# 5. Matroid optimization

## 5.1 Definition of a Matroid

**Matroids** are combinatorial structures that generalize the notion of linear independence in matrices. There are many equivalent definitions of matroids, we will use one that focus on its *independent sets*. A matroid M is defined on a finite ground set E (or E(M) if we want to emphasize the matroid M) and a collection of subsets of E are said to be *independent*. The family of independent sets is denoted by  $\mathcal{I}$  or  $\mathcal{I}(M)$ , and we typically refer to a matroid M by listing its ground set and its family of independent sets:  $M = (E, \mathcal{I})$ . For M to be a matroid,  $\mathcal{I}$  must satisfy two main axioms:

 $(I_1)$  if  $X \subseteq Y$  and  $Y \in \mathcal{I}$  then  $X \in \mathcal{I}$ ,

 $(I_2)$  if  $X \in \mathcal{I}$  and  $Y \in \mathcal{I}$  and |Y| > |X| then  $\exists e \in Y \setminus X : X \cup \{e\} \in \mathcal{I}$ .

In words, the second axiom says that if X is independent and there exists a larger independent set Y then X can be extended to a larger independent by adding an element of  $Y \setminus X$ . Axiom  $(I_2)$  implies that every maximal (inclusion-wise) independent set is maximum; in other words, all maximal independent sets have the same cardinality. A maximal independent set is called a base of the matroid.

## Examples.

• One trivial example of a matroid  $M = (E, \mathcal{I})$  is a **uniform** matroid in which

$$\mathcal{I} = \{ X \subseteq E : |X| \le k \},\$$

for a given k. It is usually denoted as  $U_{k,n}$  where |E| = n. A base is any set of cardinality k (unless k > |E| in which case the only base is |E|).

A free matroid is one in which all sets are independent; it is  $U_{n,n}$ .

• Another is a **partition** matroid in which E is partitioned into (disjoint) sets  $E_1, E_2, \cdots, E_l$ and

 $\mathcal{I} = \{ X \subseteq E : |X \cap E_i| \le k_i \text{ for all } i = 1, \cdots, l \},\$ 

for some given parameters  $k_1, \dots, k_l$ . As an exercise, let us check that  $(I_2)$  is satisfied. If  $X, Y \in \mathcal{I}$  and |Y| > |X|, there must exist *i* such that  $|Y \cap E_i| > |X \cap E_i|$  and this means that adding any element *e* in  $E_i \cap (Y \setminus X)$  to X will maintain independence.

Observe that M would *not* be a matroid if the sets  $E_i$  were *not* disjoint. For example, if  $E_1 = \{1, 2\}$  and  $E_2 = \{2, 3\}$  with  $k_1 = 1$  and  $k_2 = 1$  then both  $Y = \{1, 3\}$  and  $X = \{2\}$  have at most one element of each  $E_i$ , but one can't find an element of Y to add to X.

#### 5. Matroid optimization

• Linear matroids (or representable matroids) are defined from a matrix A, and this is where the term *matroid* comes from. Let E denote the index set of the columns of A. For a subset X of E, let  $A_X$  denote the submatrix of A consisting only of those columns indexed by X. Now, define

$$\mathcal{I} = \{ X \subseteq E : \operatorname{rank}(A_X) = |X| \},\$$

i.e. a set X is independent if the corresponding columns are linearly independent. A base B corresponds to a linearly independent set of columns of cardinality rank(A).

Observe that  $(I_1)$  is trivially satisfied, as if columns are linearly independent, so is a subset of them.  $(I_2)$  is less trivial, but corresponds to a fundamental linear algebra property. If  $A_X$  has full column rank, its columns span a space of dimension |X|, and similarly for Y, and therefore if |Y| > |X|, there must exist a column of  $A_Y$  that is not in the span of the columns of  $A_X$ ; adding this column to  $A_X$  increases the rank by 1.

A linear matroid can be defined over any field  $\mathbb{F}$  (not just the reals); we say that the matroid is **representable over**  $\mathbb{F}$ . If the field is  $\mathbb{F}_2$  (field of 2 elements with operations (mod 2)) then the matroid is said to be **binary**. If the field is  $\mathbb{F}_3$  then the matroid is said to be **ternary**.

For example, the binary matroid corresponding to the matrix

$$A = \left[ \begin{array}{rrr} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{array} \right]$$

corresponds to  $U_{2,3}$  since the sum of the 3 columns is the 0 vector when taking components modulo 2. If A is viewed over the reals or over  $\mathbb{F}_3$  then the matroid is the free matroid on 3 elements.

Not every matroid is linear. Among those that are linear, some can be represented over some fields  $\mathbb{F}$  but not all. For example, there are binary matroids which are not ternary and vice versa (for example,  $U_{2,4}$  is ternary but not binary). Matroids which can be represented over *any* field are called **regular**. One can show that regular matroids are precisely those linear matroids that can be represented over the reals by a totally unimodular marix. (Because of this connection, a deep result of Seymour provides a polynomial-time algorithm for deciding whether a matrix is TU.)

• Here is an example of something that is not a matroid. Take a graph G = (V, E), and let  $\mathcal{I} = \{F \subseteq E : F \text{ is a matching}\}$ . This is not a matroid since  $(I_2)$  is not necessarily satisfied  $((I_1) \text{ is satisfied}^1, \text{ however})$ . Consider, for example, a graph on 4 vertices and let  $X = \{(2,3)\}$  and  $Y = \{(1,2), (3,4)\}$ . Both X and Y are matchings, but one cannot add an edge of Y to X and still have a matching.

<sup>&</sup>lt;sup>1</sup>When  $(I_1)$  alone is satisfied,  $(E, \mathcal{I})$  is called an *independence system*.

#### 5. Matroid optimization

April 8, 2015

- There is, however, another matroid associated with matchings in a (general, not necessarily bipartite) graph G = (V, E), but this time the ground set of M corresponds to V. In the **matching matroid**,  $\mathcal{I} = \{S \subseteq V : S \text{ is covered by some matching } M\}$ . In this definition, the matching does not need to cover precisely S; other vertices can be covered as well.
- A very important class of matroids in combinatorial optimization is the class of **graphic** matroids (also called cycle matroids). Given a graph G = (V, E), we define independent sets to be those subsets of edges which are forests, i.e. do not contain any cycles. This is called the graphic matroid  $M = (E, \mathcal{I})$ , or M(G).

 $(I_1)$  is clearly satisfied. To check  $(I_2)$ , first notice that if F is a forest then the number of connected components of the graph (V, F) is given by  $\kappa(V, F) = |V| - |F|$ . Therefore, if X and Y are 2 forests and |Y| > |X| then  $\kappa(V, Y) < \kappa(V, X)$  and therefore there must exist an edge of  $Y \setminus X$  which connects two different connected components of X; adding this edge to X results in a larger forest. This shows  $(I_2)$ .

If the graph G is connected, any base will correspond to a spanning tree T of the graph. If the original graph is disconnected then a base corresponds to taking a spanning tree in each connected component of G.

A graphic matroid is a linear matroid. We first show that the field  $\mathbb{F}$  can be chosen to be the reals. Consider the matrix A with a row for each vertex  $i \in V$  and a column for each edge  $e = (i, j) \in E$ . In the column corresponding to (i, j), all entries are 0, except for a 1 in i or j (arbitrarily) and a -1 in the other. To show equivalence between the original matroid M and this newly constructed linear matroid M', we need to show that any independent set for M is independent in M' and vice versa. This is left as an exercise.

In fact, a graphic matroid is *regular*; it can be represented over any field  $\mathbb{F}$ . In fact the above matrix A can be shown to be TU. To obtain a representation for a field  $\mathbb{F}$ , one simply needs to take the representation given above for  $\mathbb{R}$  and simply view/replace all -1 by the additive inverse of 1.

### 5.1.1 Circuits

A minimal (inclusionwise) dependent set in a matroid is called a *circuit*. In a graphic matroid M(G), a circuit will be the usual notion of a *cycle* in the graph G; to be dependent in the graphic matroid, one needs to contain a cycle and the minimal sets of edges containing a cycle are the cycles themselves. In a partition matroid, a circuit will be a set  $C \subseteq E_i$  for some i with  $|C \cap E_i| = k_i + 1$ .

By definition of a circuit C, we have that if we remove any element of a circuit then we get an independent set. A crucial property of circuit is given by the following property,