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4. Lecture notes on flows and cuts

4.1 Maximum Flows

Network flows deals with modelling the flow of a commodity (water, electricity, packets,
gas, cars, trains, money, or any abstract object) in a network. The links in the network are
capacitated and the commodity does not vanish in the network except at specified locations
where we can either inject or extract some amount of commodity. The main question is how
much can be sent in this network.

Here is a more formal definition of the maximum flow problem. We have a digraph
(directed graph) G = (V,E) and two special vertices s and t; s is called the source and t
the sink. We have an upper capacity function u : E → R and also a lower capacity function
l : E → R (sometimes chosen to be 0 everywhere). A flow x will be an assignment of values
to the arcs (directed edges) so that:

1. for every e ∈ E: l(e) ≤ xe ≤ u(e),

2. for every v ∈ V \ {s, t}: ∑

e∈δ+(u)

xe −
∑

e∈δ−(u)
xe = 0. (1)

The notation δ+(u) represents the set of arcs leaving u, while δ−(u) represents the set of arcs
entering u.

Equations (1) are called flow conservation constraints. Given a flow x, its flow value |x|
is the net flow out of s:

|x| :=
∑

e∈δ+(s)

xe −
∑

e∈δ−(s)
xe. (2)

One important observation is that |x| is also equal to the net flow into t, or minus the net
flow out of t. Indeed, summing (1) over u ∈ V \ {s, t} together with (2), we get:

|x| =
∑

v∈V \{t}


 ∑

e∈δ+(u)

xe −
∑

e∈δ−(u)
xe




=
∑

e∈δ−(t)
xe −

∑

e∈δ+(t)

xe

by looking at the contribution of every arc in the first summation.
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The maximum flow problem is the problem of finding a flow x of maximum value |x|.
This is a linear program:

Max
∑

e∈δ+(s)

xe −
∑

e∈δ−(s)
xe

subject to: ∑

e∈δ+(u)

xe −
∑

e∈δ−(u)
xe = 0 u ∈ V \ {s, t}

l(e) ≤ xe ≤ u(e) e ∈ E.

We could therefore use algorithms for linear programming to find the maximum flow and
duality to derive optimality properties, but we will show that more combinatorial algorithms
can be developed and duality translates into statements about cuts.

In matrix form, the linear program can be written as:

max{cTx : Nx = 0,
Ix ≤ u,
−Ix ≤ −l}

where N is the (vertex-arc incidence1) matrix with rows indexed by u ∈ V \ {s, t} and
columns indexed by arcs e = (i, j) ∈ E; the entry Nue is:

Nue =





1 u = i
−1 u = j
0 u /∈ {i, j}.

The constraints of the linear program are thus: Ax Q b where

A =




N
−−−
I

−−−
−I



,

and some of the constraints are equalities and some are inequalities.

Lemma 4.1 A is total unimodular.

Proof: We could use Theorem 3.14 from the polyhedral chapter, but proving it directly is
as easy. Consider any square submatrix of A, and we would like to compute its determinant
up to its sign. If there is a row with a single +1 or a single −1 in it (in particular, a row
coming from either the identity submatrix I or −I), we can expand the determinant and

1More precisely, part of it as we are not considering vertices s and t
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compute the determinant (up to its sign) of a smaller submatrix of A. Repeating this, we
now have a square submatrix of N . If there is a column with a single +1 or a single −1
then we can expand the determinant along this column and get a smaller submatrix. We
are thus left either with an empty submatrix in which case the determinant of the original
matrix was +1 or −1, or with a square submatrix of N with precisely one +1 and one −1
in every column. The rows of this submatrix are linearly dependent since their sum is the 0
vector. Thus the determinant is 0. This proves total unimodularity. 4

As a corollary, this means that if the right-hand-side (i.e. the upper and lower capacities)
are integer-valued then there always exists a maximum flow which takes only integer values.

Corollary 4.2 If l : E → Z and u : E → Z then there exists a maximum flow x such that
xe ∈ Z for all e ∈ E.

4.1.1 Special cases

Arc-disjoint paths. If l(e) = 0 for all e ∈ E and u(e) = 1 for all e ∈ E, any integer
flow x will only take values in {0, 1}. We claim that for an integer flow x, there exist |x|
arc-dsjoint (i.e. not having any arcs in common) paths from s to t. Indeed, such paths can
be obtained by flow decomposition. As long as |x| > 0, take an arc out of s with xe = 1.
Now follow this arc and whenever we reach a vertex u 6= t, by flow conservation we know
that there exists an arc leaving u that we haven’t traversed yet (this is true even if we reach
s again). This process stops when we reach t and we have therefore identified one path from
s to t. Removing this path gives us a new flow x′ (indeed flow conservation at vertices 6= s, t
is maintained) with |x′| = |x| − 1. Repeating this process gives us |x| paths from s to t
and, by construction, they are arc-disjoint. The paths we get might not be simple2; one can
however make them simple by removing the part of the walk between repeated occurences
of the same vertex. Summarizing, if l(e) = 0 for all e ∈ E and u(e) = 1 for all e ∈ E,
then from a maximum flow of value k, we can extract k arc-disjoint (simple) paths from
s to t. Conversely, if the digraph contains k arc-disjoint paths from s to t, it is easy to
construct a flow of value k. This means that the maximum flow value from s to t represents
the maximum number of arc-disjoint paths between s and t.

Bipartite matchings. One can formulate the maximum matching problem in a bipartite
graph as a maximum flow problem. Indeed, consider a bipartite graph G = (V,E) with
bipartition V = A ∪ B. Consider now a directed graph D with vertex set V ∪ {s, t}. In D,
there is an arc from s to every vertex of A with l(e) = 0 and u(e) = 1. There is also an arc
from every vertex in B to t with capacities l(e) = 0 and u(e) = 1. Every edge (a, b) ∈ E is
oriented from a ∈ A to b ∈ B and gets a lower capacity of 0 and an upper capacity equal
to +∞ (or just 1). One can easily see that from any matching of size k one can construct
a flow of value k; similarly to any integer valued flow of value k corresponds a matching of
size k. Since the capacities are in Z, by Corollary 4.2, this means that a maximum flow in

2A simple path is one in which no vertex is repeated.
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D has the same value as the maximum size of any matching in G. Observe that the upper
capacities for the arcs between A and B do not matter, provided they are ≥ 1.

Orientations. Consider the problem of orienting the edges of an undirected graph G =
(V,E) so that the indegree of any vertex v in the resulting digraph is at most k(v). This can
be formulated as a maximum flow problem in which we have (i) a vertex for every vertex of
G, (ii) a vertex for every edge of G and (iii) 2 additional vertices s and t. Details are left as
an exercise.

Exercise 4-1. Suppose you are given anm×nmatrixA ∈ Rm×n with row sums r1, · · · , rm ∈
Z and column sums c1, · · · , cn ∈ Z. Some of the entries might not be integral but the row
sums and column sums are. Show that there exists a rounded matrix A′ with the following
properties:

•row sums and column sums of A and A′ are identical,

•a′ij = daije or a′ij = baijc (i.e. a′ij is aij either rounded up or down.).

By the way, this rounding is useful to the census bureau as they do not want to publish
statistics that would give too much information on specific individuals. They want to be
able to modify the entries without modifying row and column sums.

4.2 Cuts

In this section, we derive an important duality result for the maximum flow problem, and
as usual, this takes the form of a minmax relation.

In a digraph G = (V,A), we define a cutset or more simply a cut as the set of arcs
δ+(S) = {(u, v) ∈ A : u ∈ S, v ∈ V \ S}. Observe that our earlier notation δ+(v) for v ∈ V
rather than δ+({v}) is a slight abuse of notation. Similarly, we define δ−(S) as δ+(V \ S),
i.e. the arcs entering the vertex set S. We will typically identify a cutset δ+(S) with the
corresponding vertex set S. We say that a cut δ+(S) is an s − t cut (where s and t are
vertices) if s ∈ S and t /∈ S.

For an undirected graph G = (V,E), δ+(S) and δ−(S) are identical and will be denoted
by δ(S) = {(u, v) ∈ E : |{u, v} ∩ S| = 1}. Observe that now δ(S) = δ(V \ S).

For a maximum flow instance on a digraph G = (V,E) and upper and lower capacity
functions u and l, we define the capacity C(S) of the cut induced by S as

C(S) =
∑

e∈δ+(S)

u(e)−
∑

e∈δ−(S)
l(e) = u(δ+(S))− l(δ−(S)).

By definition of a flow x, we have that

C(S) ≥
∑

e∈δ+(S)

xe −
∑

e∈δ−(S)
xe.
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We have shown earlier that the net flow out of s is equal to the net flow into t. Similarly,
we can show that for any S with s ∈ S and t /∈ S (i.e. the cut induced is an s− t cut), we
have that the flow value |x| equals:

|x| =
∑

e∈δ+(S)

xe −
∑

e∈δ−(S)
xe.

This is shown by summing (1) over u ∈ S \ {s} together with (2). Thus, we get that for any
S with s ∈ S and t /∈ S and any s− t flow x, we have:

|x| ≤ C(S).

Therefore, maximizing over the s− t flows and minimizing over the s− t cuts, we get

max |x| ≤ min
S:s∈S,t/∈S

C(S).

This is weak duality, but in fact, one always has equality as stated in the following theorem.
Of course, we need the assumption that the maximum flow problem is feasible. For example
if there is an edge with l(e) > u(e) then no flow exists (we will show later that a necessary
and sufficient condition for the existence of a flow is that (i) l(e) ≤ u(e) for every e ∈ E and
(ii) for any S ⊂ V with |S ∩ {s, t}| 6= 1, we have u(δ+(S)) ≥ l(δ−(S))).

Theorem 4.3 (max s− t flow-min s− t cut) For any maximum flow problem for which
a feasible flow exists, we have that that the maximum s−t flow value is equal to the minimum
capacity of any s− t cut:

max
flow x

|x| = min
S:s∈S,t/∈S

C(S).

One way to prove this theorem is by using strong duality of linear programming and show
that from any optimum dual solution one can derive an s− t cut of that capacity. Another
way, and this is the way we pursue, is to develop an algorithm to find a maximum flow and
show that when it terminates we have also a cut whose capacity is equal to the flow we have
constructed, therefore proving optimality of the flow and equality in the minmax relation.

Here is an algorithm for finding a maximum flow. Let us assume that we are given a
feasible flow x (if u(e) ≥ 0 and l(e) ≤ 0 for all e, we could start with x = 0). Given a flow
x, we define a residual graph Gx on the same vertex set V . In Gx, we have an arc (i, j) if
(i) (i, j) ∈ E and xij < u((i, j)) or if (ii) (j, i) ∈ E and xji > l((j, i)). In case (i), we say
that (i, j) is a forward arc and in case (ii) it is a backward arc. If both (i) and (ii) happen,
we introduce two arcs (i, j), one forward and one backward; to be precise, Gx is thus a
multigraph. Consider now any directed path P from s to t in the residual graph; such a path
is called an augmenting path. Let P+ denote the forward arcs in P , and P− the backward
arcs. We can modify the flow x in the following way:

x′e =





xe + ε e ∈ P+

xe − ε e ∈ P−
xe e /∈ P
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This is known as pushing ε units of flow along P , or simply augmenting along P . Oberve
that flow conservation at any vertex u still holds when pushing flow along a path. This is
trivial if u is not on the path, and if u is on the path, the contributions of the two arcs
indicent to u on P cancel each other. To make sure the resulting x′ is feasible (satisfies the
capacity constraints), we choose

ε = min

(
min
e∈P+

(u(e)− xe), min
e∈P−

xe − l(e)
)
.

By construction of the residual graph we have that ε > 0. Thus, pushing ε units of flow
along an augmenting path provides a new flow x′ whose value |x′| satisfy |x′| = |x|+ ε. Thus
the flow x was not maximum.

Conversely, assume that the residual graph Gx does not contain any directed path from
s to t. Let S = {u ∈ V : there exists a directed path in Gx from s to u}. By definition,
s ∈ S and t /∈ S (otherwise there would be an augmenting path). Also, by definition, there
is no arc in Gx from S to V \ S. This means that, for e ∈ E, if e ∈ δ+(S) then xe = u(e)
and if e ∈ δ−(S) then xe = l(e). This implies that

C(S) =
∑

e∈δ+(S)

u(e)−
∑

e∈δ−(S)
l(e) = u(δ+(S))− l(δ−(S)) =

∑

e∈δ+(S)

xe −
∑

e∈δ−(S)
xe = |x|.

This shows that the flow x is maximum and there exists an s − t cut of the same capacity
as |x|.

This almost proves Theorem 4.3. Indeed, as long as there exists an augmenting path, we
can push flow along it, update the residual graph and continue. Whenever this algorithm
stops, if it stops, we have a maximum flow and a corresponding minimum cut. But maybe
this algorithm never stops; this can actually happen if the capacities might be irrational and
the “wrong” augmenting paths are chosen at every iteration. To complete the proof of the
max flow min cut theorem, we can simply use the linear programming formulation of the
maximum flow problem and this shows that a maximum flow exists (in a linear program,
the max is a real maximum (as it is achieved by a vertex) and not just a supremum which
may not be attained). Starting from that flow x and constructing its residual graph Gx, we
get that there exists a corresponding minimum s− t cut of the same value.

4.2.1 Interpretation of max flow min cut

The max s − t flow min s − t cut theorem together with integrality of the maximum flow
allows to derive several combinatorial min-max relations.

Bipartite matchings. Consider for example the maximum bipartite matching problem
and its formulation as a maximum flow problem given in section 4.1.1. We said that for
the arcs between A and B we had flexibility on how we choose u(e); here, let us assume
we have set them to be equal to +∞ (or any sufficiently large integer). Consider any set
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S ⊆ ({s} ∪ A ∪ B) with s ∈ S (and t /∈ S). For C(S) to be finite there cannot be any edge
(i, j) ∈ E between i ∈ A∩S and j ∈ B \S. In other words, N(A∩S) ⊆ B ∩S, i.e. if we set
C = (A \ S) ∪ (B ∩ S) we have that C is a vertex cover. What is the capacity C(S) of the
corresponding cut? It is precisely C(S) = |A \ S|+ |B ∩ S|, the first term corresponding to
the arcs from s to A\S and the second term correspodning to the arcs between B∩S and t.
The max s− t flow min s− t cut theorem therefore implies that there exists a vertex cover C
whose cardinality equals the size of the maximum matching. We have thus rederived König’s
theorem. We could also derive Hall’s theorem about the existence of a perfect matching.

Arc-disjoint paths. For the problem of teh maximum number of arc-disjoint paths be-
tween s and t, the max s − t flow min s − t cut theorem can be interpreted as Menger’s
theorem:

Theorem 4.4 In a directed graph G = (V,A), there are k arc-disjoint paths between s and
t if and only if for all S ⊆ V \ {t} with s ∈ S, we have |δ+(S)| ≥ k.

Exercise 4-2. At some point during baseball season, each of n teams of the American
League has already played several games. Suppose team i has won wi games so far, and
gij = gji is the number of games that teams i and j have yet to play. No game ends in a tie,
so each game gives one point to either team and 0 to the other. You would like to decide if
your favorite team, say team n, can still win. In other words, you would like to determine
whether there exists an outcome to the games to be played (remember, with no ties) such
that team n has at least as many victories as all the other teams (we allow team n to be
tied for first place with other teams).

Show that this problem can be solved as a maximum flow problem. Give a necessary and
sufficient condition on the gij’s so that team n can still win.

Exercise 4-3. Consider the following orientation problem. We are given an undirected
graph G = (V,E) and integer values p(v) for every vertex v ∈ V . we would like to know
if we can orient the edges of G such that the directed graph we obtain has at most p(v)
arcs incoming to v (the “indegree requirements”). In other words, for each edge {u, v}, we
have to decide whether to orient it as (u, v) or as (v, u), and we would like at most p(v) arcs
oriented towards v.

1.Show that the problem can be formulated as a maximum flow problem. That is, show
how to create a maximum flow problem such that, from its solution, you can decide
whether or not the graph can be oriented and if so, it also gives the orientation.

2.Consider the case that the graph cannot be oriented and meet the indegree requirements.
Prove from the max-flow min-cut theorem that there must exist a set S ⊆ V such that
|E(S)| >∑v∈S p(v), where as usual E(S) denotes the set of edges with both endpoints
within S.
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4.3 Efficiency of Maximum Flow Algorithm

The proof of the max s − t flow min s − t cut theorem suggests a simple augmenting path
algorithm for finding the maximum flow. Start from any feasible flow and keep pushing flow
along an augmenting in the residual graph until no such augmenting path exists. The main
question we address now is how many iterations does this algorithm need before terminating.

As mentioned earlier, if the capacities are irrational, this algorithm may never terminate.
In the case of integral capacities, if we start from an integral flow, it is easy to see that
we always maintain an integral flow and we will always be pushing an integral amount of
flow. Therefore, the number of iterations is bounded by the maximum difference between the
values of two flows, which is at most

∑
e∈δ(s)(u(e)− l(e)). This is finite, but not polynomial

in the size of the input (which depends only logarithmically on the capacities u and l).

Shortest augmenting path variant. Edmonds and Karp proposed a variant of the aug-
menting path algorithm which is guaranteed to terminate in a polynomial number of itera-
tions depending only on n = |V | and m = |E|. No assumptions on the capacities are made,
and the algorithm is even correct and terminates for irrational capacities.

The idea of Edmonds and Karp is to always find in the residual graph a shortest aug-
menting path, i.e. one with the fewer number of arcs. Given a flow x, consider the residual
graph Gx. For any vertex v, let d(v) denote the distance (number of arcs) from s to v in Gx.
The shortest augmenting path algorithm is to select a path v0− v1− · · · − vk in the residual
graph where v0 = s, vk = t and d(vi) = i.

The analysis of the algorithm proceeds as follows. Let P be a shotest augmenting path
from s to t in Gx and let x′ be the resulting flow after pushing as much flow as possible
along P . Let d′ be the distance labels corresponding to Gx′ . Observe that only reverse
arcs (i, j) along P (thus satisfying d(i) = d(j) + 1) may get introduced in Gx′ . Therefore,
after augmentation, we have that d(j)− d(i) ≤ 1 for every arc (i, j) ∈ Ex′ . Summing these
inqualities along the edges of any path P ′ in Gx′ from s to j ∈ V , we get that d(j) ≤ d′(j)
for any j ∈ V . In particular, we have that d(t) ≤ d′(t). As distance labels can never become
greater than n−1, we have that the distance to t can only increase at most n−1 times. But
d′(t) can also be equal to d(t). In this case though, the fact that an arc of P is saturated
means that there is one fewer arc (i, j) with d(j) = d(i) + 1 in Gx′ than in Gx. Thus
after at most m such iterations, we must have a strict increase in the distance label of t.
Summarizing, this means that the number of augmentations is at most m(n− 1). The time
it takes to build the residual graph and to find an augmenting path in it is at most O(m)
time. This means that the total running time of the shortest augmenting path algorithm is
at most O(m2n). This can be further improved but this is not the focus of these notes.

4.4 Minimum cuts

From now on, we assume that we have only upper capacities u and no lower capacities l
(l(e) = 0 for all e). The minimum s− t cut problem that we have solved so far corresponds


