Lecture #13, Wednesday, May 12, 1999

Handouts: Seating chart for Friday MidTerm Exam.

Agenda: Pre-Test #2
Announcements

- MIDTERM #2 is Friday
 THERE IS A SEATING CHART! Find your row TODAY, so Friday can proceed quickly.

- STUDY PROBLEMS: Pre-test #2 has four types of problems. These will correspond to the 4 problems on Friday’s Mid-term; in particular there will be a constrained optimization problem. In addition to the pre-test problems, you are expected to work all of study problems-Part II, #33-#43. (Warning none of these “exam-like” study problems covers constrained optimization.)
We wish to optimize the function

\[P = L^{1/3}C^{2/3} \]

subject to the constraint

\[100L + 150C = 30,000. \]

(The variable \(L \) stands for “labor” and the variable \(C \) stands for “capital.” This function for \(P \) in terms of \(L \) and \(C \) is called a production function.)

a) Write the variable \(P \) as a function of the single variable \(L \) by combining the objective and constraint functions.

b) Using your answer to (a) find the value of \(L \) that maximizes \(P \). [Note that after you have set the derivative equal to 0, you can simplify things by multiplying the equation by a carefully chosen power of \(L \).]

c) What are the values of \(C \) and \(P \) that correspond to the value of \(L \) you found in (b)?
Pre-Test Question 9

The Demand Curve for Blivets shown in your text has the formula

\[h(q) = 5 - \sqrt{q + 3}. \]

We get Total Revenue from this curve by the recipe \(R(q) = q \cdot h(q) \).

a) Write the formulas for \(R(q) \) and \(R'(q) \).

b) Find the positive (non-zero) value of \(q \) at which \(R(q) = 0 \).

c) Find the value of \(q \) in the interval between \(q = 0 \) and the answer you gave in (b) at which \(R(q) \) reaches its largest value.

d) The Total Cost of manufacturing Blivets is given by the formula \(C(q) = q + 6 \). Find the quantity of Blivets to be produced to maximize profits.
Interpreting Derivatives 1

Consider the following table of values of a function $z = f(x, y)$.

<table>
<thead>
<tr>
<th></th>
<th>-8</th>
<th>-6</th>
<th>-4</th>
<th>-2</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>454</td>
<td>370</td>
<td>302</td>
<td>250</td>
<td>214</td>
<td>194</td>
<td>190</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>350</td>
<td>274</td>
<td>214</td>
<td>170</td>
<td>142</td>
<td>130</td>
<td>134</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>262</td>
<td>194</td>
<td>142</td>
<td>106</td>
<td>86</td>
<td>82</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>190</td>
<td>130</td>
<td>86</td>
<td>58</td>
<td>46</td>
<td>50</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>134</td>
<td>82</td>
<td>46</td>
<td>26</td>
<td>22</td>
<td>34</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>94</td>
<td>50</td>
<td>22</td>
<td>10</td>
<td>14</td>
<td>34</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>70</td>
<td>34</td>
<td>14</td>
<td>10</td>
<td>22</td>
<td>50</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>62</td>
<td>34</td>
<td>22</td>
<td>26</td>
<td>46</td>
<td>82</td>
<td>134</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>70</td>
<td>50</td>
<td>46</td>
<td>58</td>
<td>86</td>
<td>130</td>
<td>190</td>
<td></td>
</tr>
<tr>
<td>-2</td>
<td>94</td>
<td>82</td>
<td>86</td>
<td>106</td>
<td>142</td>
<td>194</td>
<td>262</td>
<td></td>
</tr>
<tr>
<td>-4</td>
<td>134</td>
<td>130</td>
<td>142</td>
<td>170</td>
<td>214</td>
<td>274</td>
<td>350</td>
<td></td>
</tr>
<tr>
<td>-6</td>
<td>190</td>
<td>194</td>
<td>214</td>
<td>250</td>
<td>302</td>
<td>370</td>
<td>454</td>
<td></td>
</tr>
<tr>
<td>-8</td>
<td>262</td>
<td>274</td>
<td>302</td>
<td>346</td>
<td>406</td>
<td>482</td>
<td>574</td>
<td></td>
</tr>
</tbody>
</table>

Slide 5
a) Sketch the graph of the function
\[z = h(t) = f(t, 6) \] for values between
\[t = 0 \text{ and } t = 6. \]

b) Sketch the graph of the function
\[z = k(t) = f(4, t) \] for values between
\[t = 0 \text{ and } t = 12. \]

c) Using the graphs that you drew, estimate the following
\[\frac{\partial f(4, 6)}{\partial x} \quad \frac{\partial f(4, 6)}{\partial y} \]
You know the following information about the function \(w = H(u, v) \)

\[
H(2, 3) = -1, \quad \frac{\partial H(2, 3)}{\partial u} = 0.5 \quad \frac{\partial H(2, 3)}{\partial v} = -2
\]

\[
\frac{\partial^2 H(2, 3)}{\partial u^2} < 0, \quad \frac{\partial^2 H(2, 3)}{\partial v^2} > 0.
\]

(i) Use this information to sketch [as best you can] the graph of the function

\[
k(t) = H(t, 3)
\]

for \(t \) near \(t = 2 \).

(ii) Use this information to sketch [as best you can] the graph of the function

\[
f(t) = H(2, t)
\]

for \(t \) near \(t = 3 \).
Interpreting Partial Derivatives 3

You know the following information about the function \(z = L(s, t) \)

\[
L(2, 3) = -1, \quad \frac{\partial L(2, 3)}{\partial s} = 0, \quad \frac{\partial L(2, 3)}{\partial t} = 0
\]

\[
\frac{\partial^2 L(2, 3)}{\partial s^2} = -1, \quad \frac{\partial^2 L(2, 3)}{\partial t^2} = -2, \quad \frac{\partial^2 L(2, 3)}{\partial s \partial t} = 1.5.
\]

What can you say about the point \((s, t) = (2, 3)\)?