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1 Introduction

2 Background

2.1 Spacetime machinery

The theory of general relativity postulates that the universe should be de-
scribed as a Lorentzian manifold, that is, a smooth manifold Mn paired
with a metric g of signature (−, +, · · · , +). Although much of what follows
may be carried out for higher dimensions, we will always work in dimension
n = 4. Matter and energy in the universe are described by a symmetric
2-tensor Tαβ on M called the stress-energy tensor. Einstein’s equations
prescribe the interplay between the geometry of the underlying manifold and
the matter and energy in it:

Rαβ −
1

2
Rgαβ = 8πTαβ, (1)

where Rαβ is the Ricci curvature of the metric g and R is its scalar curva-
ture. Lorentzian manifolds (M, g) satisfying Einstein’s equations are called
spacetimes. We will always assume that our spacetimes are connected.

For any spacetime (M, g), the signature of g enables us to partition the
tangent vectors of M into three types. A tangent vector X ∈ TpM is called
timelike if g(X,X) < 0, spacelike if g(X, X) > 0, or null if g(X, X) =
0. If g(X, X) ≤ 0, that is, X is either timelike or null, then X is said
to be causal. These characterizations extend to certain curves in M as
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well. A differentiable curve γ : I → M is called timelike (respectively null,
spacelike, or causal) if at each t ∈ I, the vector γ′(t) ∈ TpM is timelike
(respectively null, spacelike, or causal). The spacetime M is said to be time
orientable if it admits a global, continuous, non-vanishing timelike vector
field. Given such a vector field, say, V , we may assign M an explicit time
orientation: given any causal vector X ∈ TpM , we declare it to be future
directed if g(X, Vp) < 0 and past directed otherwise. Henceforth we will
assume that all our spacetimes are time orientable and have been assigned
explicit orientations. A submanifold, too, may be characterized as spacelike,
timelike, or null if its normal vector is everywhere timelike, spacelike, or null,
respectively.

Once we have established a time orientation and the causal character of
tangent vectors at each point, we can extend notions of causality to points
in the manifold itself. If p is a point in a spacetime M , then we may define
the chronological future of the point p as the set

I+(p) = {q ∈ M : ∃ a piecewise timelike future directed (2)

curve from p to q}.

The chronological past of p, denoted I−(p), is defined similarly, replac-
ing “future” with “past”. The causal future and causal past of p are
denoted J+(p) and J−(p), respectively, and are defined analogously by re-
placing “timelike” in (2) with “causal”. Note that the point p is not contained
in I±(p) but is contained in J±(p), since degenerate curves are by definition
causal. A set S in M is said to be achronal if no two points p, q ∈ S may
be joined by a piecewise timelike curve, i.e. there do not exist p, q ∈ S such
that q ∈ I+(p). The future domain of dependence of a set S, denoted
D+(S), is defined to be the set of events in the spacetime that are completely
predicted by the events in S. More precisely,

D+(S) = {p ∈ M : every past inextendible causal curve

through p intersects S},

where “inextendible” is defined appropriately. The past domain of de-
pendence D−(S) is defined analogously by replacing “past” with “future”.
Taken together, they constitute the (full) domain of dependence of S:

D(S) = D+(S) ∪D−(S).
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If a set S is closed, achronal, and its domain of dependence is all of the
spacetime, D(S) = M , then S is said to be a Cauchy surface. A spacetime
(M, g) which admits a Cauchy surface is called globally hyperbolic.

An arbitrary observer (a priori moving more slowly than the speed of
light) traces out a future directed timelike curve in the spacetime manifold
called a worldline. If ξα is the tangent vector to such a worldline, then
the (scalar) energy density of matter measured by that observer is given
by Tαβξαξβ, while the quantity −Tα

βξβ represents the full 4-vector energy-
momentum density of matter that he or she sees. Motivated by local physical
considerations, relativists sometimes impose restrictions on these quantities.
In this paper we will be concerned only with the null energy condition,
which requires that Tαβµαµβ ≥ 0 for all null vectors µα, and the dominant
energy condition, which requires that −Tα

βξβ should be a future directed
timelike or null vector.

2.2 Black Holes

Intuitively speaking, a black hole is a region of spacetime curved in such
a way that, once an observer passes into the region, he or she can never
again escape or even communicate with observers outside it. Such extreme
curvature is generally thought to arise from the gravitational collapse of a
massive body. Another way of heuristically describing a black hole is to say
that the worldline of an observer who has traveled into a black hole will
never reach “future infinity”; instead, the worldline is trapped inside the
black hole and, it is thought, terminates in “finite time” at some sort of
spacetime singularity. Such a notion is difficult to make precise, however;
we will have to introduce further machinery in order to make mathematical
sense of it, first in general terms here, then later in a fully rigorous way in
the context of spherical symmetry.

Roughly speaking, a spacetime (M, g) is said to be asymptotically flat
if the complement of some compact region in M is diffeomorphic to a finite
union of copies of R4 \ B1(0) and the metric decays to the flat metric with
respect to a naturally defined radial coordinate on each copy. Various con-
ditions on the exact decay rates of the metric and its derivatives are usually
imposed when one makes the definition rigorous. One can then conformally
compactify each asymptotically flat end (similarly to the way that one con-
formally compactifies Minkowski space) and consider the boundary of this
new “unphysical” spacetime to represent the boundary of the physical one
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“at infinity”. Under appropriate conditions, this boundary will contain three
components of particular interest: a point i0, called spatial infinity, and
sets I+ and I−, pronounced “scri plus” and “scri minus”, respectively. These
sets are defined by the relations I+ = J+(i0)− i0 and I− = J−(i0)− i0, and
in particular, under appropriate regularity assumptions, I+ and I− will be
null surfaces. They are called future and past null infinity, respectively.
Because a conformal change of metric preserves causal structure, it makes
sense to talk about the set J−(I+) in the original physical spacetime M ,
called the domain of outer communications. Roughly speaking, this set
consists of all spacetime events which can be seen “from infinity”. The com-
plement of this set, B = M \ J−(I+), is called the black hole region, and
its boundary H = ∂J−(I+) is said to be the event horizon.

Introduce general Penrose diagrams here?

2.3 Quasi-local notions

Although the definition of a black hole given above makes sense intuitively,
it has the drawback that one needs to have information about the entire
spacetime manifold at hand in order to find its conformal boundary and thus
locate the black hole region. One could not, for example, tell by looking
at an open subregion of M whether or not it contains a black hole. This
restriction makes black holes difficult rather impractical to work with from a
physics standpoint. To get around this difficulty, various local notions have
been introduced instead, which we will discuss below.

A congruence of null geodesics is simply a family of null geodesics which
foliates some open region of spacetime. Given a spacelike 2-surface S in M ,
there are two distinct congruences of future directed null geodesics orthogonal
to S, defined up to choice of parametrization. If lα is the tangent vector field
of one these congruences, then we can define θ(l), the expansion of S in the
direction l, by

θ(l) = divS lα = hαβ∇βlα,

where∇ is the Levi-Civita connection on M and h is the induced Riemannian
metric on the 2-surface S. Since a null geodesic does not in general admit
a canonical parametrization, the vector field lα and hence its expansion θ(l)

are dependent on the choice of parametrization of the null normal geodesics
in the congruence. However, if we rescale lα by some positive function λ, we
can compute that θ(λl) = λθ(l), so the sign of the expansion θ(l) is indeed well-
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defined. Intuitively speaking, θ(l) measures the infinitesimal change in the
area of S in the direction lα. One typically expects that the expansion will
be positive in one of the null normal directions to S and negative in the other
(think of the inner- and outer-pointing normals of a standard 2-sphere, for
example), but if the ambient manifold is curved enough, that characterization
need not hold. In particular, if a 2-surface S has future null directions l and k
such that both θ(l) < 0 and θ(n) < 0, then S is called a trapped surface; the
surface is marginally trapped if both expansions are merely nonpositive. If
l and n can be distinguished from each other by determining that l is “outer”
and n “inner”, for example if M is asymptotically flat, then we say that S is
outer marginally trapped if θ(l) ≤ 0, and it is an apparent horizon if
θ(l) ≡ 0.

A famous result of Penrose shows just why trapped surfaces are impor-
tant: they signal the development of spacetime singularities often associated
with black holes. In particular, in 1965, he proved the following

Theorem. Let (M, g) be a connected, globally hyperbolic spacetime whose
Cauchy surface is noncompact and which satisfies the null energy condition.
If M contains a trapped surface S, then there exists at least one inextendible
future directed orthogonal null geodesic emanating from S and having finite
affine length in M .

The existence of an inextendible geodesic of finite affine length signals
either that some sort of singularity occurs at its “endpoint” or that global
hyperbolicity fails there. In either case, the trapped surface acts as a lo-
cal indication of a nearby pathology in the spacetime. Furthermore, in an
asymptotically flat spacetime M , which is the only type of spacetime in which
black holes may even be defined, under a certain extra asymptotic condition
(“strong asymptotic predictability”), one can show that any trapped surface
must lie inside a black hole region [4].

Trapped surfaces still do not quite provide a local model for what physi-
cists call a black hole. But in recent years, a new object has been proposed
to provide a quasi-local model for a black hole: a dynamical horizon H in
a spacetime (M, g) is a spacelike hypersurface H foliated by closed spacelike
2-surfaces such that, on each leaf S, the expansion θ(l) of one null normal
lα vanishes, and the expansion θ(n) of the other null normal nα is strictly
negative. If M is asymptotically flat or some other notion of spatial infinity
can be applied, then one always takes θ(l) = θ+ and θ(n) = θ−, where the plus
and minus denote the “outward” and “inward” directions, respectively. Note
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that each of the foliating 2-surfaces is thus a marginally trapped surface as
well as an apparent horizon. It turns out that dynamical horizons provide a
good local model for an evolving black hole, and physicists have been able
to extend notions of black hole thermodynamics and entropy to them with
great success [1].

Dynamical horizons have timelike and null analogs as well, called time-
like membranes and isolated horizons, defined by replacing spacelike
with timelike or null, respectively, as the hypothesis on the hypersurface H
(but not on the foliating 2-surfaces). The latter is thought to model the
asymptotic state of a dynamical black hole settling down to an equilibrium
state, while the former has no concrete physical meaning; since future di-
rected timelike curves can pass through a timelike membrane in either direc-
tion, it is not good candidate for a model of a black hole. Collectively, dy-
namical and isolated horizons and timelike membranes are called marginally
trapped tubes.

3 Spherical Symmetry

The study of spherically symmetric spacetimes has a venerable history. One
of the first exact solution to Einstein’s equations, found by the physicist
Karl Schwarzschild in the same year Einstein published his theory of general
relativity, is spherically symmetric. The Schwarzschild solution describes
the (vacuum) exterior gravitational field of a static, spherically symmetric
body. In spherical coordinates (t, r, θ, φ), in which t corresponds to time, r is
a radial coordinate, and θ and φ are the usual spherical coordinates on S2,
the metric takes the form

g = −(1− 2M

r
)dt2 + (1− 2M

r
)−1dr2 + r2dΩ2,

where M is a constant (typically interpreted as the mass of the spherically
symmetric body), and dΩ2 = dθ2 +sin2 θdφ2 is the usual round metric on S2.
Notice that as r → ∞, g tends to −dt2 + dr2 + dΩ2, the Minkowski metric;
indeed, g is asymptotically flat.

Besides the Schwarzschild solution, there are many other important spher-
ically symmetric exact solutions to Einstein’s equations, such as the Kerr,
Kerr-Newman, Reisner-Nordström, and Vaidya spacetimes. Such solutions
are the model spaces for many aspects of relativity theory and provide a
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testing ground for a wide range of theories. But even aside from such exact
solutions, imposing an assumption of spherical symmetry in general casts the
theory into a vastly simpler setting while still providing (one hopes) heuris-
tics representative of generic non-spherically symmetric solutions. In what
follows, we will describe in detail the reduction of the spherically symmetric
3+1-manifold setting to a 1+1-setting.

3.1 Structure and energy assumptions

In general, a spacetime (M, g) is said to be spherically symmetric if the
Lie group SO(3) acts on it by isometries with orbits which are either fixed
points or spacelike 2-spheres. In order to make use of this concept in practice,
however, we will need to impose a large number of very specific additional
conditions on (M, g). The end goal is to transfer all of the important causal
and asymptotic data of M to a 1+1-dimensional quotient manifold which we
can then conformally embed into Minkowski space; all of the assumptions we
make here are necessary to ensure that this conformally embedded quotient
manifold and its boundary are sufficiently well-behaved. The remainder of
the setup described in this section is lifted directly from [3].

In what follows, we will always take (M, g) to be a globally hyperbolic
spacetime satisfying the dominant energy condition which admits an SO(3)-
action by isometries. We will assume that the quotient manifold Q =
M/SO(3) inherits the structure of a 1+1 Lorentzian manifold with a bound-
ary corresponding to the points fixed by the SO(3)-action, the center of
symmetry. We further assume M is the maximal development of its Cauchy
surface Σ and that the quotient Q+ of its causal future J+(Σ) may be con-
formally embedded into a bounded subset of Minkowski space (R2, η). We
assume that Q+ contains just one of its connected boundary components and
that this boundary component has the form Γ ∪ S, where Γ, the center of
symmetry in Q+, is a connected timelike curve comprising the points in Q+

fixed by the SO(3)-action, S = Σ/SO(3) is a connected spacelike curve, and
Γ and S intersect in a single point p.

Suppose we choose double null coordinates (u, v) on R2, such that the
Minkowski metric η takes the form η = −du dv and the positive u- and v-
axes are at 135◦ and 45◦ from the usual positive x-axis, respectively. We
assume that (R2, η) is time oriented in the usual way such that u and v
are both increasing toward the future. Then with respect to the conformal
embedding, the metric on Q+ takes the form −Ω2du dv, and suppressing
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pullback notation, the original metric g may be expressed

g = −Ω2du dv + r2γ,

where γ = dθ2 +sin2θ dφ2 is the standard metric on S2, and Ω = Ω(u, v) and
r = r(u, v) are smooth functions on Q+ such that Ω > 0, r ≥ 0, and r(q) = 0
if and only if q ∈ Γ. Introducing the quantity

m = m(u, v) =
r

2
(1 + 4Ω−2∂ur ∂vr),

the so-called Hawking mass, we require that m be uniformly bounded along
S. Finally, we assume that Q+ is foliated by connected constant u curves
with past endpoint on Γ ∪ S and also by connected constant v curves with
past endpoint on S, called “outgoing” and “ingoing”, respectively.

By direct computation (see appendix B), we find that the Einstein field
equations (2.1) for the metric g = −Ω2du dv + r2γ on M reduce to the
following system:

8πTuu = −2r,uur
−1 + 4 Ω,ur,u(Ωr)−1 (3)

8πTuv = 2r,vur
−1 + 2r,ur,vr

−2 + 1
2
r−2Ω2 (4)

8πTvv = −2r,vvr
−1 + 4 Ω,vr,v(Ωr)−1 (5)

8πT
∣∣
Sr

= (−4rr,uvΩ
−2 − 4r2 Ω,vuΩ

−3 + 4r2 Ω,uΩ,vΩ
−4)γ. (6)

Each of equations (3), (4), and (5) holds pointwise at all p = (u, v, θ, φ) ∈ M ,
but the right-sides only depend on the u and v coordinates. Thus, assuming
that this system of equations is satisfied, i.e. that (M, g) is indeed a space-
time, the component functions Tuu, Tuv, and Tvv of the stress-energy tensor
descend to functions on the quotient manifold Q+ and satisfy (3), (4), and
(5) there as well. In fact, henceforth we will consider equations (3), (4), and
(5) only as pointwise equations on Q+. We can restate them more nicely in
terms of the Hawking mass m:

∂u(Ω
−2∂ur) = −4πrΩ−2Tuu (7)

∂v(Ω
−2∂vr) = −4πrΩ−2Tvv (8)

∂um = 8πr2Ω−2(Tuv∂ur − Tuu∂vr) (9)

∂vm = 8πr2Ω−2(Tuv∂ur − Tvv∂vr). (10)

Recall that one of the initial assumptions was that (M, g) satisfy the
dominant energy condition. In terms of the component functions of the
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stress-energy tensor on Q+, this implies (and is even equivalent to???) the
statement that

Tuu ≥ 0, Tuv ≥ 0, and Tvv ≥ 0

at all points (u, v) ∈ Q+.

3.2 Penrose diagrams

Because Q+ is just a bounded domain in R2 and the conformal embedding
does not change causal relationships, it is very useful to consider this image
graphically. Such a picture is called a Penrose diagram of M . Since the
null directions u and v are at 135◦ and 45◦ from the horizontal, we can read
off causal information very easily. Consider figure (figure) and describe the
various bits of causal information it provides. (NEED FIGURE + MORE
DESCRIPTION HERE.)

3.3 Black hole spacetimes

In our 2-dimensional setting, we can now make rigorous the definition of a
black hole as suggested in section 2.2. First, however, we translate some of
our trapped surface machinery into this quotient manifold setting. Now, each
point (u, v) of Q+ represents a two-sphere of radius r = r(u, v) in the original
manifold M , and the two future null directions orthogonal to this sphere are
precisely ∂u and ∂v. Since we have labeled u as the “ingoing” direction and
v the “outgoing” direction, we will use θ− and θ+ to denote the expansions
in the directions ∂u and ∂v, respectively. The induced Riemannian metric on
this two-sphere is of course just hab = r2γab. A straightforward calculation
now shows (see Appendix C) that θ− = 2(∂ur)r

−1 and θ+ = 2(∂vr)r
−1. Since

r is strictly positive away from the center of symmetry Γ, the signs of θ+ and
θ− are exactly those of ∂vr and ∂ur, respectively.

Now define three regions of spacetime: the regular region

R = {(u, v) ∈ Q+ : ∂vr > 0 and ∂ur < 0},

the trapped region

T = {(u, v) ∈ Q+ : ∂vr < 0 and ∂ur < 0},

and the marginally trapped region,

T = {(u, v) ∈ Q+ : ∂vr = 0 and ∂ur < 0}.
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In order to gain some necessary control over the quotient manifold Q+, we
now introduce the new assumption, called “no anti-trapped surfaces initially”
in [3], that ∂ur < 0 along S. With this assumption, we have the following
result, originally due to Christodoulou:

Proposition 1. Q+ = R ∪ T ∪ A, that is, anti-trapped surfaces cannot
evolve if none are present initially.

Proof. We have assumed that all ingoing null curves, constant-v curves,
have past end-point on S. We integrate equation (7) along any such curve:
for any (u0, v0) ∈ S, we have

Ω−2(∂ur)(u, v0) = Ω−2(∂ur)(u0, v0)−
∫ u

u0

4πr Ω−2Tuu(u, v0) du.

Since we have assumed that ∂ur < 0 along S and that Tuu ≥ 0 everywhere,
the righthand side of this equation is strictly negative, and hence so is the
left-hand side. �

We are now in a position to rigorously define future null infinity. First
observe that the boundary curve S must have a unique endpoint in Q+ \Q+;
by analogy with the asymptotically flat case, call it i0. Next, let

U = {u : sup
v:(u,v)∈Q+

r(u, v) = ∞}.

This set may well be empty, even if r goes to infinity along S. If u ∈ U ,
however, then there exists a unique v = v∗(u) such that (u, v∗(u)) ∈ Q+\Q+.
Now define

I+ =
⋃
u∈U

(u, v∗(u)).

Then, if it is not empty, I+ is called future null infinity.

Proposition 2. If it is not empty, I+ is a connected ingoing null ray with
past limit point i0.

Proof. Suppose i0 = (U, V ). By Proposition 1, we know that ∂ur < 0
throughout Q+, so r decreases along each ingoing null ray. It follows that
for any v0 < V , r is bounded above on {v ≤ v0} ∩ Q+ by its supremum on
{v ≤ v0} ∩ S, which is necessarily finite. Thus if (u, v) ∈ I+, we must have
v ≥ V . On the other hand, we have assumed that Q+ is foliated by ingoing
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null rays with past endpoint on S, and so we must have Q+ ⊂ {v ≤ V }; thus
I+ ⊂ {v = V }.

Now suppose that (u0, V ) ∈ I+. Then since ∂ur < 0 inQ+, for any u < u0

we have r(u0, v) < r(u, v) for all v < V . On the other hand, by definition of
I+, we have supv<V r(u0, v) = ∞. Thus we must have supv<V r(u, v) = ∞,
so (u, V ) ∈ I+ as well, and hence we must have (U, u0 ] × {V } ⊂ I+. This
proves the proposition. �

We now make one final assumption, that I+ is not empty. Define the
domain of outer communications as before to be J−(I+)∩Q+, and the
black hole region to be Q+ \J−(I+). Recall that in our earlier discussion,
we mentioned results which indicated that any trapped surface must lie inside
a black hole; here there are no extra technical hypotheses, and we have just

Proposition 3. The domain of outer communications is contained in the
regular region, i.e. J−(I+) ∩ Q+ ⊂ R. In other words, any spherically
symmetric trapped surface (corresponding to a point (u, v) ∈ Q+) must lie
inside the black hole region.

Proof. Fix some point (u0, v0) ∈ Q+ and integrate equation (8) along an
outgoing null ray, say the curve u = u0. As in the proof of Proposition 1, we
get

Ω−2(∂vr)(u0, v) = Ω−2(∂vr)(u0, v0)−
∫ v

v0

4πr Ω−2Tvv(u0, v) dv.

If (u0, v0) ∈ T ∪A, then by definition (∂vr)(u0, v0) ≤ 0, which in turn implies
that the right-hand side of the equation is nonpositive, since Tvv ≥ 0 from the
dominant energy condition. Thus (∂vr)(u0, v) is a non-increasing function of
v, so the whole outgoing null ray must lie entirely in T ∪ A. But this in
turn implies that r(u0, v) itself is a nonincreasing function of v along the
ray, and so supv:(u0,v)∈Q+ r(u0, v) ≤ r(u0, v0) < ∞. From Proposition (2),
we know that I+ is connected and contains i0, so we can conclude that no
portion of it can extend into the causal future of the ray {u = u0}, and
hence (u0, v0) /∈ J−(I+). This completes the proof. (INCLUDE PENROSE
DIAGRAM?) �

3.4 Proposed problems

3.5 Existing results

11



Appendix A: Christoffel symbols

Here we explicitly compute the Christoffel symbols for the metric

g = −Ω2du dv + r2γ.

Recall that the functions r and Ω depend only on the coordinates u and v.
Assign the coordinates u, v, θ, φ labels 1, 2, 3, 4 respectively. Then we have

g12 = g21 = −Ω2

2
and g12 = g21 = − 2

Ω2

g33 = r2 g33 =
1

r2

g44 = r2 sin2θ, g44 =
1

r2 sin2θ
, all others 0.

In order to compute this metric’s Christoffel symbols, we first write down
all of the partial derivatives of its components that are non-zero. These are:

g12,1 = g21,1 = −Ω Ω,u g44,1 = 2rr,u sin2θ
g12,2 = g21,2 = −Ω Ω,v g44,2 = 2rr,v sin2θ

g33,1 = 2rr,u g44,3 = 2r2 sin θ cos θ
g33,2 = 2rr,v.

Now, we have the coordinate formula for the Christoffel symbols

Γk
ij =

1

2
gkl(gil,j + gjl,i − gij,l).

So we can compute:

Γ1
ij = 1

2
g1l(gil,j + gjl,i − gij,l)

= 1
2
g12(gi2,j + gj2,i − gij,2)

= − 1
Ω2 (gi2,j + gj2,i − gij,2);

thus

Γ1
11 = − 1

Ω2 (g12,1 + g12,1 − g11,2) = − 1
Ω2 (2 g12,1) = − 1

Ω2 (−2 Ω Ω,u) = 2 Ω,u

Ω
,

Γ1
12 = Γ1

21 = − 1
Ω2 (g12,2 + g22,1 − g12,2) = 0,

Γ1
33 = − 1

Ω2 (g32,3 + g32,3 − g33,2) = 1
Ω2 g33,2 = 2

Ω2 rr,v

Γ1
44 = − 1

Ω2 (g42,4 + g42,4 − g44,2) = 1
Ω2 g44,2 = 2

Ω2 rr,v sin2θ.
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An identical procedure gives us the Christoffel symbols of the form Γ2
ij, and

we have

Γ2
12 = Γ2

21 = − 1
Ω2 (g11,2 + g21,1 − g12,1) = 0

Γ2
22 = − 1

Ω2 (g21,2 + g21,2 − g22,1) = − 1
Ω2 (2g21,2) = − 1

Ω2 (−2 Ω Ω,v) = 2Ω,v

Ω

Γ2
33 = − 1

Ω2 (g31,3 + g31,3 − g33,1) = 1
Ω2 g33,1 = 2

Ω2 rr,u

Γ2
44 = − 1

Ω2 (g41,4 + g41,4 − g44,1) = 1
Ω2 g44,1 = 2

Ω2 rr,u sin2θ.

And

Γ3
ij = 1

2
g3l(gil,j + gjl,i − gij,l)

= 1
2
g33(gi3,j + gj3,i − gij,3)

= 1
2r2 (gi3,j + gj3,i − gij,3);

thus

Γ3
13 = Γ3

31 = 1
2r2 (g13,3 + g33,1 − g13,3) = 1

2r2 g33,1 = 1
2r2 2rr,u = r,u

r

Γ3
23 = Γ3

32 = 1
2r2 (g23,3 + g33,2 − g23,3) = 1

2r2 g33,2 = 1
2r2 2rr,v = r,v

r

Γ3
44 = 1

2r2 (g43,4 + g43,4 − g44,3) = − 1
2r2 g44,3 = − sin θ cos θ.

Likewise,

Γ4
ij = 1

2r2 sin2θ
(gi4,j + gj4,i − gij,4),

so

Γ4
14 = Γ4

41 = 1
2r2 sin2θ

(g14,4 + g44,1 − g14,4) = 1
2r2 sin2θ

g44,1 = r,u

r

Γ4
24 = Γ4

42 = 1
2r2 sin2θ

(g24,4 + g44,2 − g24,4) = 1
2r2 sin2θ

g44,2 = r,v

r

Γ4
34 = Γ4

43 = 1
2r2 sin2θ

(g34,4 + g44,3 − g34,4) = 1
2r2 sin2θ

g44,3 = cos θ
sin θ

.

To summarize: all Christoffel symbols are zero except

Γ1
11 = 2 Ω,uΩ

−1 Γ2
22 = 2 Ω,vΩ

−1

Γ1
33 = 2rr,vΩ

−2 Γ2
33 = 2rr,uΩ

−2

Γ1
44 = 2rr,v sin2θ Ω−2 Γ2

44 = 2rr,u sin2θ Ω−2

Γ3
13 = Γ3

31 = r,ur
−1 Γ4

14 = Γ4
41 = r,ur

−1

Γ3
23 = Γ3

32 = r,vr
−1 Γ4

24 = Γ4
42 = r,vr

−1

Γ3
44 = − sin θ cos θ Γ4

34 = Γ4
34 = Γ4

43 = (tan θ)−1.
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Appendix B: Deriving the Einstein field equations

In order to write down the field equations, we must first find the Ricci and
scalar curvatures for the metric g = Ω2du dv + r2γ. Now, the components of
the curvature tensor are

Rijkl = gml(Γ
m
jk,i − Γm

ik,j) + gpl(Γ
m
jkΓ

p
im − Γm

ikΓ
p
jm),

and so the Ricci tensor is given by

Rjk = Γi
jk,i − Γi

ik,j + Γm
jkΓ

i
im − Γm

ikΓ
i
jm.

Thus, using our coordinates (u, v, θ, φ) (labeled 1, 2, 3, and 4 respectively)
and using the results of Appendix A, we have

R11 = Γi
11,i − Γi

i1,1 + Γm
11Γ

i
im − Γm

i1Γ
i
1m

= Γ1
11,1 − (Γ1

11,1 + Γ3
31,1 + Γ4

41,1) + Γ1
11(Γ

1
11 + Γ3

31 + Γ4
41)

−(Γ1
11Γ

1
11 + Γ3

31Γ
3
13 + Γ4

41Γ
4
14)

= −(Γ3
31,1 + Γ4

41,1) + Γ1
11(Γ

3
31 + Γ4

41)− (Γ3
31Γ

3
13 + Γ4

41Γ
4
14)

= −2(r,ur
−1),u + 2 Ω,uΩ

−1(2r,ur
−1)− 2(r,ur

−1)2

= −2r,uur
−1 + 2(r,u)

2r−2 + 2 Ω,uΩ
−1(2r,ur

−1)− 2(r,ur
−1)2

= −2r,uur
−1 + 4 Ω,ur,u(Ωr)−1;

R12 = R21 = Γi
12,i − Γi

i2,1 + Γm
12Γ

i
im − Γm

i2Γ
i
1m

= −(Γ2
22,1 + Γ3

32,1 + Γ4
42,1)− (Γ3

32Γ
3
13 + Γ4

42Γ
4
14)

= −(2 Ω,vΩ
−1 + 2r,vr

−1),u − 2(r,vr
−1)(r,ur

−1)

= −2 Ω,vuΩ
−1 + 2 Ω,uΩ,vΩ

−2 − 2r,vur
−1 + 2r,ur,vr

−2 − 2r,ur,vr
−2

= −2 Ω,vuΩ
−1 + 2 Ω,uΩ,vΩ

−2 − 2r,vur
−1;

by the symmetry between u and v,

R22 = −2r,vvr
−1 + 4 Ω,vr,v(Ωr)−1;

R13 = Γi
13,i − Γi

i3,1 + Γm
13Γ

i
im − Γm

i3Γ
i
1m

= Γ3
13,3 − Γ4

43,1 + Γ3
13Γ

4
43 − Γ4

43Γ
4
14

= 0− 0 + (r,ur
−1)(tan θ)−1 − (tan θ)−1(r,ur

−1)

= 0,
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and similarly R23 = 0;

R14 = Γi
14,i − Γi

i4,1 + Γm
14Γ

i
im − Γm

i4Γ
i
1m

= Γ4
14,4

= 0,

and similarly R24 = 0;

R33 = Γi
33,i − Γi

i3,3 + Γm
33Γ

i
im − Γm

i3Γ
i
3m

= Γ1
33,1 + Γ2

33,2 − Γ4
43,3 + Γ1

33(Γ
1
11 + Γ3

31 + Γ4
41) + Γ2

33(Γ
2
22 + Γ3

32 + Γ4
42)

−(2Γ3
13Γ

1
33 + 2Γ2

33Γ
3
32 + Γ4

43Γ
4
34)

= Γ1
33,1 + Γ2

33,2 − Γ4
43,3 + Γ1

33Γ
1
11 + Γ2

33Γ
2
22 − Γ4

43Γ
4
34

= (2rr,vΩ
−2),u + (2rr,uΩ

−2),v − ((tan θ)−1),θ + (2rr,vΩ
−2)(2 Ω,uΩ

−1)

+(2rr,uΩ
−2)(2 Ω,vΩ

−1)− (tan θ)−2

= 2r,ur,vΩ
−2 + 2rr,vuΩ

−2 − 4rr,vΩ,uΩ
−3 + 2r,vr,uΩ

−2 + 2rr,uvΩ
−2

−4rr,uΩ,vΩ
−3 + 1 + 4rr,vΩ,uΩ

−3 + 4rr,uΩ,vΩ
−3

= 4r,ur,vΩ
−2 + 4rr,uvΩ

−2 + 1;

R34 = R43 = Γi
34,i − Γi

i4,3 + Γm
34Γ

i
im − Γm

i4Γ
i
3m

= 0;

and finally,

R44 = Γi
44,i − Γi

i4,4 + Γm
44Γ

i
im − Γm

i4Γ
i
4m

= Γ1
44,1 + Γ2

44,2 + Γ3
44,3 + Γ1

44(Γ
1
11 + Γ3

31 + Γ4
41) + Γ2

44(Γ
2
22 + Γ3

32 + Γ4
42)

+Γ3
44Γ

4
43 − (2Γ1

44Γ
4
41 + 2Γ2

44Γ
4
42 + 2Γ3

44Γ
4
43)

= Γ1
44,1 + Γ2

44,2 + Γ3
44,3 + Γ1

44Γ
1
11 + Γ2

44Γ
2
22 − Γ3

44Γ
4
43

= (2rr,v sin2θ Ω−2),u + (2rr,u sin2θ Ω−2),v + (− sin θ cos θ),θ

+(2rr,v sin2θ Ω−2)(2 Ω,uΩ
−1) + (2rr,u sin2θ Ω−2)(2 Ω,vΩ

−1)

−(− sin θ cos θ)(tan θ)−1

= 2 sin2θ r,ur,v Ω−2 + 2 sin2θ rr,vu Ω−2 − 4 sin2θ rr,vΩ,uΩ
−3

+2 sin2θ r,vr,u Ω−2 + 2 sin2θ rr,uv Ω−2 − 4 sin2θ rr,uΩ,vΩ
−3 + sin2θ

+4 sin2θ rr,vΩ,uΩ
−3 + 4 sin2θ rr,uΩ,vΩ

−3

= 4 sin2θ r,ur,v Ω−2 + 4 sin2θ rr,vu Ω−2 + sin2θ.
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To summarize: all components of the Ricci tensor are zero except

R11 = −2r,uur
−1 + 4 Ω,ur,u(Ωr)−1

R12 = R21 = −2 Ω,vuΩ
−1 + 2 Ω,uΩ,vΩ

−2 − 2r,vur
−1

R22 = −2r,vvr
−1 + 4 Ω,vr,v(Ωr)−1

R33 = 4r,ur,vΩ
−2 + 4rr,uvΩ

−2 + 1

R44 = sin2θ (4r,ur,vΩ
−2 + 4rr,uvΩ

−2 + 1).

Now the scalar curvature R = gjkRjk is just

R = 2g12R12 + g33R33 + g44R44

= −4 Ω−2(−2 Ω,vuΩ
−1 + 2 Ω,uΩ,vΩ

−2 − 2r,vur
−1)

+r−2(4r,ur,vΩ
−2 + 4rr,uvΩ

−2 + 1)

+(r sin θ)−2(sin2θ (4r,ur,vΩ
−2 + 4rr,uvΩ

−2 + 1))

= 8 Ω,vuΩ
−3 − 8 Ω,uΩ,vΩ

−4 + 16r,vur
−1Ω−2 + 8r,ur,vr

−2Ω−2 + 2r−2,

and so the Einstein tensor Gij = Rij − 1
2
Rgij has the following non-zero

components:
G11 = R11 = −2r,uur

−1 + 4 Ω,ur,u(Ωr)−1;

G22 = R22 = −2r,vvr
−1 + 4 Ω,vr,v(Ωr)−1;

G12 = R12 − 1
2
R g12

= −2 Ω,vuΩ
−1 + 2 Ω,uΩ,vΩ

−2 − 2r,vur
−1

+1
4
Ω2(8 Ω,vuΩ

−3 − 8 Ω,uΩ,vΩ
−4 + 16r,vur

−1Ω−2

+8r,ur,vr
−2Ω−2 + 2r−2)

= 2r,vur
−1 + 2r,ur,vr

−2 + 1
2
r−2Ω2;

G33 = R33 − 1
2
R g33

= 4r,ur,vΩ
−2 + 4rr,uvΩ

−2 + 1

−1
2
r2(8 Ω,vuΩ

−3 − 8 Ω,uΩ,vΩ
−4 + 16r,vur

−1Ω−2

+8r,ur,vr
−2Ω−2 + 2r−2)

= −4rr,uvΩ
−2 − 4r2 Ω,vuΩ

−3 + 4r2 Ω,uΩ,vΩ
−4;
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and by inspection,

G44 = sin2θ(−4rr,uvΩ
−2 − 4r2 Ω,vuΩ

−3 + 4r2 Ω,uΩ,vΩ
−4).

Plugging these components into the Einstein field equation G = 8πT now
clearly yields equations (3) through (6).

Appendix C: Computing θ± in spherical symmetry

Fix coordinates u = u0 and v = v0 and consider the two-sphere of radius
r = r(u0, v0) comprising the points {(u0, v0, θ, φ)} ⊂ M . We previously
defined ∂u as the “ingoing” direction and ∂v as the “outgoing” one; denoting
these vectors by ka and la, respectively, we then have

θ+ = θ(l) = hab∇bla = hab(la,b − lcΓ
c
ab),

where hab = r2γab is the induced metric on the given two-sphere and hab is
its inverse. Using the coordinate labeling as in Appendices A and B, we then
have that h33 = r−2, h44 = (r sin θ)−2, and all other components are zero.
Also,

la = gabl
b = ga2,

so l1 = −1
2
Ω2 and the other three components are zero. In particular, it is

now clear that habla,b = 0 for all a, b = 1, 2, 3, 4, and we are left with

θ+ = −hablcΓ
c
ab

= −h33l1Γ
1
33 − h44l1Γ

1
44

= −r−2 · (−1
2
Ω2) · (2rr,vΩ

−2)− (r sin θ)−2 · (−1
2
Ω2) · (2rr,v sin2θΩ−2)

= 2r,vr
−1.

Similarly, one computes that θ− = θ(k) = 2r,ur
−1.
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