Summary of big theorem

As I've mentioned in class, the big theorem only applies when m = n. But regardless of what m and n are, there are still a lot of equivalences that are important to know. Please also keep in mind that equivalent here means that the statements are all true or all false - it doesn't mean they mean the same thing. It is important that you know what all of the parts mean.

Theorem 1. Suppose $T : \mathbb{R}^m \to \mathbb{R}^n$ a linear transformation and A is an $n \times m$ matrix with $T(\mathbf{x}) = A\mathbf{x}$, and $A = [\mathbf{a}_1...\mathbf{a}_m]$. If m > n, none of the following hold. If $m \le n$, the following are equivalent. (i.e. they are all true or all false.)

- 1. The columns of A are linearly independent (i.e. $\{\mathbf{a}_1, ..., \mathbf{a}_m\}$ is a linearly independent set.)
- 2. T is one-to-one.
- 3. $A\mathbf{x} = \mathbf{b}$ has at most one solution for all $\mathbf{b} \in \mathbb{R}^n$.
- 4. $\ker(T) = \{\mathbf{0}\}.$
- 5. $\operatorname{rank}(A) = m$.

Theorem 2. Suppose $T : \mathbb{R}^m \to \mathbb{R}^n$ a linear transformation and A is an $n \times m$ matrix with $T(\mathbf{x}) = A\mathbf{x}$, and $A = [\mathbf{a}_1...\mathbf{a}_m]$. If m < n, none of the following hold. If $m \ge n$, the following are equivalent. (i.e. they are all true or all false.)

- 1. $\{\mathbf{a}_1, ..., \mathbf{a}_m\}$ spans \mathbb{R}^n (*i.e.* span $\{\mathbf{a}_1, ..., \mathbf{a}_m\} = \mathbb{R}^n$.)
- 2. T is onto.
- 3. $A\mathbf{x} = \mathbf{b}$ has at least one solution for all $\mathbf{b} \in \mathbb{R}^n$.
- 4. $\operatorname{col}(A) = \mathbb{R}^n$.
- 5. $\operatorname{rank}(A) = n$.

Theorem 3 ("Big Theorem"). Now suppose we are in the situation of theorems 1 and 2, with m = n. Then all of the conditions of theorems 1 and 2, and all of the following, are equivalent. (either all 15 statements are true or all are false)

- 1. A is an invertible matrix.
- 2. $\{\mathbf{a}_1, ..., \mathbf{a}_m\}$ is a basis for \mathbb{R}^n .
- 3. $A\mathbf{x} = \mathbf{b}$ has exactly one solution for all $\mathbf{b} \in \mathbb{R}^n$.
- 4. $det(A) \neq 0$. (won't cover until chapter 5)
- 5. $\lambda = 0$ is not an eigenvalue of A. (won't cover until chapter 6)