
Chapter 1

Introduction to Discrete Optimization

Roughly speaking, discrete optimization deals with finding the best solution out of finite number
of possibilities in a computationally efficient way. Typically the number of possible solutions is
larger than the number of atoms in the universe, hence instead of mindlessly trying out all of them,
we have to come up with insights into the problem structure in order to succeed. In this class,
we plan to study the following classical and basic problems:

• Minimum spanning trees
• The Shortest Path problem
• Maximum flows
• Matchings
• The Knapsack problem
• Min Cost flows
• Integer Programming

The purpose of this class is to give a proof-based, formal introduction into the theory of discrete
optimization.

1.1 Algorithms and Complexity

In this section, we want to discuss, what we formally mean with problems, algorithms and
running time. This is made best with a simple example. Consider the following problem:

Find Duplicate
Input: A list of numbers a1, . . . , an ∈ Z
Goal: Decide whether some number appears at least twice in the list.

Obviously this is not a very interesting problem, but it will serve us well as introductory example
to bring us all one the same page. A straightforward algorithm to solve the problem is as follows:

(1) FOR i = 1 TO n DO

(2) FOR j = i+ 1 TO n DO
(3) If ai = aj then return ”yes”

(4) Return “no”

5

The algorithm is stated in what is called pseudo code, that means it is not actually in one of
the common programming languages like Java, C, C++, Pascal or BASIC. On the other hand, it
takes only small modifications to translate the algorithm in one of those languages. There are no
consistent rules what is allowed in pseudo code and what not; the point of pseudo code is that it
does not need to be machine-readable, but it should be human-readable. A good rule of thumb is
that everything is allowed that also one of the mentioned programming languages can do.

In particular, we allow any of the following operations: addition, subtraction, multiplication,
division, comparisons, etc. Moreover, we allow the algorithm an infinite amount of memory (though
our little algorithm above only needed the two variables i and j).

The next question that we should discuss in the analysis of the algorithm is its running time,
which we define as the number of elementary operations (such as adding, subtracting, compar-
ing, etc) that the algorithm makes. Since the variable i runs from 1 to n and j runs from j = i+ 1

to n, step (3) is executed
(
n
2

)
= n(n−1)

2 many times. On the other hand, should we count only
step (3) or shall we also count the FOR loops? And in the 2nd FOR loop, shall we only count one
operation for the comparison or shall we also count the addition in i+ 1? We see that it might be
very tedious to determine the exact number of operations. On the other hand we probably agree
that the running time is of the form Cn2 where C is some constant that might be, say 3 or 4 or 8
depending on what exactly we count as an elementary operation. Let us agree from now on, that
we only want to determine the running time up to constant factors.

As a side remark, there is a precisely defined formal computational model, which is called a
Turing machine (interestingly, it was defined by Alan M. Turing in 1936 before the first computer
was actually build). In particular, for any algorithm in the Turing machine model one can reduce
the running time by a constant factor while increasing the state space. An implication of this fact
is that running times in the Turing machine model are actually only well defined up to constant
factors. We take this as one more reason to be content with our decision of only determining running
times up to constant factors.

So, the outcome of our runtime analysis for the Find Duplicate algorithm is the following:

There is some constant C > 0 so that the Find Duplicate algorithm (1.1)
finishes after at most Cn2 many operations.

Observe that it was actually possible that the algorithm finishes much faster, namely if it finds a
match in step (3), so we are only interested in an upper bound. Note that the simple algorithm
that we found is not the most efficient one for deciding whether n numbers contain a duplicate. It
is actually possible to answer that question in time C ′n log(n) using a sorting algorithm. If we want
to compare the running times Cn2 and C ′n log(n), then we do not know which of the constants C
and C ′ is larger. So for small values of n, we don’t know which algorithm would be faster. But
limn→∞ Cn2

C′n log(n) = ∞, hence if n is large enough the C ′n log(n) algorithm would outperform the
Cn2 algorithm. Thus, we do consider the C ′n log(n) algorithm as the more efficient one1.

It is standard in computer science and operations research to abbreviate the claim from (1.1)
using the O-notation and replace it by the equivalent statement:

The Find Duplicate algorithm takes time O(n2). (1.2)
1Most constants that appear in algorithms are reasonable small anyway. However, there are fairly complicated

algorithm for example for matrix multiplication which theoretically are faster than the naive algorithms, but only if
n exceeds the number of atoms in the universe.

6

The formal definition of the O-notation is a little bit technical:

Definition 1. If f(s) and g(s) are two positive real valued functions on N, the set of non-negative
integers, we say that f(n) = O(g(n)) if there is a constant c > 0 such that f(n) ≤ c · g(n) for all n
greater than some finite n0.

It might suffice to just note that the statements (1.1) and (1.2) are equivalent and we would use
the latter for the sake of convenience.

Going once more back to the Find Duplicate algorithm, recall that the input are the numbers
a1, . . . , an. We say that the input length is n, which is the number of numbers in the input. For
the performance of an algorithm, we always compare the running time with respect to the input
length. In particular, the running time of O(n2) is bounded by a polynomial in the input length n,
so we say that our algorithm has polynomial running time. Such polynomial time algorithms
are considered efficient from the theoretical perspective2. Formally, we say that any running
time of the form nC is polynomial, where C > 0 is a constant and n is the length of the input.
For example, below we list a couple of possible running times and sort them according to their
asymptotic behavior:

100n ≪ n ln(n) ≪ n2 ≪ n10

︸ ︷︷ ︸
efficient

≪ 2
√
n ≪ 2n ≪ n!︸ ︷︷ ︸

inefficient

1.1.1 Complexity theory and NP-hardness

We want to conclude with a brief and informal discussion on complexity theory. The complexity
class P is the class of problems that admit a polynomial time algorithm. For example, our problem
of deciding whether a list of numbers has duplicates is in P. However, not all problems seem to
admit polynomial time algorithms. For example, there is no polynomial time algorithm known for
the following classical problem:

Partition
Input: A list of numbers a1, . . . , an ∈ N
Goal: Decide whether one can partition {1, . . . , n} into I1∪̇I2 = {1, . . . , n} so that

∑

i∈I1
ai =

∑

i∈I2
ai.

To capture problems of this type, one defines a more general class: NP is the class of problems
that admit a non-deterministic polynomial time algorithm. Intuitively, it means that a problem
lies in NP if given a solution one is able to verify in polynomial time that this is indeed a solution.
For example for Partition, if somebody claims to us that for a given input a1, . . . , an the answer
is “yes”, then (s)he could simply give us the sets I1, I2. We could then check that they are indeed a
partition of {1, . . . , n} and compute the sums

∑
i∈I1 ai and

∑
i∈I2 ai and compare them. In other

words, the partition I1, I2 is a computational proof that the answer is “yes” and the proof can
be verified in polynomial time. That is exactly what problems in NP defines. Note that trivially,
P ⊆ NP.

We say that a problem P ∈ NP is NP-complete if with a polynomial time algorithm for P , one
could solve any other problem in NP in polynomial time. Intuitively, the NP-complete problems

2This is true for theoretical considerations. For many practical applications, researchers actually try to come up
with near-linear time algorithms and consider anything of the order n2 as highly impractical.

7

are the hardest problems in NP. One of the 7 Millenium problems (with a $1,000,000 award) is
to prove the conjecture that NP-complete problems do not have polynomial time algorithms (i.e.
NP 6= P). An incomplete overview over the complexity landscape (assuming that indeed NP 6= P)
is as follows:

NP

P
matching

max flowmin cut

shortest path
linear programming

NP-complete
TSPSAT

max cut

integer programming
partition

From time to time we want to make some advanced remarks that actually exceed the scope of
this lecture. Those kind of remarks will be in gray box labeled advanced remark. Those comments
are not relevant for the exam, but they give some background information for the interested student.

Advanced remark:

Now with the notation of P and NP, we want to go back to how we determine the
running time. We used what is called the arithmetic model / RAM model where any
arithmetic operation like addition, multiplication etc, counts only one unit. On the other
hand, if we implement an algorithm using a Turing machine, then we need to encode all
numbers using bits (or with a constant number of symbols, which has the same effect up to
constant factors). If the numbers are large, we might need a lot of bits per number and we
might dramatically underestimate the running time on a Turing machine if we only count
the number of arithmetic operations. To be more concrete, consider the following (useless)
algorithm

(1) Set a := 2
(2) FOR i = 1 TO n DO

(3) Update a := a2.

The algorithm only performs O(n) arithmetic operations. On the other hand, the variable
at the end is a = 22

n . In other words, we need 2n bits to represent the result, which leaves
an exponential gap between the number of operations in the arithmetic model and the bit
model where we count each bit operation. It is even worse: One can solve NP-complete
problems using a polynomial number of arithmetic operations by creating numbers with
exponentially many bits and using them to do exponential work.
For a more formal accounting of running time, it is hence necessary to make sure that
the gap between the arithmetic model and the bit model is bounded by a polynomial in
the input length. For example it suffices to argue that all numbers are not more than
single-exponentially large in the the input. All algorithms that we consider in this lecture
notes will have that property, so we will not insist on doing that (sometimes tedious) part
of the analysis.

8

