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Preliminaries — general relativity

General relativity says that spacetime is described by a Lorentzian 4-manifold
�����

g � satisfying
the Einstein field equations

Rαβ � 1
2 Rgαβ � 8πTαβ

where

Rαβ is the Ricci curvature of g,

R is the scalar curvature of g, and

Tαβ is the stress-energy tensor describing all matter and energy in the spacetime.
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Preliminaries — causal notions

Since g has signature
� � �	�
������� � , we can

PSfrag replacements

timelike

spacelike

null

past lightcone

future lightcone

Tp �partition tangent vectors of
�

into three types:
for X 
 Tp

�
,

g
�
X
�
X ��� 0 ��� X is timelike

g
�
X
�
X � � 0 ��� X is null (or lightlike)

g
�
X
�
X ��� 0 ��� X is spacelike;

if X is either timelike or null, it is called causal;
if X is either null or spacelike, it is achronal.

We will assume that
�

is time orientable — causal vectors may be partitioned into two sets,
the future- and past-directed lightcones.

Causal characterizations also extend to differentiable curves and submanifolds.
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Preliminaries — black holes (heuristically)

PSfrag replacements

∞

singularity

collapsing matter
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Preliminaries — black holes (mathematically)

To make this idea rigorous, one must locate future null infinity, ��� .

One traditionally does this by making a conformal compactification of the spacetime
�����

g �
and identifying � � as a null part of its conformal boundary.

The black hole region is then
���

J � � � � � .

PSfrag replacements

i0

i �singularity

Cauchy surface (asymptotically flat)

black hole

event horizon

� �

Note that one must have the entire spacetime at hand in order to find the black hole.
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Preliminaries — null expansions

Is there a local way to describe how curvature “captures” light?
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Preliminaries — null expansions

Is there a local way to describe how curvature “captures” light?

Definition
Given any spacelike 2-surface S and a future null vector field � α orthogonal to it, the expansion
of S in the direction � is

θ � ��� � divS �
(the derivatives are taken with respect to the connection on

�
, the trace with respect to the

induced Riemannian metric on S).

The expansion θ � ��� measures the infinitesimal change in surface area of S in the direction � .
PSfrag replacements  
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Preliminaries — trapped surfaces

A spacelike 2-surface S has exactly two orthogonal future null directions, given by vector fields� and n, say.

If � points “out” and n points “in,” set

PSfrag replacements

!
n

θ � � θ � ���
θ � � θ � n � .

Then the signs of θ � and θ � are independent of the vector fields � and n.

Catherine Williams (University of Washington) Asymptotic Behavior of MTTs May 30, 2008 8 / 38



Preliminaries — trapped surfaces

A spacelike 2-surface S has exactly two orthogonal future null directions, given by vector fields� and n, say.

If � points “out” and n points “in,” set

PSfrag replacements

!
n

θ � � θ � ���
θ � � θ � n � .

Then the signs of θ � and θ � are independent of the vector fields � and n.

Definition
If θ � � 0 and θ � � 0, the surface S is said to be trapped.

If θ � � 0 and θ � � 0, then S is said to be marginally trapped.
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Preliminaries — trapped surfaces

A spacelike 2-surface S has exactly two orthogonal future null directions, given by vector fields� and n, say.

If � points “out” and n points “in,” set

PSfrag replacements

!
n

θ � � θ � ���
θ � � θ � n � .

Then the signs of θ � and θ � are independent of the vector fields � and n.

Definition
If θ � � 0 and θ � � 0, the surface S is said to be trapped.

If θ � � 0 and θ � � 0, then S is said to be marginally trapped.

Singularity Theorem (Penrose, 1965)

Let
���"�

g � be a connected, globally hyperbolic spacetime whose Cauchy surface is noncompact
and which satisfies the null energy condition. If

�
contains a closed trapped surface S, then

�
is singular — that is, it contains at least one inextendible future-directed null geodesic
emanating from S and having finite affine length in

�
.
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Preliminaries — marginally trapped tubes

In recent years a quasi-local model for surfaces of black holes has been proposed:
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Preliminaries — marginally trapped tubes

In recent years a quasi-local model for surfaces of black holes has been proposed:

Definition
A marginally trapped tube (MTT) # is a hypersurface foliated by closed marginally trapped
(spacelike) 2-surfaces.

Related terminology:

a dynamical horizon is an MTT which is spacelike;

an isolated horizon is (essentially) an MTT which is null;

a timelike membrane is an MTT which is timelike.
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Preliminaries — marginally trapped tubes

In recent years a quasi-local model for surfaces of black holes has been proposed:

Definition
A marginally trapped tube (MTT) # is a hypersurface foliated by closed marginally trapped
(spacelike) 2-surfaces.

Related terminology:

a dynamical horizon is an MTT which is spacelike;

an isolated horizon is (essentially) an MTT which is null;

a timelike membrane is an MTT which is timelike.

Dynamical and isolated horizons appear to be well-suited to model the surfaces of dynamical
and equilibrium black holes, respectively [Ashtekar & Krishnan, others].

Regardless of whether these definitions should replace the traditional one for black holes,
understanding the behavior of marginally trapped tubes is a step toward understanding black
holes’ interiors.
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Preliminaries — spherical symmetry

A spherically symmetric spacetime is one which admits an SO
�
3 � -action by isometries. One can

work with the 1+1-dimensional Lorentzian quotient manifold$ � �&%
SO
�
3 �

instead of
�

without loss of information.

Conformally embedding
$

into a bounded subset of ' 1 � 1 , we obtain a Penrose diagram, off of
which essentially all causal and asymptotic information may be read.
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Preliminaries — spherical symmetry

A spherically symmetric spacetime is one which admits an SO
�
3 � -action by isometries. One can

work with the 1+1-dimensional Lorentzian quotient manifold$ � �&%
SO
�
3 �

instead of
�

without loss of information.

Conformally embedding
$

into a bounded subset of ' 1 � 1 , we obtain a Penrose diagram, off of
which essentially all causal and asymptotic information may be read.

Remark. All known analytical (exact) examples of MTTs are spherically symmetric, and all
existing analytical theorems concerning their asymptotic behavior assume spherical symmetry.
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Examples — Schwarzschild & Reissner-Nordström

The marginally trapped tubes in a Schwarzschild spacetime of mass M are isolated horizons
which coincide with the black hole event horizons.

PSfrag replacements

black hole (
( ) event horizons)

Cauchy surface

white hole

*	+*,+

*�- *	-
i0 i0

i
-

i
-

i
+

i
+

The same is true in a Reissner-Nordström (electrovac) spacetime of mass M and charge e.
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Examples — Vaidya

Vaidya spacetimes with nonconstant, nondecreasing mass functions M
�
v � provide the simplest

examples of dynamical horizons.

g �.� / 1 � 2M � v �
r 0 dv2 � 2dvdr

�
r2gS2

�
T � Ṁ � v �

r2 dv2 �
where and M

�
v � is any smooth function of v.

PSfrag replacements 11 event horizonevent horizon

v 2 0v 2 0

v 2 v0

3�43 4
i0i0

i 5i 5

i
4

i
4

M
�
v �76 M0 as v 8 ∞ M

�
v �79 M0 for v : v0
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Examples — evolutionary setting

For certain matter models, it is known that the maximal development of spherically symmetric
asymptotically flat initial data contains an MTT which is asymptotic to the event horizon (i.e.
terminates at i � ):; massless scalar fields [Christodoulou 1993]; Einstein-Maxwell scalar fields [Dafermos 2005, Dafermos & Rodnianski 2005]; Einstein-Vlasov (collisionless matter) [Dafermos & Rendall 2007]
Additionally, in the first two cases the MTT is known to be achronal near i � .

PSfrag replacements

<
event horizon

=?>
i
>

i0
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Possible Asymptotic Behavior — good

What about the general case, for arbitrary (spherically symmetric) matter?
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Possible Asymptotic Behavior — good

What about the general case, for arbitrary (spherically symmetric) matter?
Must a marginally trapped tube be asymptotic to the event horizon?

PSfrag replacements

<
event horizon

=?>
i
>

i0
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Possible Asymptotic Behavior — bad

Or could it terminate far inside the black hole?

PSfrag replacements

<
event horizon

=?>
??

i
>

i0
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Possible Asymptotic Behavior — ugly

One can imagine all sorts of bad behavior.

PSfrag replacements

<
event horizon

=?>etc.

i
>

i0
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General black hole spacetimes — spherical symmetry revisited

In double null coordinates
�
u
�
v � on @ 2, the Minkowski metric is � dudv .

Catherine Williams (University of Washington) Asymptotic Behavior of MTTs May 30, 2008 17 / 38



General black hole spacetimes — spherical symmetry revisited

In double null coordinates
�
u
�
v � on @ 2, the Minkowski metric is � dudv .

Then conformally embedding
$ � �&%

SO
�
3 �7A 8 � @ 2 � � dudv � , its metric takes the form� Ω2dudv, where Ω � Ω

�
u
�
v �B� 0 is smooth on

$
. The metric g on

�
may be expressed

g �C� Ω2dudv
�

r2gS2
�

where the radial function r � r
�
u
�
v �D: 0 is smooth on

$
and positive away from the center of

symmetry, and gS2 is the round metric on S2.
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General black hole spacetimes — spherical symmetry revisited

In double null coordinates
�
u
�
v � on @ 2, the Minkowski metric is � dudv .

Then conformally embedding
$ � �&%

SO
�
3 �7A 8 � @ 2 � � dudv � , its metric takes the form� Ω2dudv, where Ω � Ω

�
u
�
v �B� 0 is smooth on

$
. The metric g on

�
may be expressed

g �C� Ω2dudv
�

r2gS2
�

where the radial function r � r
�
u
�
v �D: 0 is smooth on

$
and positive away from the center of

symmetry, and gS2 is the round metric on S2.

The Einstein equations on
�

yields a system of equations on
$

:

∂u
�
Ω � 2∂ur � � � rΩ � 2Tuu (1)

∂v
�
Ω � 2∂vr � � � rΩ � 2Tvv (2)

∂um � 2r2Ω � 2 � Tuv∂ur � Tuu∂vr � (3)

∂vm � 2r2Ω � 2 � Tuv∂vr � Tvv∂ur � � (4)

where Tuu, Tuv, and Tvv are component functions of Tαβ on M and m is the Hawking mass,

m � m
�
u
�
v � � r

2

/
1 �FE∇r E 2 0 � r

2

/
1
�

4Ω � 2∂ur ∂vr 0HG (5)
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General black hole spacetimes — approaching the problem

In order to approach the problem, focus on a characteristic rectangle near timelike infinity, i � :

PSfrag replacements

i0

i
>

black hole

event horizon

=?>
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General black hole spacetimes — approaching the problem

In order to approach the problem, focus on a characteristic rectangle near timelike infinity, i � ;
whether # is asymptotic to the event horizon or not is determined by its behavior in this
rectangle.

PSfrag replacements

<
event horizon

=?>
i
>

i0
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General black hole spacetimes — characteristic rectangle & existence

We begin with a characteristic rectangle

PSfrag replacements

K I u0 J v0 K
L

outL
in

i MK N K O u0 P v0 Q NSR 0 P u0 T�U R v0 P ∞ Q
and characteristic initial hypersurfacesV

in NWR 0 P u0 T�U�X v0 YV
out N X 0 Y U R v0 P ∞ Q[Z
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General black hole spacetimes — characteristic rectangle & existence

We begin with a characteristic rectangle

PSfrag replacements

K I u0 J v0 K
L

outL
in

i MK N K O u0 P v0 Q NSR 0 P u0 T�U R v0 P ∞ Q
and characteristic initial hypersurfacesV

in NWR 0 P u0 T�U�X v0 YV
out N X 0 Y U R v0 P ∞ Q[Z

Assume that initial data for (1)-(5) been prescribed along
V

in \ V out, that is, for the functions r
and m and their derivatives, and for Tuu, Tuv, and Tvv.
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General black hole spacetimes — characteristic rectangle & existence

We begin with a characteristic rectangle

PSfrag replacements

K I u0 J v0 K
L

outL
in

i MK N K O u0 P v0 Q NSR 0 P u0 T�U R v0 P ∞ Q
and characteristic initial hypersurfacesV

in NWR 0 P u0 T�U�X v0 YV
out N X 0 Y U R v0 P ∞ Q[Z

Assume that initial data for (1)-(5) been prescribed along
V

in \ V out, that is, for the functions r
and m and their derivatives, and for Tuu, Tuv, and Tvv.

Assume that there is a matter field equation or system of equations (over and above divgT N 0)
governing the evolution of Tuu, Tuv, and Tvv into the interior of K.
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General black hole spacetimes — characteristic rectangle & existence

We begin with a characteristic rectangle

PSfrag replacements ] I u0 J v0 K
K I u0 J v0 K

L
outL

in

i MK N K O u0 P v0 Q NSR 0 P u0 T�U R v0 P ∞ Q
and characteristic initial hypersurfacesV

in NWR 0 P u0 T�U�X v0 YV
out N X 0 Y U R v0 P ∞ Q[Z

Assume that initial data for (1)-(5) been prescribed along
V

in \ V out, that is, for the functions r
and m and their derivatives, and for Tuu, Tuv, and Tvv.

Assume that there is a matter field equation or system of equations (over and above divgT N 0)
governing the evolution of Tuu, Tuv, and Tvv into the interior of K.

Finally, assume that we obtain the maximal future development of the system (1)-(5),^ O u0 P v0 QD_ K O u0 P v0 Q`Z
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General black hole spacetimes — trapped surfaces revisited

Each point
�
u
�
v ��
ba � u0

�
v0 � represents a 2-sphere of radius r � r

�
u
�
v � in

�
.

The two future null normal directions are ∂u and ∂v — let u be the ingoing direction and v the
outgoing direction. Then:

θ � � θ � ∂v
� � 2

�
∂vr � r � 1

and θ � � θ � ∂u
� � 2

�
∂ur � r � 1 G
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General black hole spacetimes — trapped surfaces revisited

Each point
�
u
�
v ��
ba � u0

�
v0 � represents a 2-sphere of radius r � r

�
u
�
v � in

�
.

The two future null normal directions are ∂u and ∂v — let u be the ingoing direction and v the
outgoing direction. Then:

θ � � θ � ∂v
� � 2

�
∂vr � r � 1

and θ � � θ � ∂u
� � 2

�
∂ur � r � 1 G

Therefore we define the regular region asc �ed � u � v ��
Fa � u0
�
v0 � : ∂vr � 0 and ∂ur � 0 f �

the trapped region as g �ed � u � v �B
ba � u0
�
v0 � : ∂vr � 0 and ∂ur � 0 f �

and the marginally trapped tube as# �ed � u � v ��
ba � u0
�
v0 � : ∂vr � 0 and ∂ur � 0 f G

Note that # is a hypersurface of a � u0
�
v0 � provided that 0 is a regular value of ∂vr.
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General black hole spacetimes — assumptions

We now make a number of additional assumptions on the initial data, its maximal development,
and the components of the stress-energy tensor. These assumptions are necessary to insure that
matter model is physically reasonable and that the rectangle K is located inside a black hole
region as shown previously.

I Tuu : 0
�

Tuv : 0
�

and Tvv : 0 in a � u0
�
v0 �

II J � � a � u0
�
v0 �h�Dija � u0

�
v0 �

III sup k
out

r � r � � ∞

IV m : 0 along l out

V ∂ur � 0 along l out

VI ∂vr � 0 along l out

VII ‘first singularities’ in the regular region
c

can only
arise from the center of symmetry (where r � 0).
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General black hole spacetimes — assumptions I & II

I Tuu : 0
�

Tuv : 0
�

and Tvv : 0 in a � u0
�
v0 � .

These inequalities are what the dominant energy condition on
�

boils down to on
$

.
(Upstairs, the dominant energy condition requires that � Tα

βξβ be future-directed causal for all
future-directed timelike ξα.)
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General black hole spacetimes — assumptions I & II

I Tuu : 0
�

Tuv : 0
�

and Tvv : 0 in a � u0
�
v0 � .

These inequalities are what the dominant energy condition on
�

boils down to on
$

.
(Upstairs, the dominant energy condition requires that � Tα

βξβ be future-directed causal for all
future-directed timelike ξα.)

II J � � a � u0
�
v0 �h�Dija � u0

�
v0 � .

This is the statement that the maximal development a � u0
�
v0 � is a past set. (It would come along

for free given a global existence result in an evolutionary setting.)
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General black hole spacetimes — assumptions III & IV

III supk
out

r � r � � ∞.

PSfrag replacements

black hole

event horizon

m?n
i0
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General black hole spacetimes — assumptions III & IV

III supk
out

r � r � � ∞.

PSfrag replacements

black hole

event horizon

m?n
i0

i
n

S

ro ∞

IV m : 0 along l out .

This is another form of the physically reasonable requirement that energy be locally
nonnegative.
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General black hole spacetimes — assumption V

V ∂ur � 0 along l out .

An anti-trapped surface is one for which ∂ur : 0, so this is just the statement that no
anti-trapped surfaces are present initially. It is motivated primarily by the following:

Proposition (Christodoulou)

If ∂ur � 0 along l out , then a � u0
�
v0 � � cqp g p # — that is, anti-trapped surfaces cannot

evolve if none are present initially.
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General black hole spacetimes — assumption VI

Proposition (Christodoulou)

If
�
u
�
v �B
 g p # , then

�
u
�
v rs�D
 g p # for all v rt� v. Similarly, if

�
u
�
v ��
 g , then

�
u
�
v ru��
 g

for all v r � v.

PSfrag replacements v
outv

in

i w
xy

z

The trapped region

g
must be contained inside the black hole, so ∂vr : 0 along l out if the latter

is to lie along the event horizon. But if ∂vr � 0 at a single point along l out, then # must
coincide with l out to the future of that point by the above proposition. Therefore, in order to
avoid the trivial case,

VI ∂vr � 0 along l out .
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General black hole spacetimes — assumption VII

Finally, we need to make use of a certain extension principle. This is known to hold for
self-gravitating Higgs’ fields and self-gravitating collisionless matter and expected to hold for
other physically reasonable matter models [Dafermos 2005, Dafermos & Rendall 2005].

Let
Γ �ed p 
{a � u0

�
v0 � : r

�
p � � 0 f (the center of symmetry)

and regard set closures as being taken with respect to the topology of K
�
u0
�
v0 � . Then the

extension principle may be formulated:

VII If p 
 c � Γ � and q 
 c}| I � � p � such that J � � p � | J � � q � � d p f~i c}p # ,����������������������
PSfrag replacements

q

p
?

�����
then p 
 c}p # .

PSfrag replacements

q

p���s�
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General black hole spacetimes — statement of the problem

Problem
Consider the class of spacetimes a � u0

�
v0 � obtained as described and satisfying assumptions

I-VII. Are there general conditions which can be imposed on some or all of r, m, Ω, Tuu, Tuv,
Tvv and their derivatives in a � u0

�
v0 � that are sufficient to guarantee that the spacetime will

contain a marginally trapped tube # which is asymptotic to the event horizon?
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Main result — statement

Theorem 1

Suppose
� a � u0

�
v0 � � Ω � r � satisfies assumptions I-VII. If there exist a constant 0 � c0 � 1

4r2� ,

constants c1, c2 � 0, constants 0 � ε � 1
4r2� � c0 and v ��: v0, and some small δ � 0 such that for� � � �

δ � �}d � u � v � : r
�
u
�
v ��: r � � δ f the following conditions hold:

A � Tuv Ω � 2 � c0 in
�

;

B1 Tuu
%��

∂ur � 2 � c1 in
� |
c

;

B2 ∂v
�
Ω � 2Tuv � � u ��� ��
 L1 ��� v0

�
∞ ��� for all u 
 � 0 � u0 � � and� v

v � ∂v
�
Ω � 2Tuv � � u � ṽ � dṽ � ε for all

�
u
�
v ��
 � |
c

with v : v � ;
C

� � ∂ur � Ω � 2 � c2 along l out
| � �

then the spacetime a � u0
�
v0 � contains a marginally trapped tube # which is asymptotic to the

event horizon. Furthermore, for large v, # is connected and achronal with no ingoing null
segments.
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Main result — remarks

Remarks.
�

is essentially a δ-neighborhood of the point i � :

PSfrag replacements ] I u0 J v0 K ��� δ �L
outL

in

i M??

Also, the expression Tuv Ω � 2 (seen in conditions A � and B2) takes a particularly simple form in
many matter models. For a perfect fluid of pressure P and energy density ρ, it is the quantity
1
4 O ρ � P Q . For a self-gravitating Higgs field φ with potential V O φ Q , it is 1

2 V O φ Q . And for an
Einstein-Maxwell massless scalar field of charge e, it is 1

4 e2r � 4.
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Main result — sketch of proof

Lemma 1

If # is nonempty and Tuv Ω � 2 � 1
4r2� (condition A) holds in # , then each of its connected

components is achronal with no ingoing null segments.
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Main result — sketch of proof

Lemma 1

If # is nonempty and Tuv Ω � 2 � 1
4r2� (condition A) holds in # , then each of its connected

components is achronal with no ingoing null segments.

Lemma 2
Suppose condition A is satisfied in

�
. If a � u0

�
v0 � does not contain a marginally trapped tube

which is asymptotic to the event horizon, then
� |
c

contains a rectangle K
�
u1
�
v1 � for some

u1 
 � 0 � u0 � , v1 
 � v0
�
∞ � .

PSfrag replacements ] I u0 J v0 K K � u1 � v1 �L
out

L
in

i M
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Main result — sketch of proof (cont’d)

Rearranging the Einstein equations yields

∂v log
� � ∂ur � � 2κr � 2α

�
where

κ � � 1
4 Ω2 � ∂ur � � 1 �

α � m � 2r3 Ω � 2Tuv
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Main result — sketch of proof (cont’d)

Rearranging the Einstein equations yields

∂v log
� � ∂ur � � 2κr � 2α

�
where

κ � � 1
4 Ω2 � ∂ur � � 1 �

α � m � 2r3 Ω � 2Tuv

Inside of K
�
u1
�
v1 � , we have

Conditions B1 and C � 8 κ : κ0 � 0

Condition A � � 8 � a small ingoing segment
�
0
�
U ��� d V f on which α � α0 � 0

Condition B2 � 8 α � α1 � 0 on K
�
U
�
V � � � 0 � U ��� �V � ∞ � .

Thus:
∂v log

� � ∂ur ��� 2κ0r � 2� α1 G
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Main result — sketch of proof (cont’d)

We have
∂v log

� � ∂ur ��� 2κ0r � 2� α1 G
Integrating along an outgoing ray d u f � �V � v � yields

� ∂ur
�
u
�
v �B� � ∂ur

�
u
�
V � e2κ0r � 2� α1

� v � V � G
Assume ∂ur

�
u
�
V � � � c � 0 for all 0 � u � U, so that

� ∂ur
�
u
�
v �B� ce2κ0r � 2� α1

� v � V � G
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Main result — sketch of proof (cont’d)

We have
∂v log

� � ∂ur ��� 2κ0r � 2� α1 G
Integrating along an outgoing ray d u f � �V � v � yields

� ∂ur
�
u
�
v �B� � ∂ur

�
u
�
V � e2κ0r � 2� α1

� v � V � G
Assume ∂ur

�
u
�
V � � � c � 0 for all 0 � u � U, so that

� ∂ur
�
u
�
v �B� ce2κ0r � 2� α1

� v � V � G
Finally, integrate along an ingoing null ray

�
0
�
u ��� d v f to get

r
�
u
�
v ��� r

�
0
�
v � � ce2κ0r � 2� α1

� v � V � u G
But for any u � 0, the RHS tends to � ∞ as v 8 ∞, while the LHS is positive — contradiction. 
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Application to Higgs fields

A self-gravitating Higgs field with non-zero potential consists of a scalar function φ on the
spacetime and a potential function V

�
φ � such that 

φ � V � � φ � G (6)

The stress-energy tensor then takes the form

Tαβ � φ;αφ;β � / 1
2 φ;γφ;γ � V

�
φ � 0 gαβ G (7)
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Application to Higgs fields

A self-gravitating Higgs field with non-zero potential consists of a scalar function φ on the
spacetime and a potential function V

�
φ � such that 

φ � V � � φ � G (6)

The stress-energy tensor then takes the form

Tαβ � φ;αφ;β � / 1
2 φ;γφ;γ � V

�
φ � 0 gαβ G (7)

In spherically symmetry, φ � φ
�
u
�
v � and the evolution equation (6) becomes

V � � φ � �.� 4Ω � 2 � ∂2
uvφ
�

∂uφ
�
∂v log r � � ∂vφ

�
∂u log r �h�

and in double-null coordinates, (7) yields

Tuu � �
∂uφ � 2 �

Tvv � �
∂vφ � 2 � and

Tuv � 1
2 Ω2V

�
φ � G

Note that the dominant energy condition (I) is satisfied if and only if V
�
φ �D: 0.

The extension principle (VII) is known to hold for self-gravitating Higgs fields precisely when
V is bounded below [Dafermos 2005].
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Application to Higgs fields – explicit decay

Theorem 2

Assume we have initial data for the spherically symmetric Einstein-Higgs system satisfying
III-VI and for which V : 0. Fix a constant p � 1

2 and a function η
�
v ��� 0 such that η

�
v �

decreases monotonically to 0 as v tends to infinity. If V � � is bounded, and if along l out the initial
data satisfy

∂vr � η
�
v � �E ∂vφ E�� O
�
v � p � �EV � � φ � E�� O
�
v � p � �� � ∂ur � Ω � 2 is bounded above and away from 0

�
and

liminf
v ¡ ∞

V
�
φ �D� 1

4r2� �
then the result of Theorem 1 holds for the maximal development of these initial data.
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Application to Higgs fields – smallness and monotonicity

Theorem 3

Assume we have initial data for the spherically symmetric Einstein-Higgs system satisfying
III-VI and for which V : 0. If V � � is bounded and nonnegative, and along l out

∂vr
� E ∂vφ E � and V

�
φ � are sufficiently small,� � ∂ur � Ω � 2 is bounded above and away from 0

�
V � � φ �D� C E ∂vφ E �
∂vφ
�

∂uφ � 0
�

either V � � φ � � 0 or E infk
out

φ E � ∞
�

& a technical inequality relating V � � φ � � ∂v log r
�

and ∂vφ is satisfied,

then the result of Theorem 1 holds for the maximal development of these initial data.
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Open questions

Is smallness for Higgs field initial data on an asymptotically flat (spherically symmetric)
spacelike 3-manifold sufficient to obtain a black hole spacetime containing a characteristic
rectangle satisfying the conditions of Theorem 1?
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Open questions

Is smallness for Higgs field initial data on an asymptotically flat (spherically symmetric)
spacelike 3-manifold sufficient to obtain a black hole spacetime containing a characteristic
rectangle satisfying the conditions of Theorem 1?

Does there exist a spherically symmetric black hole spacetime containing a marginally
trapped tube which is not asymptotic to the event horizon?

What are the asymptotic behaviors of the non-spherically symmetric marginally trapped
tubes in a spherically symmetric spacetime?

Perturb away from spherical symmetry G�GhG ?
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