feasible solution to the primal, and y∗ be a feasible solution to the
dual. The proof is by contradiction. Because of weak duality, this means that there are no
solution x ∈ Rn and y ∈ Rm such that





Ax ≤ b
ATy = c
−Iy ≤ 0

−cTx +bTy ≤ 0

By a variant of the Theorem of the Alternatives or Farkas’ lemma (for the case when we
have a combination of inequalities and equalities), we derive that there must exist s ∈ Rm,
t ∈ Rn, u ∈ Rm, v ∈ R such that:

s ≥ 0

u ≥ 0

v ≥ 0

AT s− vc = 0

At− u+ vb = 0

bT s+ cT t < 0.

We distinguish two cases.

Case 1: v = 0. Then s satisfies s ≥ 0 and AT s = 0. This means that, for any α ≥ 0,
y∗ + αs is feasible for the dual. Similarly, At = u ≥ 0 and therefore, for any α ≥ 0, we have
that x∗ − αt is primal feasible. By weak duality, this means that, for any α ≥ 0, we have

cT (x∗ − αt) ≤ bT (y∗ + αs)
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or
cTx∗ − bTy∗ ≤ α(bT s+ cT t).

The right-hand-side tend to −∞ as α tends to ∞, and this is a contradiction as the left-
hand-side is fixed.

Case 2: v > 0. By dividing throughout by v (and renaming all the variables), we get that
there exists s ≥ 0, u ≥ 0 with

AT s = c

At− u = −b
bT s+ cT t < 0.

This means that s is dual feasible and −t is primal feasible, and therefore by weak duality
cT (−t) ≤ bT s contradicting bT s+ cT t < 0. 4

Exercise 3-2. Show that the dual of the dual is the primal.

Exercise 3-3. Show that we only need either the primal or the dual to be feasible for
strong duality to hold. More precisely, if the primal is feasible but the dual is infeasible,
prove that the primal will be unbounded, implying that z∗ = w∗ = +∞.

Looking at cTx = yTAx ≤ bTy, we observe that to get equality between cTx and bTy, we
need complementary slackness:

Theorem 3.4 (Complementary Slackness) If x is feasible in (P ) and y is feasible in
(D) then x is optimum in (P ) and y is optimum in (D) if and only if for all i either yi = 0
or
∑

j aijxj = bi (or both).

Linear programs can be solved using the simplex method; this is not going to be explained
in these notes. No variant of the simplex method is known to provably run in polynomial
time, but there are other polynomial-time algorithms for linear programming, namely the
ellipsoid algorithm and the class of interior-point algorithms.

3.3 Faces of Polyhedra

Definition 3.7 {a(i) ∈ Rn : i ∈ K} are linearly independent if
∑

i λia
(i) = 0 implies that

λi = 0 for all i ∈ K.

Definition 3.8 {a(i) ∈ Rn : i ∈ K} are affinely independent if
∑

i λia
(i) = 0 and

∑
i λi = 0

together imply that λi = 0 for all i ∈ K.
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Observe that {a(i) ∈ Rn : i ∈ K} are affinely independent if and only if

{[
a(i)

1

]
∈ Rn+1 : i ∈ K

}

are linearly independent.

Definition 3.9 The dimension, dim(P ), of a polyhedron P is the maximum number of
affinely independent points in P minus 1.

(This is the same notion as the dimension of the affine hull aff(S).) The dimension can
be -1 (if P is empty), 0 (when P consists of a single point), 1 (when P is a line segment),
and up to n when P affinely spans Rn. In the latter case, we say that P is full-dimensional.
The dimension of a cube in R3 is 3, and so is the dimension of R3 itself (which is a trivial
polyhedron).

Definition 3.10 αTx ≤ β is a valid inequality for P if αTx ≤ β for all x ∈ P .

Observe that for an inequality to be valid for conv(S) we only need to make sure that
it is satisfied by all elements of S, as this will imply that the inequality is also satisfied by
points in conv(S) \S. This observation will be important when dealing with convex hulls of
combinatorial objects such as matchings or spanning trees.

Definition 3.11 A face of a polyhedron P is {x ∈ P : αTx = β} where αTx ≤ β is some
valid inequality of P .

By definition, all faces are polyhedra. The empty face (of dimension -1) is trivial, and so
is the entire polyhedron P (which corresponds to the valid inequality 0Tx ≤ 0). Non-trivial
are those whose dimension is between 0 and dim(P ) − 1. Faces of dimension 0 are called
extreme points or vertices, faces of dimension 1 are called edges, and faces of dimension
dim(P )− 1 are called facets. Sometimes, one uses ridges for faces of dimension dim(P )− 2.

Exercise 3-4. List all 28 faces of the cube P = {x ∈ R3 : 0 ≤ xi ≤ 1 for i = 1, 2, 3}.

Although there are infinitely many valid inequalities, there are only finitely many faces.

Theorem 3.5 Let A ∈ Rm×n. Then any non-empty face of P = {x ∈ Rn : Ax ≤ b}
corresponds to the set of solutions to

∑

j

aijxj = bi for all i ∈ I

∑

j

aijxj ≤ bi for all i /∈ I,

for some set I ⊆ {1, · · · ,m}. Therefore, the number of non-empty faces of P is at most 2m.
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Proof: Consider any valid inequality αTx ≤ β. Suppose the corresponding face F is
non-empty. Thus F are all optimum solutions to

Max αTx

subject to:

(P ) Ax ≤ b.

Choose an optimum solution y∗ to the dual LP. By complementary slackness, the face F is
defined by those elements x of P such that aTi x = bi for i ∈ I = {i : y∗i > 0}. Thus F is
defined by ∑

j

aijxj = bi for all i ∈ I

∑

j

aijxj ≤ bi for all i /∈ I.

As there are 2m possibilities for I, there are at most 2m non-empty faces. 4
The number of faces given in Theorem 3.5 is tight for polyhedra (see exercise below), but

can be considerably improved for polytopes in the so-called upper bound theorem (which is
not given in these notes).

Exercise 3-5. Let P = {x ∈ Rn : xi ≥ 0 for i = 1, · · · , n}. Show that P has 2n + 1 faces.
How many faces of dimension k does P have?

For extreme points (faces of dimension 0), the characterization is even stronger (we do
not need the inequalities):

Theorem 3.6 Let x∗ be an extreme point for P = {x : Ax ≤ b}. Then there exists I such
that x∗ is the unique solution to

∑

j

aijxj = bi for all i ∈ I.

Proof: Given an extreme point x∗, define I = {i :
∑

j aijx
∗
j = bi}. This means that for

i /∈ I, we have
∑

j aijx
∗
j < bi.

From Theorem 3.5, we know that x∗ is uniquely defined by

∑

j

aijxj = bi for all i ∈ I (3)

∑

j

aijxj ≤ bi for all i /∈ I. (4)

Now suppose there exists another solution x̂ when we consider only the equalities for i ∈ I.
Then because of

∑
j aijx

∗
j < bi, we get that (1 − ε)x∗ + εx̂ also satisfies (3) and (4) for ε

sufficiently small. A contradiction (as the face was supposed to contain a single point). 4
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If P is given as {x : Ax = b, x ≥ 0} (as is often the case), the theorem still applies (as
we still have a system of inequalities). In this case, the theorem says that every extreme
point x∗ can be obtained by setting some of the variables to 0, and solving for the unique
solution to the resulting system of equalities. Without loss of generality, we can remove from
Ax = b equalities that are redundant; this means that we can assume that A has full row
rank (rank(A) = m for A ∈ Rm×n). Letting N denote the indices of the non-basic variables
that we set of 0 and B denote the remaining indices (of the so-called basic variables), we
can partition x∗ into x∗B and x∗N (corresponding to these two sets of variables) and rewrite
Ax = b as ABxB +ANxN = b, where AB and AN are the restrictions of A to the indices in B
and N respectively. The theorem says that x∗ is the unique solution to ABxB + ANxN = 0
and xN = 0, which means x∗N = 0 and ABx

∗
B = b. This latter system must have a unique

solution, which means that AB must have full column rank (rank(AB) = |B|). As A itself
has rank m, we have that |B| ≤ m and we can augment B to include indices of N such that
the resulting B satisfies (i) |B| = m and (ii) AB is a m×m invertible matrix (and thus there
is still a unique solution to ABxB = b). In linear programming terminology, a basic feasible
solution or bfs of {x : Ax = b, x ≥ 0} is obtained by choosing a set |B| = m of indices with
AB invertible and letting xB = A−1B b and xN = 0 where N are the indices not in B. We have
thus shown that all extreme points are bfs, and vice versa. Observe that two different bases
B may lead to the same extreme point, as there might be many ways of extending AB into
a m×m invertible matrix in the discussion above.

One consequence we could derive from Theorem 3.5 is:

Corollary 3.7 The maximal (inclusion-wise) non-trivial faces of a non-empty polyhedron
P are the facets.

For the vertices, one needs one additional condition:

Corollary 3.8 If rank(A) = n (full column rank) then the minimal (inclusion-wise) non-
trivial faces of a non-empty polyhedron P = {x ∈ Rn : Ax ≤ b} are the vertices.

Exercise 3-7 shows that the rank condition is necessary.
This means that, if a linear program max{cTx : x ∈ P} with P = {x : Ax ≤ b} is

feasible, bounded and rank(A) = n, then there exists an optimal solution which is a vertex
of P (indeed, the set of all optimal solutions defines a face — the optimal face — and if this
face is not itself a vertex of P , it must contain vertices of P ).

We now prove Corollary 3.8.
Proof: Let F be a minimal (inclusion-wise) non-trivial face of P . This means that we
have a set I such that

F = {x : aTi x = bi ∀i ∈ I
aTj x ≤ bj ∀j /∈ I}

and adding any element to I makes this set empty. Consider two cases. Either F = {x ∈
Rn : aTi x = bi for i ∈ I} or not. In the first case, it means that for every j /∈ I we have
aj ∈ lin({ai : i ∈ I}) (otherwise there would be a solution x to aTi x = bi for all i ∈ I and
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aTj x = bj + 1 and hence not in F ) and therefore since rank(A) = n we have that the system
aTi x = bi for all i ∈ I has a unique solution and thus F is a vertex.

On the other hand, if F 6= {x ∈ Rn : aTi x = bi for i ∈ I} then let j /∈ I such that there
exists x̃ with

aTi x̃ = bi i ∈ I
aTj x̃ > bj.

Since F is not trivial, there exists x̂ ∈ F . In particular, x̂ satisfies

aTi x̂ = bi i ∈ I
aTj x̂ ≤ bj.

Consider a convex combination x′ = λx̃ + (1 − λ)x̂. Consider the largest λ such that x′

is in P . This is well-defined as λ = 0 gives a point in P while it is not for λ = 1. The
corresponding x′ satisfies aTi x

′ = bi for i ∈ I ∪ {k} for some k (possibly j), contradicting the
maximality of I. 4

We now go back to the equivalence between Definitions 3.3 and 3.6 and claim that we
can show that Definition 3.3 implies Definition 3.6.

Theorem 3.9 If P = {x : Ax ≤ b} is bounded then P = conv(X) where X is the set of
extreme points of P .

This is a nice exercise using the Theorem of the Alternatives.
Proof: Since X ⊆ P , we have conv(X) ⊆ P . Assume, by contradiction, that we do not
have equality. Then there must exist x̃ ∈ P \ conv(X). The fact that x̃ /∈ conv(X) means
that there is no solution to: 




∑
v∈X λvv = x̃∑
v∈X λv = 1

λv ≥ 0 v ∈ X.
By the Theorem of the alternatives, this implies that ∃c ∈ Rn, t ∈ R:

{
t+
∑n

j=1 cjvj ≥ 0 ∀v ∈ X
t+
∑n

j=1 cjx̃j < 0.

Since P is bounded, min{cTx : x ∈ P} is finite (say equal to z∗), and the face induced by
cTx ≥ z∗ is non-empty but does not contain any vertex (as all vertices are dominated by x̃
by the above inequalities). This is a contradiction with Corollary 3.8. Observe, indeed, that
Corollary 3.8 applies. If rank(A) < n there woule exists y 6= 0 with Ay = 0 and this would
contradict the boundedness of P (as we could go infinitely in the direction of y). 4

When describing a polyhedron P in terms of linear inequalities, the only inequalities that
are needed are the ones that define facets of P . This is stated in the next few theorems. We
say that an inequality in the system Ax ≤ b is redundant if the corresponding polyhedron is
unchanged by removing the inequality. For P = {x : Ax ≤ b}, we let I= denote the indices
i such that aTi x = bi for all x ∈ P , and I< the remaining ones (i.e. those for which there
exists x ∈ P with aTi x < bi).

This theorem shows that facets are sufficient:
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Theorem 3.10 If the face associated with aTi x ≤ bi for i ∈ I< is not a facet then the
inequality is redundant.

And this one shows that facets are necessary:

Theorem 3.11 If F is a facet of P then there must exists i ∈ I< such that the face induced
by aTi x ≤ bi is precisely F .

In a minimal description of P , we must have a set of linearly independent equalities
together with precisely one inequality for each facet of P .

Exercises

Exercise 3-6. Prove Corollary 3.7.

Exercise 3-7. Show that if rank(A) < n then P = {x ∈ Rn : Ax ≤ b} has no vertices.

Exercise 3-8. Suppose P = {x ∈ Rn : Ax ≤ b, Cx ≤ d}. Show that the set of vertices of
Q = {x ∈ Rn : Ax ≤ b, Cx = d} is a subset of the set of vertices of P .

(In particular, this means that if the vertices of P all belong to {0, 1}n, then so do the
vertices of Q.)

Exercise 3-9. Given two extreme points a and b of a polyhedron P , we say that they
are adjacent if the line segment between them forms an edge (i.e. a face of dimension 1) of
the polyhedron P . This can be rephrased by saying that a and b are adjacent on P if and
only if there exists a cost function c such that a and b are the only two extreme points of P
minimizing cTx over P .

Consider the polyhedron (polytope) P defined as the convex hull of all perfect matchings
in a (not necessarily bipartite) graph G. Give a necessary and sufficient condition for two
matchings M1 and M2 to be adjacent on this polyhedron (hint: think about M1 4M2 =
(M1 \M2) ∪ (M2 \M1)) and prove that your condition is necessary and sufficient.)

Exercise 3-10. Show that two vertices u and v of a polyhedron P are adjacent if and
only there is a unique way to express their midpoint (1

2
(u + v)) as a convex combination of

vertices of P .

3.4 Polyhedral Combinatorics

In one sentence, polyhedral combinatorics deals with the study of polyhedra or polytopes as-
sociated with discrete sets arising from combinatorial optimization problems (such as match-
ings for example). If we have a discrete set X (say the incidence vectors of matchings in a
graph, or the set of incidence vectors of spanning trees of a graph, or the set of incidence vec-
tors of stable sets1 in a graph), we can consider conv(X) and attempt to describe it in terms

1A set S of vertices in a graph G = (V,E) is stable if there are no edges between any two vertices of S.


