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1
Chapter 1INTRODUCTIONThe mean curvature of surfaces embedded in R3 has been studied since the late 1700's(see, for example [Lag60]). Embeddings with mean curvature 1 (referred to as CMC surfacesbelow) are particularly interesting, as they are critical points for the functional Area -Volume. Current research regarding CMC surfaces centers on the following two questions:how can one construct examples of these surfaces, and how well can one describe the set ofsuch surfaces with �xed topology? At the heart of both these questions lies the attempt tounderstand solutions to the mean curvature equation, which is a nonlinear partial di�erentialequation, on a �xed surface. If one writes the surface as the graph of a function u (whichone can always do locally), then the mean curvature equation becomes12 div rup1 + jruj2! = 1; (1.1)which is a well-studied quasilinear elliptic PDE in divergence form.Below we will study properly embedded, noncompact CMC surfaces of �nite topologicaltype. The goal of this dissertation is to describe a method to construct many new examplesof such CMC surfaces.The �rst example of a noncompact, complete, embedded CMC surface is the right cir-cular cylinder of radius 12 . One can also consider a string of mutually tangent unit spheressuch that the points of contact between consecutive spheres all lie on the same line, whichcollectively form a singular surface. In 1841 C. Delaunay [Del41] classi�ed all the rota-tionally symmetric CMC surfaces, including the two examples above. These surfaces areperiodic and determined up to rigid motion by their necksize �, which is the minimum radiusof a cross-section perpendicular to the axis of symmetry. A necksize of 12 corresponds to acylinder and as �! 0 the surfaces tend to the string of unit spheres mentioned above.



2 Kapouleas constructed the next examples of noncompact, complete, embedded, CMCsurfaces in [Kap90] via a gluing construction. Since then, several other new examples ofcomplete, noncompact, embedded CMC surfaces have appeared, including the gluing con-structions of Mazzeo and Pacard [MP01] and Mazzeo, Pacard, and Pollack [MPP]. Eachof these gluing constructions uses tools from modern analysis, particularly partial di�er-ential equations. Kapouleas uses singular perturbation theory while Mazzeo, Pacard, andPollack solve boundary value problems for equation (1.1) and match Cauchy data. In eachconstruction one must carefully account for the behavior of solutions to equation (1.1) onnoncompact domains.The main result of this dissertation is the construction of new CMC embeddings bygluing two CMC embeddings together end-to-end in a sense described below. We startwith two noncompact, proper embeddings X1 : �1 ! R3 and X2 : �2 ! R3 where �1(respectively �2) is topologically a closed surface of genus g1 with k1 punctures (respectivelyof genus g2 with k2 punctures). The properness condition forces dist(Xi(p); (0; 0; 0)) !1 as p approaches any of the punctures in �i. By a result of Korevaar, Kusner, andSolomon [KKS89], each end Ej of X1 or X2 (image of a small neighborhood of a puncture)is asymptotic to a Delaunay embedding Dj . Pick two ends E1 � X1 and E2 � X2 suchthat the E1 and E2 are asymptotic to congruent Delaunay surfaces. Next align X1 andX2 so that E1 and E2 are asymptotic to opposite ends of the same Delaunay surface D,so in particular E1 and E2 are graphs over opposite ends of the same cylinder. One canthen patch X1 and X2 together using a cut-o� function along this cylinder to obtain anembedding �X : � ! R3 . Topologically, � is a closed surface of genus g = g1 + g2 withk = k1 + k2 � 2 punctures. The mean curvature of of �X is 1 away from the gluing regionand is globally close to 1, and so �X is an approximate solution to equation (1.1), whichwe will describe more explicitly in Section 3. We have two parameters in this construction:R, which we can think of as the distance along the ends E1 and E2 at which we glue, and�, which speci�es a rotation of X2 about the axis of D. The translation parameter R isdiscrete, as we can only translate by periods of the Delaunay surface D. To indicate thedependence on these parameters we will denote the embedding as �XR;�. However, muchof the analysis is independent of one (or both) of these parameters, and so we will often



3suppress this dependence.The goal now is to perturb �XR;� using normal perturbations and geometric deformationsto obtain an embedding XR;� : � ! R3 which has mean curvature 1. This is equivalentto solving a nonlinear partial di�erential equation on � in the following way. Given anexponentially decaying function v and a geometric deformation parameter u we obtainfrom �XR;� another embedding �XR;�(u; v) by applying the geometric deformation associatedto u to the normal perturbation of �XR;� by v. We parameterize this space of geometricdeformations by translations, rotations, and variations of the necksize parameters and usethis parameterization to obtain a norm on the space of geometric deformations. We denotethe mean curvature of this new embedding as H(u; v). The equation we wish to solve is1 = H(u; v) = H(0; 0) + L �XR;�(u+ v) +Q �XR;�(u; v):Here we have expanded the mean curvature H(u; v) in a Taylor series about (0; 0). L �XR;�is the linearized mean curvature operator and Q �XR;� contains all the quadratic and higherorder terms. If we write H(0; 0) = 1�  then the above equation becomesL �XR;�(u+ v) =  �Q �XR;�(u; v): (1.2)The linearized equation is L �XR;�(u+ v) =  : (1.3)In Chapter 4 we show that if X1 and X2 satisfy certain conditions one can always �nd atempered solution to equation (1.3). The conditions can be summarized as follows:� we want both X1 and X2 to be nondegenerate (their linearized mean curvature oper-ators should have no exponentially decaying solutions) and� we want X1 to admit a deformation through CMC surfaces which changes the asymp-totic necksize of E1 to �rst order.We also show that the Green's operator we construct is uniformly (in R) bounded in anappropriate norm. In Section 5 we solve equation (1.2) using a contraction mapping. Thisyields the following theorem.



4Theorem 1. Let X1 and X2 be noncompact, proper, CMC embeddings with �nite topologywhich are nondegenerate. Suppose one can chose ends E1 � X1 and E2 � X2 which areasymptotic to congruent Delaunay surfaces and suppose further that X1 admits a deforma-tion through CMC surfaces which changes the asymptotic necksize of E1 to �rst order. Let�XR;� be the approximate solution of Section 3. Then there exists R0 > 0 and � > 0 suchthat for R � R0 one can �nd a geometric deformation parameter u with juj � � and anexponentially decaying function v such that the embedding �XR;�(u; v) has constant meancurvature equal to one. Moreover, this CMC embedding is nondegenerate.Finally, in Section 6 we use this construction to prove the following.Corollary. For k � 4 the moduli space of Mk of k-ended, genus-zero CMC surfaces hasconnected components which are not simply connected.We also show that every nondegenerate genus-zero three-ended CMC surface satis�es thegluing hypotheses for all ends and that the gluing hypotheses are stable under perturbation.One particular example of this gluing construction is a construction we will call doubling.In this case, we take X2 to be congruent to X1 and patch the chosen end to a copy of itself.



5
Chapter 2NOTATIONBelow, we will always use the symbols g and A to denote the �rst and second fundamentalforms (respectively) of an embedding X : � ! R3 . More explicitly, if we have coordinates(s; �) on �, then we write g = Eds2 + 2Fdsd� + Gd�2 and A = Lds2 + 2Mdsd� + Nd�2.With these coordinates, we will also orient the surface with the normal � = @sX�@�Xk@sX�@�Xk . Wewill denote the mean curvature by H = 12 trg A and the Gaussian curvature by K = detA.If we have another surface ��, we will denote its metric as �g, and so on. Also, we will oftenuse subscripts to denote derivatives.We will always consider noncompact, proper embeddings X : � ! R3 of surfaces of�nite topology. The function � will always be a cut-o� function, either centered about 0 ona line or radially symmetric with its support a suitably chosen ball. Given a rotationallysymmetric surface, we will denote its axis by ~a where f~a;~b;~cg form an oriented orthonormalbasis for Euclidean three-space.In general, we will be able to decompose all embedded surfaces we encounter into acompact piece K and some number of ends, each of which is a graph over some half-in�nitecylinder. We will parameterize the jth end Ej with coordinates (tj ; �j) 2 (0;1)�S1. Also,we will have a graph over a long, but �nite, cylinder in our approximate solution �XR;�,which we will usually parameterize with coordinates (t; �) 2 (�R;R)� S1.



6
Chapter 3THE APPROXIMATE SOLUTIONThe �rst step is to construct an approximate solution. We start with two complete,embedded, noncompact CMC surfaces Xi : �i ,! R3 with �nite topology. The ends ofthe surfaces are the unbounded connected components of Xi(�i) \ (R3nB r0 ) where r0 istaken large enough so that the number of such components remains constant if r0 increases.Roughly speaking, we can decompose the surface Xi(�i) into a union of a compact pieceand ki noncompact ends. By a theorem of Korevaar, Kusner, and Solomon [KKS89] eachend of Xi(�i) is asymptotic to a Delaunay surface D = D� of Delaunay parameter � . Wewill explain this convergence below. We will assume that we can choose ends Ei of Xi(�i)which are asymptotic to congruent Delaunay surfaces.The embedded Delaunay surfaces are CMC surfaces which are rotationally symmetricabout some axis. They have a pro�le curve which is the graph of some positive function�D(t). Thus D can be parameterized as D(t; �) = t~a + �D(t)!(�) where f~a;~b;~cg is anoriented orthonormal basis for R3 and !(�) = cos �~b + sin �~c. By examining the equation�D must satisfy, one can show that �D is periodic. The necks of the Delaunay surface aresmall neighborhoods of the circles ft0~a + �D(t0)!(�)g where �D attains a minimum at t0and the necksize is the minimum value of �D. It is convenient to parameterize the Delaunaysurfaces with the parameter � = 2���2 and to denote the associated Delaunay surface as D� .Appendix B.1 contains a longer explanation of these surfaces. The result of [KKS89] statesthat there is an r > 0 such that the unbounded connected components of Xi(�i)\ (R3nB r )can each be written as graphs over a cylinder (r;1) � S1. Moreover, if we parameterizesuch an end Ei as (t; �) 7! t~a+ �Ei(t; �)!(�) : (r;1)! R3 ;then there exists an embedded Delaunay surface D(t; �) = t~a + �D(t)!(�) such that the



7following estimate holds: k�D(t)� �Ei(t; �)k2;�;t0 = O(e�2(�)t0 )for some 0 < � < 1, all t0 � r+1, and some 2(�) > 0 which depends on � and the necksizeof D. The norm k�k2;�;t0 is the standard H�older norm on (t0�1; t0+1)�S1. The coe�cient2(�) is called the second indicial root associated to D� . The indicial roots arise naturally inthe study of Fredholm properties of the linearized mean curvature operator of a Delaunaysurface and determine asymptotic expansions of solutions to the homogeneous linearizedmean curvature equation. They are positive, depend continuously on � , and correspondboth to poles of an associated operator (see Appendix F) and to exponential growth ratesof solutions to certain ODEs (see the next chapter). The indicial roots of a Delaunay surfaceare covered more thoroughly in [MP01] and [MPPR].Without loss of generality, we can suppose D has the x axis as its axis of symmetry andthat �D has a minimum occurring at x = 0. This amounts to a translation and rotation ofXi. Moreover, by another translation of Xi we can take the ball B r in the above de�nitionof the ends to be centered at (�(R+ r); 0; 0) (�R� r for i = 1 and R+ r for i = 2) where Ris a large positive parameter (see the �gures below). We can write E1 as a graph over thecylinder (�R;1)�S1 and E2 as a graph over the cylinder (�1; R)�S1. Under this situationk�E1(s; �)� �D(s � R)k2;�;0 = O(e�2(�)R) and k�E2(s; �) � �D(s+ r)k2;�;0 = O(e�2(�)R).Notice that the two surfaces X1 and X2 are close in the C2;� norm (in fact, the C1 normas well) only if is R is an integer multiple of the period of the Delaunay surface D. We alsoremark that the embedding Xi : �i ! R3 depends on R. We will suppress this dependence,as two such embeddings of �i described above can only di�er by a translation along the xaxis.PSfrag replacements
x-axis(0; 0; 0)�E1X1(�1)�(�R � r; 0; 0)



8 PSfrag replacements�
�� x-axis(0; 0; 0) X2(�2)E2 (R+ r; 0; 0)

Note that in the region �R � x � R each of E1, E2, and D are graphs over the cylinder(�R;R)� S1.Given a surface parameterized as a graph over a cylinder(t; �) 7! (t; �(t; �) cos �; �(t; �) sin �);one can compute that the mean curvature is given byH = ��3(@2t �� @2��) + �2(1 + (@t�)2) + �((@t�)(@��)(@t@��)� @2��) + 2(@��)2(�2 + �2(@t�)2 � 4(@t�)2(@��)2)p�2 + (@��)2 + �2(@t�)2 : (3.1)Let � = �(t) � 0 be a nonincreasing cuto� function where�(t) = 8<: 1 for t < �10 for t > 1:We construct the approximate solution �X : � ! R3 as follows. The surface � istopologically a closed Riemann surface of genus g = g1 + g2 and k = k1 + k2 � 2 punctures.We will number the ends of �X as E3 : : : Ek1+k2 , reserving the labeling of E1 and E2 for theends of X1 and X2 we truncate in the gluing construction. We can write part of �X as agraph over the cylinder (�R;R) � S1. In the region corresponding to �R < t < �1 let �Xbe given by (t; �) 7! (t; �E1(t; �) cos �; �E1(t; �) sin �):In the region 1 < t < R let �X be given by(t; �) 7! (t; �E2(t; �) cos �; �E2(t; �) sin �):In the region �1 � t � 1 parameterize �X by(t; �) 7! (t; � �X(t; �) cos �; � �X(t; �) sin �)



9where � �X(t; �) = �(t)�E1(t; �) + (1� �(t))�E2(t; �):This gives a smooth surface with two boundary components written as a graph over abounded cylinder. Because �X and X1 are given as graphs of the same function over thecylinder (�R;�1)�S1, we can extend �X past the boundary component f�Rg�S1 by lettingit agree with X1. We can similarly extend �X past the boundary component fRg � S1 toagree with X2 (see the �gure below). Then �X is a smooth embedding of �, and it is CMCin the regions corresponding to t < �1 and t > 1.PSfrag replacements
�(0; 0; 0)� = 1 � = 0
�X�(�R� r; 0; 0) (R + r; 0; 0)�

In the region �1 � t � 1 �X is a graph over the Delaunay surface D of the function� �X��D. The function � �X is a convex combination of �E1 and �E2 and k�EikC2;�((�1;1)�S1) =O(e�2(�)R). ThusH �X = HD + LD(� �X � �D) +O((� �X � �D)2)= 1 +O(kLDkk� �X � �DkC2;�((�1;1)�S1)) +O(e�22(�)R) = 1 +O(e�2(�)R)where LD is the linearized mean curvature operator about the Delaunay surface D (see thenext chapter).We will write this as H �X = 1�  where  is supported in the region �1 � t � 1 and k kC2;� = O(e�2(�)R). We can adjustthis construction by changing the translation parameter R by a multiple of the period ofD. In particular, we can make R as large as we please. Thus we can make this error  assmall as we wish to start the construction.In addition to the parameter R, we also have an angular parameter �. One can thinkof this parameter as determining the angle of X2(�2) relative to X1(�1), as measured from



10some chosen starting position. We can change � by rotating X2(�2) about the axis of D. Inconstructing the approximate solution �X, we did not use this parameter at all. But later wemay reconstruct �X for a di�erent value of � than the value we initially chose. To indicatethe choice of parameters R and �, we will denote this approximate solution as �XR;�. Asmentioned in the introduction, we will often �x one or both of these parameters, and inthese instances we will suppress the subscripts.In the doubling case, take �1 = �2. Align X1(�1) so that the chosen end E1 has the xaxis as the axis of symmetry for its model Delaunay surface D and so that D has a neckat x = 0. Then let X2(�2) be the embedding one obtains by rotating X1(�1) about the zaxis by an angle of �.In addition to this construction, one could also build in \misalignment errors". Forexample, instead of aligning the surfaces X1 and X2 exactly, one could rotate X2 so thatthe axis of E2 di�ers from the axis of E1 by an angle � which is O(e�2(�)R). The resultingapproximate solution would still have mean curvature 1 outside a small cylindrical region,and globally its mean curvature would still be 1 + O(e�2(�)R). Thus one can perform thesame analysis as we do below, but starting with this bent approximate solution, obtaininga CMC surface from the bent con�guration as well. We can also induce other misalignmenterrors, such as translating X2 in a direction perpendicular to the axis of E2 by a smallamount, or starting with an asymptotic necksize of E2 which is not equal to (but close to)the asymptotic necksize of E1. We remark that this approximate solution is unbalanced, inthat the weight vectors associated to its ends do not sum to zero (see [Kus91] or appendixC.2). However, the geometric parameters we use to deform the surface in the nonlinear partof this construction change these weight vectors, so the contraction mapping we use in the�nal step produces a balanced surface automatically.
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Chapter 4MAPPING PROPERTIES OF THE LINEARIZED OPERATORIn Appendix E we show that the linearization of the left hand side of equation (1.1) isLX = 12 (�X + kAXk2), where �X is the Laplace-Beltrami operator and AX is the secondfundamental form. The operator LX is called the Jacobi operator of the embedding X. Inthis section we will study the mapping properties of L �XR;� where �XR;� is the approximatesolution constructed in the last section. In particular, we are interested in �nding temperedsolutions u to the equation L �XR;�u =  when  decays exponentially along the ends of�XR;�.4.1 The Jacobi operator for a Delaunay surfaceFirst consider the case where X = D� is a Delaunay embedding with necksize � and � =2�� �2. In this case, the Jacobi operator isLD = 12�2e2� (@2s + @2� + �2 cosh 2�); (4.1)where �00+ �22 sinh2� = 0 (see section 4.1 of [MP01]). This parameterization of the Delaunaysurface di�ers from the one given in the previous chapter by the change of coordinatest = k(s) and �(t) = �e�(s) where k0 = �22 (e2�+1). We can understand solutions to LDu = 0and the spectral properties of LD in terms of solutions to the ODEs(@2s + �2 cosh � � j2)uj;� = 0: (4.2)Indeed, if uj;�(s) solve equation (4.2) with initial conditionsuj;+(0) = 1 @suj;+(0) = 0 uj;�(0) = 0 @suj;�(0) = 1; (4.3)



12and we let �j = 8>>><>>>: 1p� cos j� j > 01p2� j = 01p� sin j� j < 0;and de�ne u(s; �) = 1X�1 �j(�)(aj;+uj;+(s) + aj;�uj;�(s))then LDu = 0 provided aj;� are chosen so that the series converges. We call the Jacobi�elds u =Pjjj�1 �j(aj;+uj;+ + aj;�uj;�) the low eigenmode solutions.One can identify these low eigenmode Jacobi �elds with explicit geometric deformationsof D. To demonstrate this phenomenon, we will examine the one-parameter family of De-launay surfaces obtained by translating a given surface along its axis. We parameterize theDelaunay surface as D(t; �) = (�(t) cos �; �(t) sin �; t). In the (t; �) coordinates, the normalvector � is given by �(t; �) = 1p1+�2t (� cos �;� sin �; �t). We wish to write a translationD�(t; �) = D(t; �) + (0; 0; �) = D(t0; �0) + u(t0; �0)�(t0; �0) as a normal variation of D(t; �).We are left with three equations8>>>>><>>>>>: �(t) cos � = �(t0) cos �0 � 1p1+�2t (t0)u(t0; �0) cos �0�(t) sin � = �(t0) sin �0 � 1p1+�2t (t0)u(t0; �0) sin �0t+ � = t0 + �t(t0)u(t0 ;�0)p1+�2t (t0) : (4.4)Squaring the �rst two equations of (4.4) and adding them together we get�2(t) = �2(t0) + u2(t0; �0)1 + �2t (t0) � 2�(t0)u(t0; �0)p1 + �2t (t0) :Notice that from this equation we can take u to be a function of t alone. Multiplyingthrough by 1 + �2t (t0) and rearranging yieldsu2(t0)� 2�(t0)q1 + �2t (t0)u(t0) + (�2(t0)� �2(t))(1 + �2t (t0)) = 0:The quadratic formula then impliesu(t0) = (�(t0)� �(t))q1 + �2t (t0):



13From the third equation of (4.4),t� t0 = u(t0)�t(t0)p1 + �2t (t0) � �:Thus�(t) = �(t0) + (t� t0)�t(t0) +O(t� t0)2 = �(t0) + �2t (t0)u(t0)p1 + �2t (t0) � ��t(t0) +O(t� t0)2:Using this expression for �(t) yieldsu(t0) = ��t(t0)p1 + �2t (t0) +O(t� t0)2and thus the Jacobi �eld which generates this translational deformation of D is the functionu = u0;+ = �tp1 + �2t = �s: (4.5)Notice that u0;+(s) = �s(s) solves equation (4.2) for j = 0:uss + �2u cosh 2� = �sss + �2�s cosh 2� = 0:This computation shows that the in�nitesimal generator of the one-parameter family ofDelaunay surfaces obtained by translating a given surface along its axis is �0u0;+. Thein�nitesimal generators of the one-parameter families of Delaunay surfaces obtained bytranslating a given surface perpendicular to its axis are ��1u�1;+. The in�nitesimal gener-ators of the one-parameter families of Delaunay surfaces obtained by rotating the axis of agiven surface are ��1u�1;�. Finally, the in�nitesimal generator of the one-parameter familyof Delaunay surfaces obtained by varying the necksize of a given surface is �0u0;�.Notice that all the low eigenmodes Jacobi �elds are either bounded and periodic or growlinearly. In fact, these low eigenmodes are the only Jacobi �elds which are exponentiallybounded (see Lemma 2 below). A precise de�nition of the indicial roots of D = D� wouldbe that the jth indicial root j(�) is the coe�cients of exponential growth of homogeneoussolutions to equation (4.2). From this formulation one sees that 1 = 0 = 0 and j > 0for jjj � 2. In fact, the potential in equation (4.2) is strictly negative for jjj � 2. Thename arises from the fact that one can recover the indicial roots from the eigenvalues ofthe matrix which translates the solution by a period of the equation. As equation (4.2)



14is periodic with period S, there is a matrix Tj such that any homogeneous solution w toequation (4.2) satis�es 0@ w(s+ S)@sw(s+ S) 1A = Tj0@ w(s)@sw(s) 1Aand one can show that the indicial roots are the real parts of 1S log �j where �j is aneigenvalue of Tj . These growth properties motivate the use of the following function spaces.Recall that given an embedding X : �! R3 with k asymptotically Delaunay ends we havea decomposition X(�) = K [ ([k1Ej((0;1) � S1)) whereEj(tj ; �j) = tj~aj(�Dj (tj) + �j(tj ; �j))(cos �j~bj + sin �j~cj)and K = X(�)n([k1Ej).De�nition 1. Given a noncompact proper embedding X : �! R3 as above and a functionu : X(�)! R with u 2 Ck;�loc(X(�)) we de�ne the weighted H�older space Ck;�� to befkukCk;�� = supt0j>1 ke��tju(Ej(tj ; �j))kCk;�([t0j�1;t0j+1]�S1) + kukCk;�(K) <1g:Functions in Ck;�� (X) can grow at most like e�tj on each end Ej. For the approximatesolution we will need to use a more re�ned weighting function, de�ned below. Recall that�XR;� has a decomposition �XR;�(�) = K [ ([k1+k23 Ej((0;1) � S1)) [ CR;�((�R;R) � S1)where the ends Ej are parameterized as above,CR;�(t; �) = t(1; 0; 0) + (�D(t) + �(t)�E1(t; �) + (1� �(t))�E2(t; �))(0; cos �; sin �)where �R � t � R and � is a cut-o� function, and K = �XR;�n([k1+k23 Ej((0;1) � S1) [CR;�((�R;R)� S1)).De�nition 2. Let �XR;� be the approximate solution constructed above and letu : �XR;�(�)! R with u 2 Ck;�loc( �X(�)). Then de�ne the weighted H�older space F k;�� to befkukF k;�� = supjt0j�R�1 k cosh� tcosh� Ru(CR;�(t; �))kCk;�([t0�1;t0+1]�S1)+ supt0j>1 ke��tju(Ej(tj; �j))kCk;�([t0j�1;t0j+1]�S1) + kukCk;�(K) <1g:



15Note that the space of functions F k;�� ( �XR;�) is the same as Ck;�� ( �XR;�), where the middlecylinder CR;� is unweighted, but the norms are di�erent. The e�ect of this weightingfunction on the norms of functions in this space will become important later when we wantto �nd a choice of Green's operator for L �XR;� which is uniformly bounded in R.De�nition 3. A noncompact, properly embedded surface X : � ! R3 with asymptoticallyDelaunay ends is called nondegenerate if the operatorLX : Ck+2;��� (X)! Ck;��� (X)is injective for all � > 0.Following Proposition 20 of [MP01], we have the following Lemma.Lemma 2. Let D(s; �) : (0;1) � S1 ! R3 be one half of an embedded Delaunay surfacewith necksize � and with � = 2�� �2 and for j > 1 let uj(s) be a solution of equation (4.2)which is square integrable, normalized so that uj(0) = 1. Thenjuj(s)j � e�spj2�2+�2 :
Proof: First consider the two point boundary value problem8<: (�@2s � �2 cosh 2� + j2)us0 = 0us0(0) = 1; us0(s0) = 0for s0 > 0. Because �2 � �2 cosh 2� � 2� �2(see Proposition 11 of [MP01]), the zero order term of this ODE satis�es��2 cosh 2� + j2 � j2 � 2 + �2 > 0:Thus one can apply the Maximum Principle to solutions of this ODE. Lettinĝj =pj2 � 2 + �2;



16we have (�@2s � �2 cosh 2� + j2)e�̂js = (�̂2j � �2 cosh 2� + j2)e�̂js= (�j2 + 2� �2 � �2 cosh 2� + j2)e�js= (2� �2 � �2 cosh 2�)e�̂js � 0:Moreover, e�̂js bounds us0 above at the end points 0 and s0. Therefore, us0(s) � e�̂json the entire interval [0; s0]. Also, by the Minimum Principle �us0(s) � �e�̂js. So thefamily fus0g, for s0 > 0, is uniformly bounded. By standard ODE theory, the solutionus0 depends continuously on the parameter s0. By the Arzela-Ascoli theorem, the limituj(s) = lims0!1 us0 exists and satis�es the bound juj(s)j � e�̂js. �The above lemma gives a lower bound for j(�) when j � 2, but it is not sharp. In fact,Proposition 1 in [MPPR] shows that lim�!0 j(�) = j.A general solution in C2;��� ((0;1) � S1) (for any 0 < � < 2(�)) to LDu = 0 can bewritten as u(s; �) = 1Xj=2 cj�j(�)uj(s)where �j(�) = 1p� sin j� and uj is the solution in Lemma 2. Thenkuk2L2((0;1)�S1) = 1Xj=2 c2jkujk2L2(0;1):The boundary data for u is u(0; �) = 1Xj=2 cj�j(�)and so the L2 norm of the boundary data isku(0; �)k2L2 = 1Xj=2 c2j :By Proposition 21 of [MP01] the Poisson operator for the equation LDu = 0 is a boundedlinear map from L2(S1) to L2((0;1)�S1). So there is a positive constant m which dependsonly on the Delaunay parameter � such thatm2 1Xj=2 c2jkujkL2(0;1) = 1Xj=2 c2j :



17In particular, if we normalize kukL2((0;1)�S1) = 1 then1Xj=2 c2j = m2where m depends only on the necksize of the Delaunay surface D. Thus jcj j � m for eachj and so ju(s; �)j � me�2(�)s where m depends only on � and 2(�) is the second indicialroot mentioned above. Summarizing this argument we have the following lemma.Lemma 3. Let u : (0;1) � S1 ! R be in the kernel of operator (4.1) for the Delaunayparameter � and let kukL2 = 1. Then there exist positive constants m and 2(�) whichdepend only on � such that ju(s; �)j � me�2(�)s.4.2 The Jacobi operator on k-ended CMC surfacesNow consider a more general k-ended, properly embedded surface with asymptotically De-launay ends X : �! R3 . Over the jth end, one can write the Jacobi operator asLX = LD + e�2(�)tjRwhere (tj ; �j) are cylindrical coordinates for the end and R is a second order operator withsmooth bounded coe�cients. The deformations of the Delaunay surfaces corresponding tothe low eigenmode solutions found above yield asymptotic Jacobi �elds on X(�). Below wewill make this precise.As X has asymptotically Delaunay ends, we can write X(�) = K [ ([k1Ej) where K isa compact set and each Ej is a graph of some exponentially decaying function �j(tj; �j) (fortj � 0) over a Delaunay surface Dj . Now pick some cut-o� function � such that�(t) = 8<: 0 t < 01 t > 1and for jij � 1 de�ne wi;�j (tj ; �j) = �(tj)ui;�j (��1(tj ; �j)):Here � is the di�eomorphism between Ej and Dj de�ned by the graphing function and ui;�jis the i;� eigenmode Jacobi �eld on the Delaunay surface Dj with initial conditions given



18by (4.3). This de�nes wi;�j on the end Ej and we extend it by zero on the rest of the surface.We will refer to wi;�j as the asymptotic Jacobi �eld arising from the ith eigenmode on Dj.De�nition 4. Let X : � ! R3 be a noncompact k-ended genus g proper embedding withasymptotically Delaunay ends. The de�ciency space WX is the span of all the asymptoticJacobi �elds arising from low eigenmode deformations of the underlying Delaunay end;WX = spanfwi;�j j 1 � j � k; i = �1; 0; 1g. The bounded null space BX is the linear spanof all Jacobi �elds which do not grow exponentially. In other words,BX = fu 2 C2;�� (X) j LXu = 0gwhere 0 < � < infj2(�j). The spectral theory for LX shows that any Jacobi �elds whichgrow exponentially on the end Ej must grow with an exponential rate of at least 2(�j), soit su�ces to �nd this kernel for one value of �.Notice WX is a vector space of dimension 6k with a geometrically natural basis given byfwi;�j g where jij � 1. We will use this basis to induce the Euclidean norm on WX . Thesetwo spaces are related as follows (see the Linear Decomposition Lemmas of [KMP96] and[MPU96]):Theorem 4. (Kusner, Mazzeo, Pollack) Let X : � ! R3 be a proper embedding of anoncompact surface with �nite topology and asymptotically Delaunay ends. For 0 < � <infj2(�j), let u 2 Ck+2;�� (X) and f 2 Ck;��� (X) such that LXu = f . Then u = w+� wherew 2WX and � 2 Ck+2�� (X).Strictly speaking, this theorem is only stated for CMC surfaces and for weighted Sobolevspaces. However, the proof only requires that LX is the linearized mean curvature operatorand that the ends of the surface in question are asymptotic to Delaunay surfaces (seeAppendix F). Therefore, the conclusion of this and related theorems (in particular, theirresults regarding the weights for which the Jacobi operator is Fredholm) in [KMP96] and[MPU96] remain true for all the surfaces with which we will work.Suppose X : �! R3 is a nondegenerate embedding with asymptotically Delaunay endsE1 : : : Ek, each with Delaunay parameter �j. Then for 0 < � < infj 2(�j)LX : C2;��� (X)! C0;��� (X)



19is injective. By duality and elliptic regularity,LX : C2;�� (X)! C0;�� (X)is surjective. So if f 2 C0;��� � C0;�� , then there is a function u 2 C2;�� such that LXu = f .Then by the Linear Decomposition theorem u 2 WX � C2;��� . Thus we see that in thenondegenerate case LX : WX � C2;��� ! C0;���is surjective with kernel BX . We will use the Euclidean norm ku + vkWX�C2;��� (X) =qkuk2WX + kvk2C2;��� (X) on the direct sum. This paragraph summarizes why nondegener-acy is such an important property.The above argument shows there is a well de�ned map � : BX ! WX given by projec-tion. If u; v 2 BX and �(u) = �(v) = w 2WX then LX(u� v) = 0 and u� v 2 Ck+2;��� (X).If X is also nondegenerate, then u = v. So in the nondegenerate case this map BX ! WXis injective. In this case, we will often identify BX with its image in WX . For the generalimmersion (which may be degenerate) the element �(u) = w 2 WX determines u 2 BXonly up to terms which decay exponentially.In fact, WX and BX carry more structure. To see this, �rst recall that given twosolutions u1 and u2 to a linear second order ODE u00 + pu0 + qu = 0, the WronskianWr(u1; u2) = u1u02�u2u01 satis�es the equation (Wr)0+Wr�p = 0. Notice that equation (4.2)is a linear second order ODE with no �rst order terms. So the Wronskian Wr(ui;+; ui;�) =ui;+(s)@sui;�(s)� ui;�(s)@sui;+(s) is 1 by the initial conditions (4.3).Let Wj be the part of WX arising from the j eigenmodes of the model Delaunay surfacesfor the ends of �. Write u; v 2W0 asu = kX1 (aiu0;+i + biu0;�i )and v = kX1 (�iu0;+i + �iu0;�i )where u0;�i is the element of WX arising from the 0;� eigenmode of the model Delaunay



20surface (with Delaunay parameter �i) for the ith end. As in [MPU96] we de�ne
(u; v) = limr!1Z�\Br (0)(L�u)v � u(L�v) = limr!1Z�\Br (0)(�u)v � u(�v)where B r (0) is a large ball as in the de�nition of W . Upon integrating by parts, we �nd
(u; v) = limr!1Z@(�\Br (0)) @u@� v � u@v@�= limr!1[ kX1 [(ai�i � bi�i)Wr(u0;+i ; u0;�i ) 12� Z 2�0 d�] +O(e�2(�i)r)]= kX1 (ai�i � bi�i):Thus 
 is the standard symplectic structure on R2k . Similarly, W1 and W�1 also carry thestandard symplectic structure on R2k and so WX carries the standard symplectic structureon R6k . From the de�nition of 
, BX � WX is an isotropic subspace. By a relative indextheorem (see [KMP96]), dimBX = 3k = 12 dimWX and thus BX �WX is Lagrangian.Given an end E = Ej, let WE = spanfwi;�j ; i = �1; 0; 1; j �xedg. These are asymptoticJacobi �elds which are zero on all ends except E. Functions u 2 BX such that �(u) 2WEare Jacobi �elds of X which decay exponentially on all but one end of X(�) and grow atmost linearly on the remaining end E. As remarked earlier, we can identify BX with asubspace of WX in the case that X is nondegenerate. In this case, we will again abusenotation and say that the functions u described above lie in BX \WE . Such a function ucorresponds to a deformation of X(�) which �xes the asymptotics of all ends except E andchanges the asymptotics of E. The existence of such a u is limited by the following Lemma.Lemma 5. If u 2 BX and �(u) 2WE for some end E of a noncompact, proper embeddingX : �! R3 with asymptotically Delaunay ends, then u can only correspond to an asymptotictranslation along the axis of E.Proof: Suppose u corresponded to a change in the necksize of the asymptotic Delaunaysurface for the end E. Let w be the Jacobi �eld which arises from translating the embeddingX along the axis of E. Such a Jacobi �eld always exists, as it arises from a global rigidmotion of the surface. Then 
(u;w) 6= 0, which contradicts the fact that BX is a Lagrangian



21subspace ofWX . Similarly, one can eliminate the translations o� the axis of E (using globalrotations) and the rotations of the axis of E (using global translations). �.4.3 Nondegeneracy of the Jacobi operator on the approximate solutionIn this gluing construction, we want the approximate solution �XR;� to be nondegenerate,at least when the summands X1 and X2 are. Unfortunately, we cannot show this is alwaysthe case and must make the additional assumption that X1 allows a deformation throughCMC surfaces which changes the asymptotic necksize of E1 to �rst order.Remark 1. We remark that the existence of a deformation of X1 through CMC surfaceswhich changes the asymptotic necksize of E1 to �rst order implies that BX1\WE1 = f0g. Tosee this, recall that by Lemma 5 any nonzero Jacobi �eld u in WE1 would have to correspondto an asymptotic translation of E1 along its axis. Let v be the in�nitesimal generator of thedeformation of X1 which changes the asymptotic necksize of E1. Then 
(u; v) 6= 0, whichcontradicts the fact that BX1 is Lagrangian.First, let us recall the construction of Chapter 3. We start with two complete CMCembeddings Xi : �i ! R3 of noncompact surfaces. The surfaces �i have genus g1 and g2and have k1 and k2 punctures respectively. We choose ends Ei of Xi(�i) such that E1 andE2 are asymptotic to congruent Delaunay surfaces with Delaunay parameter �1 = �2 = � .Align the two surfaces so that the ends Ei are asymptotic to opposite ends of a Delaunayembedding D. Now patch the embeddings together at a neck of D using a cut-o� functionto get an embedding �XR;� : �! R3 . Here � is topologically a closed surface of genus g1+g2with k1 + k2 � 2 punctures. We will label the ends of �XR;� as E3; : : : Ek1+k2 , reserving thelabels E1 and E2 for the ends we truncate in the gluing construction. The ends of �XR;�are all congruent to ends of either X1 or X2. We will label the ends congruent to ends ofX1 as E3; : : : ; Ek1+1. The embedding depends on a discrete parameter R, which one canthink of as a distance along the end at which we place the gluing region, and the rotationparameter �, which we can think of as the relative angle between the two summands X1(�1)and X2(�2). �XR;� has mean curvature 1 outside a compact set and the deviation from 1 ofthe mean curvature of �X is pointwise O(e�2(�)R).



22 We need the condition stated above (that X1 admits a deformation which changes theasymptotic necksize of E1to �rst order) to guard against the following behavior. If we donot make this assumption, then it is possible for both X1 and X2 to admit Jacobi �eldswhich correspond only to translations of E1 (respectively E2) along its axis (see Remark1). If both X1 and X2 have Jacobi �elds which correspond to asymptotic translations alongthe axis of the end we are gluing and decay exponentially on all other ends, then we canpatch these two Jacobi �elds together to construct an approximate Jacobi �eld uR withkuRkF 2;��� ( �XR;�) = 1. By construction, L �XR;�(uR) = O(e�2R) pointwise. So L �XR;� has anexponentially small eigenvalue, which leads one to suspect that L �XR;� might be degenerate.Moreover, in this case any Green's operator for L �XR;� cannot be uniformly bounded in R.It is natural to ask whether any embedding X admits a deformation which preserves itsmean curvature up to �rst order and changes the asymptotic necksize of a given end Eto �rst order. If we denote by � the variable in WX which corresponds to changing thenecksize of E, then the failure of such a deformation to exist is equivalent to the conditionthat BX lies in the hyperplane f� = 0g. Thus we expect that the condition we will assumefor the summands is generically satis�ed among nondegenerate CMC surfaces. In fact, allknown nondegenerate CMC surfaces satisfy this condition for all ends. However, we shouldremark that we know very few examples of nondegenerate CMC surfaces. See Chapter 6for examples of surfaces which satisfy the gluing hypotheses for all choices of ends.Proposition 6. Suppose both X1 and X2 are nondegenerate and that X1 admits a deforma-tion through CMC surfaces which changes the asymptotic necksize of E1 to �rst order. Fix0 < � < infj 2(�j). Then there is an R0 > 0 such that for R � R0 one can �nd a Green's op-erator G �XR;� : F 0;��� ! F 2;��� �W �XR;�, uniformly bounded in R, such that L �XR;� �G �XR;� = Id.In particular, in this case the approximate solution �XR;� is nondegenerate.The idea behind the proof of this Proposition was originally communicated to me by F.Pacard.Remark 2. The weighting of the middle cylinder (�R;R) � S1 is necessary to obtain auniform bound on the Green's operator. To see this, consider the problemu00 = f



23on the segment (�R;R) with u(�R) = 0. The �rst eigenvalue of this problem is �24R2 . Indeed,one can check that u(t) = cos( �t2R ) is an eigenfunction associated to this eigenvalue. Thusthe norm of the inverse of this operator (in an unweighted function space) grows like R2.Proof: Suppose X1 admits a deformation through CMC surfaces which changes theasymptotic necksize of E1 to �rst order; notice we are not making the corresponding as-sumption about X2. Given a function f 2 F 0;��� ( �XR;�) we wish to solve the equationL �XR;�(u) = f . The method employed in this proof is to �rst truncate f using a cut-o�function � and solve the equations LX1(U1) = �f and LX2(U2) = (1 � �)f with appropri-ate decay. Then we will glue these two functions together and show that the result is anexponentially small (in R) perturbation of the desired solution G �XR;�(f).Let � be a smooth monotone nonincreasing function such that�(t) = 8<: 1 t � �10 t � 1:First let u2 + v2 2WX2 � C2;��� (X2) be a solution to LX2(u2 + v2) = (1� �)f , which existsbecause X2 is nondegenerate. Moreover, (recall we are using the Euclidean norm on thedirect sum WX2 � C2;��� (X2))rku2k2WX2 + kv2k2C2;��� (X2) � c2k(1 � �)fkC0;��� (X2): (4.6)Also, on the end E2, u2 has an asymptotic expansionu2 �Xi;� �i;�ui;� (4.7)where ui;� are the normalized low-eigenmode Jacobi �elds on the model Delaunay surfaceD for E2. Notice that pP(�i;�)2 � c2k(1� �)fkC0;��� (X2).Next let u1 + v1 2 WX1 � C2;��� (X1) be a solution to LX1(u1 + v1) = �f , which existsbecause X1 is nondegenerate. We also have the boundrku1k2WX1 + kv1k2C2;��� (X1) � c1k�fkC0;��� (X1): (4.8)This time, we can choose u1 so that one E1ju1(t; �)j � c1k�fkC0;��� (X1)e�2(�)(R+t) (4.9)



24for t � �R. This is because there exist global Jacobi �elds on X1 which are asymptoticon E1 to any of ui;� for i = 0;�1, by assumption that X1 admits a deformation throughCMC surfaces which changes the necksize of E1 to �rst order. The in�nitesimal generatorof this deformation yields a global Jacobi �eld on X1 asymptotic to u0;�. The global Jacobi�elds asymptotic to u�1;� and to u0;+ arise from global translations and rotations of X1.In short, we can �nd a global Jacobi �eld on X1 with prescribed asymptotics on E1.Now let � be a global Jacobi �eld on X1 such that on X1, � � �P�i;�ui;�. This ispossible because E1 and E2 are asymptotic to the same Delaunay surface. Let �1 and �2 becut-o� functions so that �1(t) = 8<: 1 t � R� 20 t � R� 1and �2(t) = 8<: 1 t � �R+ 20 t � �R+ 1:De�ne the operator ~G : F 0;��� ( �XR)!W �XR � F 2;��� ( �XR) by~G(f) = �1(u1 + v1 +�) + �2(u2 + v2):Notice now that in the region corresponding to �R � t � R� 2, we have the estimate thatju2(t; �) + �(t; �)j = O(� cosh tcoshR�� kfkF 0;��� ( �XR)) (4.10)because we have chosen � precisely to cancel out the parts of u2 which do not decay. Wewish to prove the following two estimates:� k ~G(f)kW �XR�F 2;��� ( �XR) � ckfkF 0;��� ( �XR)� kL �XR � ~G(f)� fkF 0;��� ( �XR) � ~ckfkF 0;��� ( �XR)e�~�R for some ~� > 0.The second estimate shows that we can write the composition L �XR � ~G as Id +RR, wherethe operator norm of RR is O(e�~�R), and is thus invertible with uniformly bounded inverseonce R is su�ciently large, which will complete the proof of the proposition.



25First we estimate k ~G(f)kW �XR�F 2;��� ( �XR). In the region CR which is parameterized by(t; �) 2 [�R;R]� S1, we have the boundj ~G(f)(t; �)j � ju1(t; �) + v1(t; �)j+ ju2(t; �) + v2(t; �) + �(t; �)j = O(� cosh tcoshR�� kfkF 0;��� )by combining the estimates (4.6), (4.8), (4.9) and (4.10). The desired bound onk ~G(f)kW �XR�F 2;��� ( �XR) in X1(�1)nE1 follows from (4.8), while the similarly desired bound inX2(�2)nE2 follows from (4.6), which completes the proof of the desired estimate.Finally we wish to estimate kL �XR( ~G(f)) � fkF 0;��� ( �XR)k. Notice that by constructionL �XR( ~G(f)) 6= f only in the regions R � 2 � t � R � 1 and �R + 1 � t � �R + 2. In theregion R� 2 � R� 1,jL �XR( ~G(f))(t; �)� f(t; �)j = jL �XR(�1(u1 + v1 +�))(t; �)j� kL �XRk(j�1u1(t; �)j+ j�1v1(t; �)j) + kLX1 �LX2kj�(t; �)j= kL �XRkO(kfkF 0;��� e�2�R) + j�(t; �)jO(e�~�R)= kfkF 0;��� (O(e�2�R) +O(Re�~�R))where ~� is any positive number less than 2(�). One can obtain the desired estimate in theregion �R+ 1 � t � �R+ 2 similarly. �



26
Chapter 5NONLINEAR ANALYSIS AND SOLVING THE GLUING PROBLEMIn previous sections of this dissertation we have constructed an approximate solution�XR;� with mean curvature 1 �  (where  is compactly supported and pointwise small)and shown that we can solve the linearized mean curvature equation (1.3) provided thesummands X1 and X2 satisfy some conditions. It remains to solve the nonlinear equation(1.2), which we will restate here:L �XR;�(u+ v) =  �Q �XR;� :Recall that given (u; v) 2W �XR;� � F 2;��� ( �XR;�) we obtained this equation by measuring themean curvature of embeddings �XR;�(u; v) which is the deformation associated to u of thenormal variation of �XR;� by v. If we can solve equation (1.2) then the embedding �XR;�(u; v)has mean curvature 1. In Section 5.1 we �rst make these geometric deformations preciseand in Section 5.2 we solve equation (1.2) by using a contraction mapping.5.1 Deformations of the Approximate SolutionIn this subsection, we will deform the approximate solution �XR;� using elements in itsde�ciency space W �XR;� . For the remainder of this section, we will suppress the subscriptsR and � for the approximate solution, as we will be working with a �xed distance R and a�xed angle �. Roughly speaking, each element u 2W �X corresponds to some combination ofrotations, translations, and deformations of necksizes applied to the model Delaunay surfacesfor the ends of �X . We then deform �X to obtain a deformed approximate solution �X(u) intwo steps. We �rst change the necksizes on the model Delaunay surfaces as prescribed by uand use these new Delaunay surfaces as asymptotic models for the ends of �X(u). Then weapply the rotations and translations to these new Delaunay surfaces as prescribed u, whichrotates and translates the ends of �X(u). Below we will make these deformations precise.



27First recall the construction of the de�ciency space WX for a CMC embedding X : �!R3 . As this construction relies only on the asymptotic structure of an immersion, we cancarry it out for our approximate solution �X : � ! R3 . We constructed the approximatesolution by patching together two CMC embeddings X1 and X2. In this construction, wetranslate the embedding X1 so that the asymptotic estimate of [KKS89] holds outside a ballof radius r centered at (�R� r; 0; 0). Let � be a smooth monotone function such that�(t) = 8<: 0 t < 01 t > 1:As per [KKS89], we can write the connected components of X1 as ends E1; : : : ; Ek1 whereeach Ej is given as a graph over a cylinder as follows:(tj ; �j) 7! tj ~aj + (�Dj (tj) + �j(tj; �j))!j(�j):Here Dj is the model Delaunay surface for the end Ej with pro�le curve �Dj and axis ~aj ,f~aj ;~bj ;~cjg is an oriented orthonormal basis, !j = cos �~bj + sin �~cj, andk�jkC2;�((tj�1;tj+1)�S1) = O(e�tj )for tj > 1. Let ~X be the embedding which agrees with �X except on the ends, which wereplace with the graph over the cylinder given by(tj ; �j) 7! tj~aj + (�Dj (tj) + (1� �(tj))�j(tj; �j))!j(�j):Let � be the di�eomorphism which sends tj~aj+(�Dj (tj)+�j(tj ; �j))!j(�j) to tj~aj+(�Dj (tj)+(1� �(tj))�j(tj ; �j))!j(�j): We de�ne the part of W �X arising from the summand X1 as thelinear span of wi;�j (s; �) = �(tj)ui;�j (��1(tj; �j))where ui;�j was the i;� eigenmode on the Delaunay surface Dj , for 2 � j � k and �1 �i � 1. This function is only de�ned on the end Ej , but we can extend it to be zero onthe rest of the surface. Recall we are using the end E1 for gluing and want to preserve itsasymptotic structure, so we do not deform that end. The asymptotic Jacobi �elds fromthis end therefore do not contribute to the de�ciency space W �X . The construction of the



28de�ciency space depends on the choice of cut-o� function �, but changing � only changesthe functions in W �X on a compact set. We de�ne the part of the de�ciency space arisingfrom the summand X2 similarly.Now we are ready to de�ne the deformations �X(u) of the approximate solution �X . Recallthat the low eigenmodes ui;�j arise from explicit deformations which one can apply to theDelaunay surface Dj . The ui;+j 's arise from translations, the u�1;�j 's arise from rotating theaxis of Dj , and the u0;�j 's arise from changing the necksize of Dj . Let u =P�i;�j wi;�j where�i;�j are small coe�cients and wi;�j are as above. Let T uj be translation by �0;+j in the ~ajdirection, �1;+j in the ~bj direction, and ��1;+j in the ~cj direction. Let Ruj be the rotationwhich rotates the axis ~aj through the angle �1;�j towards the ~bj axis and through the angle��1;�j toward the ~cj axis. Now apply these rigid motions to Dj and change the necksizeto �j + �0;�j . This results in a new Delaunay surface Duj , with a new orthonormal framef~auj ;~buj ;~cuj g = Ruj (f~aj ;~bj ;~cjg) +T uj and !uj = ~buj cos �+~cuj sin �. If �0;�j = 0 then Dj and Dujare congruent. We now de�ne the deformed surface �X(u) by replacing the end Ej with(tj ; �j) 7! tj�(tj)~aj + (tj � �0;+j )(1� �(tj))~auj + �(tj)(�Dj (tj) + �j(tj ; �j))!j(�j)+(1� �(tj))(�Duj (tj � �0;+j ) + �j(tj � �0;+j ; �j))!uj (�j):In the transition region between �X and �X(u), both surfaces can be written as graphs over acylinder. So in this region we can use equation (3.1), which gives the mean curvature of bothsurfaces in term of their graphing functions. Recall that we already have a perturbationterm  such that H �X = 1 �  . Using equation (3.1), we can write a Taylor expansion ofthe mean curvature of �X(u) in terms of the di�erence of the graphing functions to concludethe Lemma immediately below. We will call the additional perturbation term ~ (u).Lemma 7. There exists � > 0 such that for u = P��;ij w�;ij 2 W �X with j�j � �,the mean curvature of the deformed embedding �X(u) is given by 1 �  � ~ (u), wherek ~ (u)kC0;�((tj�1;tj+1)�S1) = O(e�2tj ) for tj > 1. Moreover, ~ (u) = O(j�j), but not o(j�j),pointwise.In the case that none of the asymptotic necksizes change (i.e. �0;�i = 0 for all i) theerror term ~ will be compactly supported. In general, because the ends of �X and �X(u) are



29written as graphs of the same function over di�erent Delaunay surfaces, this error will notbe compactly supported. The estimate that k ~ (u)kC0;�((tj�1;tj+1)�S1) = O(e�2tj ) followsfrom the fact that an end of �X(u) is still written as the graph of �j over some Delaunaysurface Duj and �j satis�es the estimate k�jkC2;�((tj�1;tj+1)�S1) = O(e�2tj ).5.2 Solving the Nonlinear EquationRecall that our goal is to solve the nonlinear equationL �XR;�(u+ v) =  �Q �XR;�where (u; v) 2 W �XR;� � F 2;��� ( �XR;�) and  is the initial perturbation from 1 in the meancurvature of the approximate solution �XR;�. Given u 2 W �XR;� and v 2 F 2;��� ( �XR;�) wede�ned a new embedding �XR;�(u; v) �rst taking the normal perturbation of �XR;� by vand then adjust it with the geometric deformation determined by u, as in the last section.We perform these operations in this order so that v is always in the �xed function spaceF 2;��� ( �XR;�). The term Q �XR;�(u; v) is de�ned to be the quadratic and higher order termsin the Taylor series for H(u; v) developed about (0; 0). To solve equation (1.2), we willexamine the operator K �XR;�(u; v) = G �XR;�( �Q �XR;�(u; v)):Notice that this is a well-de�ned operator, because Q �XR;�(u; v) does lie in the domain ofG �XR;� by the estimate in Lemma 7.Proposition 8. There is an � > 0 and an R0 > 0 such that for R � R0 the mapping K isa contraction on the ball of radius � in W �XR;� � F 2;��� ( �XR;�).Proof: First we estimate kK(u; v)kW �X�F 2;��� ( �X). By the uniform bound on G �X ,kK(u; v)k � c(k kF 0;��� ( �X) + k(u; v)k2W �X�F 2;��� ( �X)):Recall that we started with j (t; �)j = O(e�2(�)R), so k kF 0;��� ( �X) = O(e�(2(�)��)R), whichwe can take to be o(�2). Thus if k(u; v)k = O(�), then kK(u; v)k = O(�2), from which is



30follows that K maps a ball of radius � to itself for su�ciently small �. Moreover,kK(u1; v1)�K(u2; v2)k � ckQ �X (u1; v1)�Q �X(u2; v2)kF 0;��� ( �X)� ~ck(u1; v1)� (u2; v2)k2W �X�F 2;��� ( �X)� ~cmaxi=1;2(k(ui; vi)kW �X�F 2;��� ( �X))k(u1; v1)� (u2; v2)kW �X�F 2;��� ( �X)� 12k(u1; v1)� (u2; v2)kW �X�F 2;��� ( �X)for � � 12~c . The second inequality follows from the fact thatQ �XR;�(0; 0) = 0 rQ �XR;�(0; 0) = 0: �The existence part of Theorem 1 follows immediately from the proposition above andthe Contraction Mapping Principle.5.3 Nondegeneracy of the SolutionIt remains to see that the solution XR;� is nondegenerate. Below we will suppress thedependence on the relative angle �, as none of the analysis depends on it. This proof ofnondegeneracy is very similar to the proof of nondegeneracy in [MPP].It will be convenient to de�ne the following decomposition of XR. Let X1;R = fp =(p1; p2; p3) 2 XR j p1 � �Rg, X2;R = fp = (p1; p2; p3) 2 XR j p1 � Rg and X3;R = fp =(p1; p2; p3) 2 XR j �R � p1 � Rg. Notice that X1;R and X1;R0 di�er only by a translation,so we can (and will) identify these surfaces. We will further decompose X1;R and X2;R asX1;R = K1 [ ([k1+1j=3 Ej) and X2;R = K2 [ ([k1+k2j=k1+2Ej) where K1 and K2 are �xed compactsets in X1 and X2 (respectively) and Ej are the ends of X1 and X2.Suppose this were not the case. Then there would exist a sequence of Ri ! 1 andnontrivial Jacobi �elds ui of XRi . We may normalize ui so that kuikF 0;0�� (XRi ) = 1. Thismeans supp2XRi �i(p)jui(p)j = 1 where the supremum is realized at pi. Here �i is the



31weighting function �i(p) = 8>>><>>>: e�tj (tj ; �j) 2 (0;1) � S1 � Ejcosh� tcosh� Ri (t; �) 2 (�Ri; Ri)� S1 � X3;Ri1 elsewhere � > 0 is strictly less than infj 2(�), including j = 1; 2 (i.e. including the Delaunayparameter for the ends we are gluing). We will have to consider di�erent cases whichcorrespond to the di�erent possible places where �i(p)jui(p)j can achieve its maximum.Notice we always have jui(p)j � �i(p)�1 with equality at pi.The structure of this proof is the following. We have normalized ui so that �ijuij attainsits maximum at some point pi, and at this point pi we know the value of juij. The weightingfunction is chosen to try to force the point pi to occur in the compact sets K1 and K2. If pioccurs elsewhere we can obtain an easy contradiction from the nondegeneracy of the originalsummandsX1 andX2 and the model Delaunay surfaceD for the ends we are gluing together.When pi occurs in K1 we will obtain a Jacobi �eld on X1 which decays exponentially onall ends but E1, which contradicts the assumption that X1 admits a deformation whichchanges the necksize of E1 to �rst order. We obtain a similar Jacobi �eld on X2 is pi occursinK2. In this case we will use a transmission argument (the two ends we are gluing togethermust transmit asymptotic information about Jacobi �elds to each other) to obtain a similarJacobi �eld on X1.First consider the case where pi = (ti; �i) 2 X3;Ri with jtij bounded and letwi(t; �) = (cosh�� Ri)ui(t; �)on (�R;R)� S1. The function wi still solves LXRiwi = 0 on (�R;R)� S1 and satis�es thebound jwi(t; �)j � cosh�� t, with equality at (ti; �i). Thus a subsequence exists such thatwi converges to a Jacobi �eld �w for the model Delaunay surface D (with (ti; �i) ! (�t; ��))where j �w(t; �)j � cosh�� t with equality at (�t; ��). In particular, �w is not identically zero.However, this contradicts the fact that Delaunay Jacobi �elds cannot decay on both ends.Next consider the case where pi = (ti; �i) 2 X3;Ri with none of jtij, jti+Rij, and jti�Rijbounded. We will take the case where ti < 0, as the case where ti > 0 is similar. Now de�ne



32wi by wi(t; �) = cosh� ticosh� Riu(t+ ti; �);de�ned on (�Ri; jtij)�S1. We have rescaled this function so that jwi(0; �i)j = 1. Moreover,jwi(t; �)j � cosh� ticosh�(t+ ti)= (eti + e�ti)�(et+ti + et�ti)�� (eti + e�ti)�(2e�t�ti)�= 2��e�t(1 + e2ti)�� 21��e�t:Choose a subsequence such that �i ! �� and wi ! �w. Then we obtain a Jacobi �eld �won the Delaunay surface D such that j �w(0; ��)j = 1 and �w decays on one end and growsexponentially at a rate of less than 2(�) on the other. Such a Jacobi �eld cannot exist onD. Next consider the case where pi = (tj;i; �j;i) 2 Ej and tj;i ! 1. We take a slidebacksequence wi(tj ; �j) = �i(tj;i; �j;i)ui(t+ tj;i; �)and argue as in the previous case.Next consider the case where pi 2 �K1 where �K1 is a �xed compact set in X1 containingK1. Notice �i is uniformly bounded away from 0 on �K1. Take a subsequence such thatpi ! �p and restrict ui to X1;Ri [ f(t; �) 2 X3;Ri j t < �1g. Then on this surface uiconverges uniformly on compact sets to a Jacobi �eld �u on X1. If we parameterize the endE1 of X1 by (s; �) = (t+Ri; �), then the bound juij � ��1i can be written asjui(s; �)j � cosh� Ricosh�(s�Ri)= (eRi + e�Ri)�(es�Ri + e�s+Ri)�� 2��(1 + e�2Ri)�e�s:Thus j�u(s; �)j � ce�s for some constant c on the end E1 � f(s; �) 2 (0;1) � S1g. Be-cause � < 2, �u can only grow linearly on E1, and so �u 2 BX1 \ WE1 . Also, j�u(�p)j =



33limi!1 �i(pi)�1 > 0. However, BX1 \WE1 = f0g because X1 admits a deformation whichchanges the asymptotic necksize of E1 (see Lemma 5 and Remark 1).Finally consider the case where pi 2 �K2 where �K2 is a �xed compact set inX2 containingK2. For this case, we will need to de�ne the following function space on the cylinder[�R;R]� S1 and prove a preliminary lemma.De�nition 5. Let Kk;�� ([�R;R] � S1) be the set of functions u 2 Ck;�loc([�R;R] � S1) forwhich the norm kukKk;�� = supjt0j�R�1 k� cosh tcoshR�� ukCk;�([t0�1;t0+1]�S1)is �nite.Lemma 9. For each Delaunay parameter � there is an R0 > 0 such that for R � R0 andfor any 0 < � < 2(�) there exists an operator Ĝ : K0;��� ([�R;R]�S1)! K2;��� ([�R;R]�S1)which is uniformly bounded and such that u = Ĝ(f) solves the problem8<: LDu = f on [�R;R]� S1u(�R; �) 2 spanfcos �; sin �; 1g:Proof: Let � be a cut-o� function such that� = 8<: 1 t < �10 t > 1:First let U1 be a solution to8<: LD(U1) = �f for t � �RU1(�R; �) 2 spanfcos �; sin �; 1g;which exists because the Delaunay surface D is nondegenerate. Moreover, we have thebound jU1(t; �)j � ck�fkC0;��� ((�R;1)�S1)e�2(�)(R+t):Similarly, let U2 solve LD(U2) = (1��)f on (�1; R)�S1with U2(R; �) 2 spanfcos �; sin �; 1gand jU2(t; �)j � ck(1 � �)fkC0;��� ((�1;R)�S1)e�2(�)(R�t):



34Let �1 and �2 be cut-o� functions such that�1 = 8<: 1 t < R� 20 t > R� 1and �2 = 8<: 1 t > �R+ 20 t < �R+ 1:De�ne the operator ~G : K0;��� ([�R;R]� S1)! K2;��� ([�R;R]� S1) by~G(f) = �1U1 + �2U2:The lemma the follows from the bounds� k ~G(f)kK2;��� ([�R;R]�S1) � ckfkK0;��� ([�R;R]�S1)� kLD( ~G(f))� fkK0;��� ([�R;R]�S1) � ~ckfkK0;��� ([�R;R]�S1)e�~R for some positive �once one takes R to be su�ciently large by a perturbation argument as in the proof ofproposition 6. The bound on Ĝ(f) follows from the bounds onjUi(t; �)j � 8><>: ck�fkC0;��� ((�R;1)�S1) i = 1ck(1 � �)fkC0;��� ((�1;R)�S1) i = 2:The quantity LD(�1U1 + �2U2)� f is nonzero only in the regions corresponding to R� 2 �t � R� 1 and �R+ 1 � t � �R+ 2. For R� 2 � t � R� 1,jLD � Ĝ(f)� f j = jLD(�1U1)j � ĉkLDkjU1j � ckfkK0;��� e�2�R:One can obtain the same bound for �R+ 1 � t � �R+ 2 by a similar argument. �Now we return to the proof that the solution surface is nondegenerate. Recall that ourlast remaining case is when pi 2 �K2 as described above. Take subsequence so that pi ! �pand �x an R0 to be determined later. As in the previous case, ui converges uniformly oncompact sets to a Jacobi �eld �u on X2 when restricted to X2;Ri [ f(t; �) 2 X3;Ri j t > 1g.This Jacobi �eld �u decays exponentially on all ends of X2 except E2. Therefore, by Lemma



355, �u must correspond to an asymptotic translation of E2 along its axis. So there is some� > 0 such that �u(t; �) = �u0;+(R� t; �) +O(e�~�t)for t > 0 and some ~� < 2(�). We may as well rescale so that � = 1. In any compact setK � f(t; �) 2 X3;Ri j t > 1g we haveui(t; �) = u0;+(t; �) +O(e�~�(R�t) + kui � �ukC0(K)):Thus (because of the uniform convergence of ui) there is some i0 which depends on R0 suchthat for i > i0 kui � u0;+kC2((Ri�R0�1;Ri�R0+1)�S1) = O(e�~�R0):Similarly, we can restrict ui to X1;Ri [ f(t; �) 2 X3;Ri j t < �1g and obtain another con-vergent subsequence on X1. By the argument in the previous case, this limit must be zero,and so for i > i0, kuikC2((�Ri+R0�1;�Ri+R0+1)�S1) = O(e�~�R0):Now let �0;� be the Jacobi �eld on the model Delaunay surface D which corresponds tochanging the necksize of D. The main point is that we can use the function �0;� to transmitthe eigenmode information of ui from ne end of the cylinder X3;Ri to the other. We cando this because because the cylinder is C2;� close to the Delaunay surface D, ui is close tothe Jacobi �eld �0;+ for D and these two Jacobi �elds are dual variables in the symplecticstructure of the de�ciency space.We wish to evaluate Z[�Ri+R0;Ri�R0]�S1LD(ui)�0;� �LD(�0;�)ui:Upon integrating by parts, we �nd that this integral isZfRi�R0g�S1(@ui@t �0;� � @�0;�@t ui) � Zf�Ri+R0g�S1(@ui@t �0;� � @�0;�@t ui) (5.1)= ZfRi�R0g�S1(@u0;+@t �0;� � @�0;�@t u0;+) +O(e�~�R0)�Zf�Ri+R0g�S1O(e�~�R0)= 1 +O(R0e�~�R0);



36where we have used in the last estimate the facts that ui(�Ri + R0; �) = O(e�~�R0) fori > i0 and that ui(Ri � R0; �) = u0;+(R0; �) + O(e�~�R0) for i > i0. On the other hand,we can estimate this integral directly. First note that X3;Ri is a graph over the modelDelaunay surface D, where the graphing function is O(� cosh tcoshRi�2(�)), which implies thatjLD(ui)(t; �)j = O(� cosh tcoshRi��̂) where �̂ is any positive number such that �̂ < 2(�), inparticular for some �̂ 2 (�; 2(�)). ThuskLD(ui)kK0;��� ([�Ri+R0;Ri+R0]�S1) = O(�cosh(Ri �R0)coshRi ��̂��) = O(e�R0(�̂��)):Now de�ne ~ui : [�Ri +R0; Ri �R0]� S1! R by~ui = Ĝ(LD(ui))where Ĝ is the operator in Lemma 9. By the uniform boundedness of Ĝ,kui � ~uikK2;�� ([�Ri+R0;Ri�R0]�S1) = O(e�R0(�̂��)):So j Z[�Ri+R0;Ri�R0]�S1LD(ui)�0;� � LD(�0;�)uij� Z[�Ri+R0;Ri�R0]�S1jLD(ui)�0;� �LD(�0;�)uij= Z[�Ri+R0;Ri�R0]�S1jLD(ui � ~ui)j� Z[�Ri+R0;Ri�R0]�S1 kLDkjui � ~uij� ĉkLDkZ Ri�R0�Ri+R0 e�R0(�̂��)� cosh tcosh(Ri �R0)��= O(R0e�R0(�̂��));which contradicts equation (5.2). This completes the proof that the solution surface XR;�is nondegenerate.



37
Chapter 6EXAMPLES AND APPLICATIONSAs is [KMP96] we de�ne the moduli space of CMC surfaces below.De�nition 6. Fix a topological surface � of genus g � 0 and k � 1 ends. De�neMk;g to bethe space of all proper, noncompact CMC embeddings (with the ends labeled) X : � ! R3 ,where embeddings are identi�ed if they di�er by a rigid motion which preserves the labelingon the ends or by a reparameterization of �. Endow Mk;g with the Hausdor� topology oncompact sets. We will make the abbreviation Mk:0 =Mk.Theorem 10. If the embeddings Xi with chosen ends Ei are nondegenerate and admit de-formation through CMC surfaces which change the asymptotic necksize of Eito �rst order,and Xi(t) is a curve of such embeddings in moduli space, then for t small the choice of em-beddings Xi(t) also admit deformations through CMC surfaces which change the asymptoticnecksize of Ei(t) to �rst order.Proof: Geometrically, the reason this theorem holds is that the set of nondegenerateembeddings which do no admit such deformation lie in a closed set. Suppose that at t = 0X1 admits a deformation through CMC surfaces which changes the asymptotic necksizeof E1. Then BX1(0) does not lie in the hyperplane f�1 = 0g. Because BX1(t) variescontinuously with t (it is the kernel of a continuously varying operator with constant rank3k1), BX1(t) must remain transverse to f�1 = 0g for small t. �We have yet to show that there exist CMC surfaces which satisfy the gluing criterion.It turns out that many surfaces in M3 satisfy the gluing criterion for all ends. To see this,we must �rst sketch the recent classi�cation theorem of Kusner, Grosse-Brauckmann, andSullivan [KGBS]. They show that M3 is homeomorphic to the space of triples of distinctpoints in S2. The classifying map is given as follows. By a result in [KKS89], each 3-endedCMC surfaces has a plane of reection symmetry, which we can take to be the xy-plane.



38Cut the surface in half along this plane of symmetry. By a construction in [Law70], thisyields a conjugate minimal surface in S3. This minimal surface has three boundary curves,each of which is a great circle. By the construction of the conjugate minimal surface, theboundary great circles are all Hopf circles for the same Hopf �bration. Therefore, the imageof the three boundary curves under this �bration is a triple of distinct points in S2.For our purposes, the salient feature of the classifying map is that the edge-lengths ofthe resulting triangle are 2� times the asymptotic necksizes of the surface. Let X 2M3 andsuppose it corresponds under the classifying map to the three points p1, p2, and p3. Thenwe can change the three side lengths in turn by moving p2 along the geodesic joining p1 andp2, moving p3 along the geodesic joining p2 and p3, and by moving p3 along the geodesicjoining p1 and p3. Thus X admits deformations through CMC surfaces which change theasymptotic necksizes of each of its ends in turn, which proves the following theorem.Theorem 11. Let X 2 M3 with an end E � X. Then there exists a deformation of Xthrough CMC surfaces which changes the asymptotic necksize of E to �rst order. Thus anychoice of (X1;X2; E1; E2) where Xi 2M3 are nondegenerate and E1 and E2 are asymptoticto congruent Delaunay surfaces satisfy the hypotheses for the end-to-end gluing construction.Remark 3. In fact, the proof of this theorem shows the following more general fact: giventwo three-ended, genus-zero CMC embeddings as above, there is an R0 > 0 such that forR � R0 the approximate solution �XR;� of Section 3 is nondegenerate for all relative angles�. Therefore one can glue these surfaces together end-to-end for any relative angle.Let X1 : S2nfp1; p2; p3g ! R3 Be a nondegenerate CMC embedding with no cylindricalends. Such embeddings exist by the gluing construction of Mazzeo and Pacard [MP01] andthe nondegeneracy result of Montiel and Ros [MR91]. By Theorem 11 and Remark 3, onecan apply the doubling construction to X1 for any choice of ends and any choice of relativeangle �. Because the approximate solutions depend continuously on �, so do the operatorsL �XR;� and G �XR;� . Hence the solution embedding X(�) = XR;� depends continuously on �.In this construction of X(�), one must choose a parameter R = R(�) where R(�) is largeenough so that Proposition 6 applies. Because � 2 S1 and S1 is compact, one can choose



39an R0 such that R0 � R(�) for all � and then work only with this choice of R0. Varying �through all values in S1 yields a continuous closed loop of embeddings X(�) in M4.Note that each X(�) is has the conformal type of a four punctured sphere. Let � :M4 ! Conf(S2nfp1; p2; p3; p4g) be the natural projection, where Conf(�) is the space ofconformal structures on �, de�ned by Conf(�) = T (�)=PMod(�). Here Teichm�uller spaceT (�) is the space of complete metrics on � with constant curvature �1 and the puremapping class group PMod(�) is the group of isotopy classes of di�eomorphisms of � whichpreserve its punctures (or boundary components, setwise). An element [f ] 2 PMod(�)acts on g 2 T (�) by pulling g back to f�g. Note that for an arbitrary di�eomorphism fpreserving the punctures of �, the metric f�g may not have constant curvature �1, but (bythe Uniformization theorem) f is isotopic to some ~f such that ~f�g has constant curvature�1. Thus the action of PMod(�) on T (�) is well de�ned. Because T (�) is simply connected(contractible, in fact), �1(Conf(�)) = PMod(�).Now examine the induced map
X̂(�) = � �X(�) : S1! Conf(S2nfp1; p2; p3; p4g):

The loop X̂ in Conf(S2nfp1; p2; p3; p4g) is a Dehn twist in PMod(S2nfp1; p2; p3; p4g) abouta loop  in S2nfp1; p2; p3; p4g which encloses two of the punctures. We can take  �S2nfp1; p2; p3; p4g to be the slice fx = 0g in the original construction of the approximatesolution �X(0). Such Dehn twists generate PMod(S2nfp1; p2; p3; p4g), and so the loop X̂ ishomotopically nontrivial in Conf(S2nfp1; p2; p3; p4g). To see that the Dehn twist about  isa nontrivial element in PMod(S2nfp1; p2; p3; p4g), observe that it does not act trivially onthe isotopy class of � (see the �gure below). See, e.g., [Iva] or [Bus92] for more details onthis point.
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In the case where � is a four punctured sphere, we can identify the quotient Conf(�) =T (�)=PMod(�) explicitly. Given the choice of punctures fp1; p2; p3; p4g, there is a uniqueM�obius transformation � which sends p1 to 0, p2 to 1, and p3 to 1. The conformaltype of S2nfp1; p2; p3; p4g is then determined by �(p4), and so Conf(S2nfp1; p2; p3; p4g) isnaturally equivalent to S2nf0; 1;1g. Moreover, our loop X̂(�) describes a loop about oneof the punctures f0; 1;1g and is thus homotopically nontrivial. The loop in question wrapsaround one of the punctures because it corresponds to the relative positioning of the endsof X(�) and by construction the ends of X(�) twist around each other when one varies �about a full circle.If X(�) were a homotopically trivial loop inM4, then it would push forward via � to ahomotopically trivial loop X̂ in Conf(S2nfp1; p2; p3; p4g), contradicting the above argument.More generally, suppose X1 : �1 ! R3 is a nondegenerate (k � 1) ended CMC surfacewhose ends are asymptotic to Delaunay surfaces with small necks. Again, such surfacesexist by the gluing theorem of [MP01]. One can pick an end E1 of X1(�2) and �nd anondegenerate three-ended CMC surface (again with all asymptotic necksizes small) X2 :S2nfp1; p2; p3g ! R3 with an end E2 which is asymptotic to a congruent Delaunay surface.By Theorem 11 and Remark 3 this choice of CMC embeddings and ends is transverse atin�nity for all relative angles �, and so the argument above produces a nontrivial loop inMk by varying the angle �. Thus we have shown the following theorem.Theorem 12. The moduli spaces Mk for k � 4 all have connected components which arenot simply connected.



41This theorem also follows from recent work of Mazzeo, Pacard, and Pollack in [MPPR].Here they combine and modify the gluing constructions of [MP01] and [MPP] to producemany new complete surfaces of constant mean curvature. In particular, there are two waysin which the constructions of [MPPR] may be used to produce homotopically nontrivialloops in the respective moduli spaces. First they establish a version of the connected sumtheorem of [MPP] which allows them to glue together two complete nondegenerate CMCsurfaces, in particular two Delaunay surfaces. This may be done with any choice of relativeangle between the surfaces, and again yields a non-contractible loop in the moduli space.The idea for the second type of construction of nontrivial loops is due to Pacard and clearlyseems to be the most versatile. Here they glue a half-Delaunay surface (with small necksize)onto a nondegenerate (k � 1) ended CMC surface to obtain a family of nondegenerate k-ended CMC surfaces. Since this may be done at any point they obtain one parameterfamilies of surfaces by varying the point at which the gluing is done. In particular, thisallows them to construct many distinct homotopy classes of non-contractible loops in Mk.
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Appendix AVARIOUS FORMULATIONS OF THE CMC CONDITIONOne can formulate the condition that an immersion is of constant mean curvature invarious ways. Each is useful to understand some part of the general theory of CMC surfaces.A.1 The Local Formulation: Principal CurvaturesWe start with the local formulation in terms of coordinates (s; �) on �. Theng = 24 E FF G 35 = 24 hXs;Xsi hXs;X�ihXs;X�i hX�;X�i 35 ;A = 24 L MM N 35 = 24 hXss; �i hXs�; �ihXs�; �i hX��; �i 35 ;and H = 12 trg A = 12 LG+NE � 2FMEG� F 2 :Near any point, we can write � as a graph over its tangent plane. Then the immersion Xtakes the form X(s; �) = (s; �; f(s; �)):If X takes this form, the metric is given byg = 24 1 + f2s fsf�fsf� 1 + f2� 35and the second fundamental form is given byA = 1q1 + f2s + f2� 24 fss fs�fs� f�� 35 :



44In particular, the mean curvature is given byH = fss(1 + f2� ) + f��(1 + f2s )� 2fs�fsf�2(1 + f2s + f2� ) 32 :Setting H = 1 and rearranging yields0 = fss(1 + f2� ) + f��(1 + f2s )� 2fs�fsf� � 2(1 + f2s + f2� ) 32 : (A.1)Several remarks on equation (A.1) will prove useful. First, this is a quasilinear second orderPDE in f . It is strongly elliptic. In fact, the linearization of the second order part the righthand side of equation (A.1) is given by the matrix24 1 + f2� �fsf��fsf� 1 + f2s 35 :And so the principal symbol of equation (A.1) is given byh � � i24 1 + f2� �fsf��fsf� 1 + f2s 3524 �� 35 = �2 + �2 + (�f� � �fs)2 � 0with equality only when � = 0 = �. This implies, among other things, that CMC surfacesare analytic (elliptic regularity) and the function f obeys the strong maximum principle(e.g . f can have no positive interior maxima; see, for example [PW84] or [GT77]).One can also attach a geometric interpretation to these coordinate computations. In thefollowing paragraph, we will work only at the origin in the (s; �) coordinates and we willassume that 0 = f(0; 0) = fs(0; 0) = f�(0; 0):This amounts to setting the (s; �) plane to be the tangent plane to � at the point corre-sponding to (0; 0). Theng(0; 0) = 24 1 00 1 35 and A(0; 0) = 24 fss fs�fs� f�� 35 :Recalling the minimax method to �nd eigenvalues using the Raleigh quotient, we see thatthe eigenvectors of A point in the direction of steepest descent and ascent for the functionf . Call these eigenvectors ~v1 and ~v2. Order them so that their respective eigenvalues k1 and



45k2 satisfy k1 � k2. Notice that setting k1+ k2 = 2 and k1 � k2 implies k2 � 1 > 0. If we leth(t) = f(t~v2) the we see t = 0 is a local minimum for h. In fact, the graph of h is concave upand the circle lying above the graph which best �ts the graph will have radius 1h00(0) = 1k2 .Similar remarks hold for k1, although one must be careful of signs when treating this case.Thus we see that the eigenvalues k1 and k2 correspond to radii of the largest and smallestcircles (taking signs into account) �tting curves in � one �nds by intersecting � with a planenormal to � at the origin. These eigenvalues k1 and k2 are called the principal curvaturesof � and the eigendirections span~v1 and span~v2 are called the principal direction. A pointon � is called umbilic if k1 = k2. The preceding discussion shows that the mean curvatureof a surface at a point p is the average of the curvature of curves in � through p in alldirections, giving credence to the name \mean curvature".A.2 The Variational FormulationThe variational set-up described below is the same as in [Li93]. This formulation of theCMC condition is classical. One can �nd a modern treatment of it in volume IV of [Spi75](towards the end of Chapter 9) and [Kus91].On can also formulate the condition that X is a CMC immersion in variational terms.First consider a one parameter family of immersions Xt : �! R3 with X0 = X. Then the�rst variation of area ddt ��t=0Area(Xt(�)) = ddt ��t=0 R�X�t (dV ) is given byddt ����t=0Area(Xt(�)) = Z�h ddt ����t=0Xt;H�i:Now consider the following situation. Let X be a CMC immersion of � as above and letU � R3 be a bounded open set with @U = Q [ S where S is an open subset of X(�) and@Q = @S = � is a smooth closed curve in X(�). Let V be a vector �eld supported inUn �Q and denote its ow by �t. This vector �eld yields a one parameter family of surfacesSt = �t(S) and a one parameter family of solids Ut = �t(U). Pick a real constant H andlet h denote the mean curvature of X. Then the formula for the �rst variation of volumeyields ddt ����t=0 (Area(St)�H Vol(Ut)) = (h�H)Area(S):



46Thus we see that surfaces with mean curvature identically H are critical points of thefunctional Area�H Vol.A.3 The Hopf Di�erential, the Sinh-Gordon Equation, and Harmonicity of theGauss MapMuch of this formulation can be found in [Woo94].For this section we will work in conformal coordinates on �. In other words, we willlet (s; �) be coordinates on � such that E = G = 2e2! and F = 0. Then z = s + i� is acomplex coordinate on �. De�ne the vector �elds@z = 12(@s � i@�) and @�z = 12(@s + i@�):Notice that @z@�z = 14�:Consider the immersion X restricted to a simply connected region 
 on the surface. Thecondition that z = s+ i� is a conformal coordinate with conformal factor 2e2! is equivalentto hXz;Xzi = 0 hXz;X�zi = e2!:In addition, we also have h�;Xzi = 0 h�;X�zi = 0:Taking derivatives of these equations yieldshXzz;Xzi = 0 hXz�z;Xzi = 0 hXzz;X�zi = 2!ze2!and h�;Xzzi+ h�zXzi = 0 h�;Xz�zi+ h��z;Xzi = 0:If we let h�;Xzzi = Q and note h�;Xz�zi = 14h�;�Xi = 12e2!H, then the above equationsimply Xzz = 2!zXz +Q� Xz�z = 12e2!H� �z = �12HXz �Qe�2!X�z: (A.2)



47As a side note, Q is the coe�cient of a quadratic di�erential form Qdz2. The function Qitself is only locally de�ned, but Qdz2 is a globally de�ned quadratic di�erential form. Thisquadratic form is called the Hopf di�erential.We can rewrite equations (A.2) as26664 XzX�z� 37775z = 26664 2!z 0 Q0 0 12e2!H�12H �Qe�2! 0 3777526664 XzX�z� 37775 = U 26664 XzX�z� 37775 : (A.3)Similarly, 26664 XzX�z� 37775�z =
26664 0 0 12e2!H0 2!�z �Q� �Qe�2! �12H 0 3777526664 XzX�z� 37775 = V 26664 XzX�z� 37775 : (A.4)Setting @�z of equation (A.3) equal to @z of equation (A.4) yieldsU�z � Vz + [U; V ] = 0: (A.5)One can compute that U�z � Vz + [U; V ] is given by26664 2!z�z � jQj2e�2! + 14H2e2! 0 Q�z � 12e2!Hz0 �2!z�z + jQj2e�2! � 14H2e2! � �Qz + 12e2!H�z�12H�z + e�2! �Qz 12Hz � e�2!Q�z 0 37775 :Setting this quantity to zero yields the following two equations:�! + 12H2e2! � 2jQj2e�2! = 0 (A.6)and Q�z � 12e2!Hz = 0: (A.7)Recalling that H is real-valued (and so H�z = �(Hz)), we see that the latter equation impliesH is constant if and only if Q is holomorphic. From this Hopf (see [Hop56]) provedTheorem 13. (Hopf's Theorem): Let � be a compact simply connected immersed CMCsurface. Then � is a round sphere.



48 First note that we can rewrite Q asQ = L�N2 � iM:From this formulation we conclude that zeroes of the Hopf di�erential are umbilic points. Byuniformization, if � is a compact simply connected surface then � is conformally equivalentto a sphere. From the fact that � is CMC we conclude thatQdz2 is a holomorphic di�erentialon the sphere. This forces Qdz2 = 0 on all of �, and so all points of � are umbilic. Fromthis fact it is easy to show that � must be a round sphere.If X is a mean curvature one immersion of a torus, then one can extend the function Qfrom a small patch 
 about the origin to be a doubly periodic function on the entire planeC . In particular, Q is a bounded holomorphic function on C and hence must be constant.After multiplying by an appropriate number in the domain, we can choose Q = 12 . WithQ = 12 and H = 1, equation (A.6) now becomes�! + sinh2! = 0; (A.8)which is known as the Sinh-Gordon equation. Notice that the rescaling to set Q = 12 is arescaling in the parameter space and the rescaling to set H = 1 is a rescaling in the targetspace. In particular, these rescalings can be done independently.Further computation shows�z�z = �[12H�zXz +Q�ze�2!X�z + (14H2e2! + jQj2e�2!)�]:Thus X is a CMC immersion if and only if �z�z is a multiple of �. Recalling that � : 
! S2,we see that �� = �� is precisely the condition that � is a harmonic map into S2. Thus Xis a CMC immersion if and only if the Gauss map � is harmonic.



49
Appendix BEXAMPLES OF CMC SURFACESAs mentioned above, the unit sphere and the cylinder of radius 12 are both CMC. TheDelaunay surfaces provide the next example of embedded CMC surfaces. One can think ofthese surfaces as interpolating between spheres and cylinders.B.1 Delaunay SurfacesWe seek an embedding of the formD(t; �) = (�(t) cos �; �(t) sin �; t) : R � S1! R3with mean curvature 1. An embedding of this form is rotationally symmetric about the zaxis. The condition that D is an embedding implies � > 0. The CMC condition impliesthat � satis�es the equation �tt � 1�(1 + �2t ) + 2(1 + �2t ) 32 = 0: (B.1)One particular solution is � = 12 . This solution corresponds to the cylinder. Normalize �so that � assumes a local minimum of � at t = 0 (this amounts to a translation in the tvariable). One can then show that � is periodic and in fact � is a global minimum for �.Critical points for � alternate between minima and maxima. The minimum value (�) for� is called the necksize of the embedding. One can show that as � ! 0 the embedding Dtends to a string of unit spheres fx2 + y2 + (z � 2n)2 = 1g for n 2 Z.PSfrag replacements
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50 We will change variables, �rst to make D into a conformal embedding. To this end, wemust replace t with k(s) where k satis�es the equation�(k(s)) = k0(s)(�0(k(s)) + 1):Now let � = 2� � �2 and de�ne �(s) by �(k(s)) = �e�(s). One can show that � is a �rstintegral of equation (B.1), see section C.2. Then one can show�ss + �22 sinh 2� = 0 dkds = �22 (e2� + 1):In fact, �nding solutions to the above equations is equivalent to �nding an embedded De-launay surface.Geometrically, one can think of the Delaunay surfaces as interpolating between thecylinder and the string of spheres. First place an ellipse tangent to the z axis in the x� zplane so that one of the foci is on the x axis and is positioned to that it is as close to thez axis as possible. Now roll the ellipse along the z axis. One can show that the focal pointwhich started on the x axis traces out the pro�le curve of a Delaunay surface (see [Eel87]).Varying the eccentricity of the ellipse corresponds to varying the necksize of the surface.The cylinder corresponds to rolling a circle of radius 12 (the center is the only focal pointand stays at constant height 12 ). The string of spheres corresponds to rolling a line segmentof length 1 (this is the degenerate case where the eccentricity goes to1 and the focal pointsgo to the endpoints of the line segment).B.2 CMC ToriOne might think to look for CMC immersions of compact surfaces. In the 1950's Hopf provedthat any simply connected CMC immersion of a compact surface has to be a round sphere(see Hopf's theorem above, or [Hop56]). Around the same time, Alexandrov proved thatany embedded compact CMC surface must be the round sphere (see Theorem 15 below).If one were looking for compact CMC immersions, then given these two results one mightnext look for CMC tori. Below we will regard a torus as R2=� where � is a lattice.To �nd CMC tori, we look for doubly periodic immersions R2 ! R3 . We can reducethis problem as follows. First, note that any immersion of a surface is determined up to



51rigid motions by its metric and its second fundamental form. Also notice that locally, themetric is determined by its conformal factor and that equations (A.3) and (A.4) determinethe second fundamental form. Therefore, the conformal exponent ! will locally determinethe immersion. Finally, notice that if � is a torus then ! must in fact be a doubly periodicfunction on R2 . Thus the task of �nding a CMC torus is the same as �nding a doublyperiodic solution to the Sinh-Gordon equation (equation (A.8)). In 1986, Wente proved[Wen86] that such doubly periodic solutions exist.In 1987, Aubresch ([Aub87]) found many CMC tori by requiring that one line of curva-ture be planar. The condition that A has distinct eigenvalues allows us to simultaneouslydiagonalize A and g, so away from umbilic points we can choose coordinate lines which arealso lines of curvature. The condition that the � coordinate line in planar is equivalent to!s� cosh! � !s!� sinh! = 0:We combine this equation with equation (A.8) to get an overdetermined system of equations.Under the change of variables W = cosh! this system becomes8<: (W 2 � 1)�W �W jrW j2 +W (W 2 � 1)2 = 0(W 2 � 1)Ws� � 2WWsW� = 0:Theorem 14. (Aubresch): The real analytic solutions of the above system are given byW = fs + g�1 + f2 + g2where f(s) and g(�) are elliptic functions. Moreover, one can recover f and g by8<: Ws = �f(s)(W 2 � 1)W� = �g(�)(W 2 � 1):However, one still has to �nd conditions so that W is doubly periodic (these are calledclosing conditions). This is a rationality condition on the initial conditions c and d of fand g. Thus the CMC tori with one planar line of curvature are parameterized by the twoparameters c and d. Aubresch then �nds closing conditions on c and d (assuring that thesolution W is in fact doubly periodic).



52 In 1989 Pinkhall and Sterling classi�ed all CMC tori in [PS89]. Their idea is to writesolutions to equation (A.8) as the ows of two commuting vector �elds. Then one canintegrate to get solutions and show that there exist only �nitely many independent integrals.They then embed the ODE system in the Jacobian variety of the torus and �nd the closingconditions.B.3 Kapouleas' SurfacesIn [Kap90] Kapouleas produced many examples of noncompact embedded CMC surfaces.As a �rst step, he creates a central graph, consisting of vertices, edges, rays, and weights foreach vertex. He requires that the edges of these graphs have lengths that are even integersand that the graphs are balanced around each vertex (see section C.2). About each vertexhe places a sphere of radius one. He places half a Delaunay surface about each ray, withnecksize determined by the weight at the starting vertex of the ray. About the edges oflength greater than 2, he places a piece of a Delaunay surface to connect the two spherescentered at the vertices which are the endpoints of the edge in question. Again, the necksizeof this joining piece of Delaunay surface is determined by the weights of the vertices (whichmust be the same by balancing).Next Kapouleas pieces all the surfaces together to form a smooth approximate solution.He pastes the spheres and pieces of Delaunay surfaces together with appropriately chosencut-o� functions. However, all the parts do not quite �t together without some sort ofperturbation. For instance, the period of a Delaunay surface with small necksize is almost,but not quite, 2. So the Delaunay piece joining the two spheres mentioned above does notquite �t. To remedy this problem, Kapouleas �rst slightly perturbs the graph, and thenslightly perturbs the necksizes of the Delaunay surfaces. After this step, he has a surfacewhich has mean curvature one everywhere except for small bands near each neck of theDelaunay pieces. In these bands about the Delaunay necks the mean curvature is close toone.Then Kapouleas solves the linearized problem (locally) on each bulge between the De-launay necks. However, in these regions he must avoid the spherical harmonics which arise



53from eigenfunctions of the operator � + 2 on S2. Thus he solves the linearized problemorthogonal to a �nite dimensional \substitute kernel" on each bulge. A further di�culty inpiecing together a global solution to the linearized operator from all these local solutionsis that the global solution must be orthogonal to each of the substitute kernels mentionedabove. This means that one must �nd a solution to the linearized problem which is orthog-onal of to an in�nite dimensional subspace. Finally, he must solve the nonlinear problem.To do this, Kapouleas shows one can �nd appropriate solutions for the linear problem afterperturbing the graph mentioned above, and then uses a Leray-Schauder �xed point argu-ment to show that a solution to the nonlinear problem for one of the perturbed graphs mustexist.
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Appendix CGENERAL PROPERTIES OF ALMOST EMBEDDED CMCSURFACESAs stated above, we are concerned here with embedded CMC surfaces. However, manyof the theorems still hold for a wider class of immersions, called almost embeddings.De�nition 7. An immersion X : �! R3 is called an almost embedding (or an Alexandrovembedding) if one can write � as the boundary of a solid handle-body 
 and X extends tobe an immersion of 
.One can think of this property as distinguishing an \outside" and an \inside" for thesurface (the inside corresponding to the interior of the solid handle-body). Roughly speak-ing, the condition that a surface is almost embedded is the weakest condition one can placeon the surface such that one can apply the Alexandrov reection argument below.C.1 Alexandrov ReectionAlexandrov reection is really an application of the maximum principle. To see how itworks, we will �rst apply it to a compact CMC surface.Let X : � ! R3 be a CMC embedding of a compact surface. Fix a large negative Tso that the � lies completely above the plane � = fz = Tg (one can do this because � iscompact). Let �t = � + (0; 0; t) be the translate of � by t in the z direction. Let �t be thepart of � which lies below �t and let ~�t be the reection of �t through the plane �t. Fort small, both �t and ~�t will be empty. If t0 is the �rst time of contact of �t with �, then(locally) one can write � as a graph over �t0 . Thus for t = t0 + �, with � > 0 small, thereected surface ~�t will lie completely inside �. In other words, for those values of t slightlylarger that t0, the reected surface ~�t lies in the bounded component of R3n�. We pauseto note that this is where we need � to be embedded.



55Note that for t su�ciently large, � will lie completely below �t (again, by the compact-ness of �), and so ~�t cannot be contained in the bounded component of R3n� for all t.Let t1 be the in�mum of t > t0 such that ~�t is not contained in the bounded componentof R3n� and let ~� be the reection of � through the plane �t1 . Then in fact � and ~� aretangent at some point p.If the tangency at p is not a vertical tangency, write � and ~� as graphs of u and u1(respectively) over the plane �t1 . Let the tangency point p have coordinates (x; y) in thisplane. Then u(x; y) = u1(x; y) and ru(x; y) = ru1(x; y). Also, u and u1 both satisfy thesame strongly elliptic equation (equation (A.1)). By the maximum principle, u = u1, andtherefore � locally agrees with ~�. Both surfaces are analytic and connected, so � = ~�.If the tangency is at p is a vertical tangency, one needs to apply the Hopf boundarylemma (see Theorem 10 of Chapter 2 of [PW84]). In either case, we see that � has a planeof symmetry parallel to the x� y plane. However, the x � y plane had no special relationto the original surface �, and so we conclude that � has a plane of symmetry in everydirection. Alexandrov used this to concludeTheorem 15. (Alexandrov's Theorem): Let � ,! R3 be a compact embedded CMC surface.Then � is the round sphere.In the case where � is noncompact, a similar construction (found in [KKS89]) still works.Let � � R3 be a plane with unit normal v. Let L be the line parameterized by L(t) = tv.For t 2 R and p 2 � de�ne�t = � + tv �t = [s�t�s Lp = L+ p:For any set G � R3 letGt = G \�t ~Gt = fp+ (t� r)v j p 2 �; p+ (t+ r)v 2 Gtg:Let � be an almost embedded surface, with � = @
. First we restrict to a piece of � bytaking an open set W � 
 and letting S = @W \ �. Note that neither W nor S need beconnected nor bounded. Suppose p+tv 62W for su�ciently large t. Let t1 be the supremumof t such that P + tv 2 W . Then P1 = p + t1v is the point of �rst contact of Lp with W .



56If this �rst contact is transverse, let t2 be the supremum of t < t1 such that p + tv 62 W .Then P2 = p+ t2v is the point where Lp �rst leaves W . Otherwise, let P1 = P2. If P1 andP2 are both in S, then (as in [KKS89]) we de�ne�1(p) = t1 + t22 :Notice that �1 is not de�ned for all p 2 �.Lemma 16. (Korevaar, Kusner, Solomon): Fix a plane � and its normal v. If, with W � 
and S � � as above, �1 has a local interior maximum value z at p 2 � then the plane �z isa plane of symmetry for �.Proof: First notice that P1(p) reects to P2(p) through �z, by construction. Pick anearby q. Then by maximality t1(q) + t2(q) � 2z, and soz � (t1(q)� z) � t2(q):This means the reection of P1(q) through �z lies above P2(q). This implies a neighborhoodof P2(p) in ~Sz lies inside W . If P1(p) 6= P2(p),Then S and ~Sz are tangent at P2(p) withnonvertical tangent. If P1(p) = P2(p), then S and ~Sz are tangent with vertical tangent.In either case, argue as above using the maximum principle to see that �z is a plane ofsymmetry for �. �The ends of � are the unbounded connected components of �nB r for su�ciently larger. Consider an end of � contained in a solid cylinder C+a;R(P ) = fp + ta j jp � P j <R; hp � P; ai = 0; t > 0g. We take W = 
 \ C+a;R(P ) and S = @W \ �. Meeks proved in[Mee88] that any end of a complete embedded CMC surface is contained in such a solidhalf-cylinder. Choose a plane � and normal v as above with a ? v. Let x(p) = hp; ai andde�ne �(x) = maxhp;ai=x�0�1(p):Then one can use this Alexandrov function and similar arguments as in the above Lemmato show:Theorem 17. (Korevaar, Kusner, Solomon): If � is a properly embedded CMC surfacecontained in a solid cylinder, then � has a rotational axis of symmetry parallel to the axis



57of the cylinder. Also, if � has �nitely many ends and is contained in a half-space �0 forsome plane �, then � has a plane of symmetry parallel to � and is thus contained in a solidslab.C.2 The Balancing FormulaCMC surfaces must also obey a balancing condition. This means that the ends of the surface� must be arranged to balance each other. To see this, we start with the following generalproposition found in [Kus91].Theorem 18. (Kusner): Let M be a 3 dimensional Riemannian manifold with H1(M)and H2(M) trivial. Let G be the isometry group of M and let g be its Lie algebra. Forsome constant H, let � be a surface in M with mean curvature H. Then there is a naturalcohomology class � 2 H1(�) 
 g� de�ned as follows: let � be a 1-cycle in � with � � Msuch that @� = �. Let � be the oriented normal to � and � the oriented conormal to �.Let Y 2 g. Then h�(�); Y i = Z�h�; Y i �H Z�h�; Y i:The content of this theorem is that the formula above depends only on Y and thehomology class of �. Let ~� be another 1-cycle homologous to � in �. Because H1(M) = 0there are surfaces � and ~� inM with @� = � and @ ~� = ~�. Also, �� ~� forms the boundaryof some surface S � �. Then �� ~� + S forms a 2-cycle in M . Because H2(M) = 0, thereis an open set U � M such that @U = � � ~� + S. Now take Y 2 g. Note �t = etY isa one-parameter family of isometries. In fact, the Killing �eld associated to �t is just theleft-invariant vector �eld associated to Y . Therefore,0 = ddt ����t=0 [Area(@(�t(U)))�HVol(�t(U))]:Applying Stokes' Theorem, the right hand side becomesZ�h�; Y i � Z~�h�; Y i �H Z�h�; Y i+H Z ~�h�; Y i;which shows Z�h�; Y i �H Z�h�; Y i = Z~�h�; Y i �H Z ~�h�; yi:



58 Now consider the case M = R3 and take Y = e1; e2; e3, the constant translational vector�elds in the directions of the coordinate axes. Let W � 
 as above and @W = S[Q, whereS = @W \ �. Then the above theorem impliesZ@S � �H ZQ � = 0:One useful choice of W is to take W = 
 \ B 3R for some large R. Let S = @W \ �. Asmentioned above, Meeks proved in [Mee88] that any end of � must be contained in a solidcylinder. So we can take R large enough so that @S is k disjoint simple closed curves, where� has k ends. Then we de�ne the weight vector of an end as follows.De�nition 8. For an end E which is contained in a solid half-cylinder C+a;r(P ), de�ne theweight of the end E as w(E) = ZE\� � � Z�\W �where � = a?, arranged so that � intersects E transversally, � is the normal to �, and � isthe conormal to � \E.By the balancing formula, the weights of all the ends of � must sum to the zero vector.Consider the case of a Delaunay end. We can take a = (0; 0; 1) andE(t; �) = (�(t) cos �; �(t) sin �; t);and � any plane � = fz = z0g. By symmetry, w(E) must point along the z axis. Moreover,ha; �i = 1 and ha; �i = (1 + �2t )� 12 . Using length(� \E) = 2�� and Area(� \W ) = ��2, weget w = ( 2��p1 + �2t � ��2)(0; 0; 1):One can check thatddt [ 2��p1 + �2t � ��2] = � ���t(1 + �2t ) 32 [�tt � 1�(1 + �2t ) + 2(1 + �2t ) 32 ] = 0;and so the coe�cient of the above weight vector is a �rst integral of equation (B.1). In fact,if we normalize so that �(0) = � is a minimum, then evaluating this constant at t = 0 shows2�p1+�2t � �2 = 2� � �2 = � . Thus � = 2� � �2 determines the weight of a Delaunay end ofnecksize �.
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Appendix DSOME USEFUL COMPUTATIONS INVOLVING G, A, AND �The following computations involving g, A, and � will prove useful later. The generalsetting is that we have an immersed surface X : � ! R3 with coordinates s and �. Themetric is given by g = Eds2 + 2Fdsd� +Gd�2 where E = k@sXk2, etc.First note h@2sX; @sXi = 12Es (D.1)and h@2�X; @�Xi = 12G�: (D.2)Also, hXs�;Xsi = E� � hXs;Xs�iand so hXs�;Xsi = 12E�:This implies hXss;X�i = Fs � hXs;Xs�i = Fs � 12E�:Similarly, hXs�;X�i = 12Gsand hX��;Xsi = F� � 12Gs:In conformal coordinates (g = E(ds2 + d�2)) these reduce tohXss;X�i = �12E� = �hXs�;Xsi (D.3)and hX��;Xsi = �12Es = �hXs�;X�i: (D.4)



60 Also, we can write�s = 1E h@sX; �si@sX + 1Gh@�X; �si@�X = �LE@sX � MG @�X: (D.5)Similarly, �� = �ME @sX � NG@�X: (D.6)So k�sk2 = L2E + M2G + 2FLMEGand k��k2 = M2E + N2G + 2FMNEG :Notice that in conformal coordinates, these reduce tok�sk2 = 1E (L2 +M2) (D.7)and k��k2 = 1E (M2 +N2): (D.8)We can put all of this together to read0BBB@ XsX�� 1CCCAs = 26664 Es2E F�� 12E�G LE�2E Gs2G M�LE �MG 0 377750BBB@ XsX�� 1CCCA = U 0BBB@ XsX�� 1CCCAand 0BBB@ XsX�� 1CCCA� =
26664 E�2E Gs2G MF�� 12GsE G�2G N�ME �NG 0 377750BBB@ XsX�� 1CCCA = V 0BBB@ XsX�� 1CCCA :In conformal coordinates, U and V reduce toU = 1E 26664 12Es �12E� LE12E� 12Es ME�L �M 0 37775and V = 1E 26664 12E� 12Es ME�12Es 12E� NE�M �N 0 37775 :
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Appendix ETHE LINEARIZED OPERATORTo explicitly compute L �X we �rst need to write out � �X in coordinates. To compute theLaplacian, �rst let A = EG� F 2, B = EsG+EGs � 2FFs, and C = E�G+EG� � 2FF�.Then � �X = 1pdet g @igijpdet g@j= 1pA �@s GpA@s � @s FpA@� � @� FpA@s + @� EpA@��= 1A �G@2s � 2F@s@� +E@2� �+ 1A �Gs@s � 12GBA @s � F�@s + 12 FCA @s�+ 1A ��Fs@� + 12 FBA @� +E�@� � 12 ECA @�� :Notice that in conformal coordinates (g = E(ds2 + d�2)) this expression reduces to� �X = 1E (@2s + @2� ): (E.1)If we replace w by tw, then the formal Taylor expansion above becomes a Taylor expan-sion in t. Thus we see that L �X(w) = ddtH(tw)����t=0 :Thus our next task is to compute this derivative. Kapouleas computes the linearization inappendix C of [Kap90] using a slightly di�erent method. Both computations are straightfor-ward but somewhat involved. Below we will sometimes use a dot to indicate di�erentiationwith respect to t. Recall that all the unbarred quantities depend on t. We will suppressthis dependence. We have H = 12 EN +GL� 2FMEG� F 2 :



62So dHdt ����0 = �12( �E �G� �F 2)�2( _E �G+ �E _G� 2 �F _F )( �E �N + �G�L� 2 �F �M)+12( �E �G� �F )�1( _E �N + _G�L� 2 _F �M + �E _N + �G _L� 2 �F _M):We can signi�cantly simplify the task of �nding L �X is we work in conformal coordinatesfor �X. So now assume that �g = �E(ds2 + d�2). Then the above expression for dHdt simpli�esto dHdt ����0 = �12 �E�4( �E( _E + _G))( �E(�L+ �N)) + 12 �E�2( _E �N + _E �L� 2 _F �M + �E( _L+ _N))= 12 �E2 [�( _E + _G)( �N + �L) + ( _E �N + _G�L� 2 _F �M + �E( _L+ _N))]= 12 �E2 [ �E( _N + _L)� _E �L� _G �N � 2 _F �M ]: (E.2)To identify this beast, we will need some preliminary computations. First,ddt ����0E = ddt ����0 h �Xs + tws�� + tw��s; �Xs + tws�� + tw��si= ddt ����0 ( �E + 2twh �Xs; ��si+ t2w2s + t2w2k��sk2)= �2w�L: (E.3)Similarly, ddt ����0 F = �2w �M (E.4)and ddt ����0G = �2w �N: (E.5)Now we can compute the part of dHdt which has derivatives of components of the metric.Plugging equations (E.3), (E.4), and (E.5) into (E.2) yields� 12 �E2 (�2w)(�L2 + �N2 + 2 �M2) = kA �Xk2w: (E.6)It remains to compute 12 �E ( _L+ _N):



63We have that _L = ddt ��0 h@2sX; �i = h ddt ��0 @2sX; ��i+ h@2s �X; d�dt ��0i. To do this computation weneed to know d�dt . First write � = (EG� F 2)� 12 @sX � @X�. Sod�dt ����0 = �12( �E �G� �F 2)� 32 ( _E �G+ �E _G� 2 _F �F )@s �X � @� �X + 1�E ddt ����0 @sX � @�X= w�E3 (�L �G+ �N �E � 2 �F �M)@s �X � @� �X + 1�E ddt ����0 @sX � @�X= 2w �H�� + 1�E ddt ����0 @sX � @�X:Using equations (D.5) and (D.6), this last term isddt ����0 @sX � @�X = ddt ����0 (@s �X + tw��s + tws��)� (@� �X + tw��� + tw���)= w(@s �X � ��� + ��s � @� �X) + ws�� � @� �X + w�@s �X � ��= �w�E [@s �X � ( �M@s �X + �N@� �X) + (�L@s �X + �M@� �X)� @� �X ]�ws@s �X � w�@� �X= �w( �N + �L)�� � ws@s �X � w�@� �X:Adding these together, we getd�dt ����0 = 2w �H�� � 1�E (w(�L+ �N)�� + ws@s �X + w�@� �X): (E.7)By equations (E.7), (D.1), (D.3), and (D.7)dLdt ����0 = hwss�� + 2ws��s + w��ss; ��i+ h@2s �X; 2w �H �� � 1�E (w(�L+ �N)�� + ws@s �X + w� �X)i= wss � w�E (�L2 + �M2) + 2w �H �L� w�L�E (�L+ �N)� 12ws �Es�E + 12w� �E��E :Similarly, by equations (E.7), (D.2), (D.4), and (D.8)dNdt ����0 = hw���� + 2w���� + w����; ��i+h@2� �X; 2w �H�� � 1�E (w(�L+ �N)�� + 12ws@s �X + 12w�@� �Xi= w�� � w�E ( �M2 + �N2) + 2w �H �N � w �N�E (�L+ �N) + 12ws �Es � 12w� �E�:



64 Adding these together, we get_L+ _N = wss + w�� � 12ws �Es�E + 12w� �E��E + 12ws �Es�E � 12w� �E��E � w�E (�L2 + 2 �M2 + �N2)+2w �H(�L+ �N)� w�E (�L2 + 2�L �N + �N2)= wss + w�� � w�E (2�L2 + 2 �M2 + 2 �N2 + 2�L �N) + w�E (�L+ �N)2= wss + w�� � w�E (�L2 + 2 �M2 + �N2): (E.8)Adding together equations (E.6) and (E.8) and using equation (E.1) yieldsL �Xw = dHdt ����0= kA �Xk2w + 12 �E (wss + w��)� w2 �E2 (�L2 + 2 �M2 + �N2)= 12(� �X + kA �Xk2)w: (E.9)
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Appendix FFREDHOLM PROPERTIES AND GROWTH RATESIn this chapter we prove some general mapping properties of LX on weighted H�olderspaces where X : � ! R3 is an embedding with asymptotically Delaunay ends. The twomain results will be the characterization of when LX is Fredholm (i.e. for which weights) andthe Linear Decomposition theorem. The analysis in this chapter is essentially contained in[MPU96]. Below we will use Ck;��;D(M) to denote the H�older space of functions with Dirichletboundary data. (We will omit the weighting if M is compact with boundary.)Lemma 19. Let X = K [ ([k1Ej) be a properly embedded, noncompact surface with endswritten as graphs over cylinders. SupposeLX : Ck+2;�D (K)! Ck;�D (K)is Fredholm and LX : Ck+2;��;D (Ej)! Ck;��;D(Ej)is Fredholm for all j. Then LX : Ck+2;�� (X)! Ck;�� (X)is Fredholm.The proof of this lemma follows that of Proposition 11 in [MPP], and we refer the readerto the latter proof for more details.Proof: Let � be a smooth compactly supported function with �(x) = 1 for jxj � r and�(x) = 0 for jxj � r + 1. By assumption, there are Greens operatorsGK : Ck;�D (K)! Ck+2;�D (K)and Gj : Ck;��;D(Ej)! Ck+2;��;D (Ej)



66for the restrictions of LX . Now de�neG(f) = GK(�f) + kXj Gj((1 � �)f):To check that GL� Id is a compact operator, take a sequence ui 2 Ck+2;�� (X) with kuik = 1and let wi = (GL � Id)ui. Note that wi is supported in the compact set B r+1nB r . By localelliptic regularity for the operator GL � Id,kwikCk+2;�� (B) � ckuikCk+2;�� (B) = cfor any bounded set set B, and so by Arzela-Ascoli a subsequence wi converges uniformlyon compact sets. However, wi is supported in the �xed compact set B r+1nB r , sokwi � wjkCk+2;�� (X) ! 0: �Because LX is elliptic and K is compact,LX : Ck+2;�D (K)! Ck;�D (K)is always Fredholm. One can construct a Greens operator microlocally by inverting thesymbol. The operator LX : Ck+2;��;D (Ej)! Ck;��;D(Ej)is Fredholm if and only if the operator LD for the model Delaunay surface is Fredholm (thedi�erence between the two is exponentially decaying). Notice LD is a periodic operator.To simplify notation, we will assume below that the period is 1. To �nd out when LD isFredholm, we introduce the Fourier-Laplace transform. Let u 2 Ck;�� ([0;1) � S1) and let� 2 C . Then F(u)(�; t; �) = û(�; t; �) = 1X�1 e�i�ku(t+ k; �):The sum above converges uniformly and absolutely for =� < ��, and soû 2 Holo(f=� < ��g;Ck;�([0;1) � S1)):



67One can invert F : if � = �+ i� and t = l + ~t where l 2 Z and 0 � ~t < 1, thenF�1(u)(t; �) = �u(t; �) = 12� Z 2�0 ei(�+i�)lu(�+ i�; ~t; �)d�:Notice that � = =� is a parameter in the inversion formula above. Changing � amountsto changing the weighting of �u. One can check that �u 2 Ck;��� ([0;1) � S1), but �u 62Ck;�����([0;1) � S1) for any � > 0. The reason for introducing the Fourier-Laplace trans-form build a one-parameter family of operators out of LD where the parameter changes theweight. To this end, de�ne~LD(�)(u) = e�i�tF � LD � F�1(ei�tu):~LD(�) : Ck+2;�([0;1)� S1)! Ck;�([0;1) � S1) and it depends holomorphically on �.Proposition 20. The operatorLD = @2s + @2� + �2 cosh 2� : Ck+2;��;D ([0;1) � S1)! Ck;��;D([0;1) � S1)is Fredholm if and only if � 62 � = f: : : ;�3;�2; 0; 2; 3; : : : gwhere 0 < j < j+1 !1.In fact, these j 's are the indicial roots of the Delaunay surface D. One can see thatthey correspond to rates of growth from the contour-shifting argument that yields the LinearDecomposition Theorem (see below).Proof: As above, consider~LD(�)(u) = e�i�tF � LD � F�1(ei�tu):By the analytic Fredholm theorem, ~LD is either Fredholm for all values of � but a discreteset, or it is never Fredholm. Because ~LD is formally self adjoint, it su�ces to show that~LD(�) is injective for some value of �. Suppose ~LD(�)(u) = 0. Then LD(F�1(ei�tu)) = 0.



68By de�nition, F�1(ei�tu)(t; �) = 12� Z 2�0 ei(�+i�)lei(�+i�)~tu(~t; �)d�= e��tu(~t; �)2� Z 2�0 ei�td�= e��tu(~t; �)2�it (e2�it � 1):Notice that F�1(ei�tu)(t; �) is zero whenever t is an integer. For the particular choiceof � = 12 + i2 , the above computation shows that the solution u would either have to beidentically zero or u 2 Ck+2;�� 12 but u 62 Ck+2;�� 12�� for any � > 0. We have already shown that thisbehavior is impossible for solutions to the equation LDu = 0. Therefore ~LD(�) is injectiveand hence (because it is formally self adjoint) an isomorphism for all but a discrete set of�. Note that ~LD(�) : Ck+2;� ! Ck;� is not Fredholm if and only if LD : Ck+2;��� ! Ck;��� ,where � = =�, is not Fredholm.Let ~� be the poles of the Greens operator of ~LD(�) (� 2 ~� if and only if ~L(�) : Ck+2;�D !Ck;�D is not Fredholm). It remains to see that f� j =� = ��; � 2 ~�g does not have anyaccumulation points. A priori, it is possible that a sequence �n 2 ~� could look like �n =n + in . However, ~LD(�) = ~LD(� + 2�) and the operators ~LD(�) and ~LD(� + 2�i) areunitarily equivalent (the unitary isomorphism which transforms one operator to the otheris multiplication by e2�it). Thus ~� is invariant under translations by 2k� + 2l�i, wherek and l are any integers. If � = f� j =� = ��; � 2 ~�g had an accumulation point, thenby translation invariance ~� would have in�nitely many points, and hence an accumulationpoint, in [��; �] � [��; �]. This would contradict the fact that ~� has no accumulationpoints. Thus � cannot have an accumulation point. Moreover, ~LD(�) is Fredholm if andonly if ~LD(��) is. In fact the two operators are conjugate under multiplication by e�2�t.This shows  2 � if and only if � 2 �, and completes the proof. �Our next task is to try to understand the behavior of the kernel of LD : C0;�� ! C2:��for 0 < � < 1. Let ~GD(�) be the Greens operator of ~LD(�) chosen above. Then ~GD ismeromorphic in C with poles at � 2 ~�. Functions in the kernel of ~LD(�) for � 2 ~� can thenbe recovered from the residue of ~GD at �. In particular, we are interested in the \tempered"solutions (those with subexponential growth), which arise from the residue of GD at � = 0.



69These functions, collectively labeled BD above, correspond to solutions to LD(u) = 0 whereu 2 C2;�� but u 62 C2;��� for all � > 0. Recall LD is nondegenerate. Let f 2 C0;��� � C0;�� .Then, because LD : C2;�� ! C0;�� is surjective, we can �nd u 2 C2;�� such that LDu = f .In fact u(s; �) = F�1( ~G(�)(F(f)(s; �; �)))= 12� Z 2�0 e��i� ~G(�� i�)(F(f))d�= 2n+ 12� Z 2n��2n� e��i� ~G(�� i�)(F(f))d�:It turns out that if �0 > 0 then u 2 C2;��0 as well. Let �n be oriented contours which tracethe perimeter of the rectangle 2�(n � 1) � � � 2�n, �� � � � ��0 in a counterclockwisedirection. Then by Cauchy's theorem,0 = nX�n Z�k e� ~G(�)(F(f))d�= Z 2�n�2�n e��i� ~G(�� i�)(F(f))d� � Z 2�n�2�n e��i�0 ~G(�� i�0)(F(f))d� +O( 1n):Taking n large, this shows u actually lies in Cs+2�0 . However, this computation does notwork if �0 < 0, because in this case ~GD has a pole in each �n. If we now take �0 = ��, weget a new solution u = v +w wherev + w = 12� Z 2�0 e�+i� ~GD(F(f))d�:The di�erence is given byw = 2n+ 12� nX�n Z�k e� ~G(�)F(f)d�= 2n+ 12� nX�n Res�=2�k(e� ~G(�)F(f))= 2n+ 12� nX�n Res�=0e� ~G(�)F(f)= 12�Res�=0e� ~G(�)F(f)In the second to last equality we used the fact that residue of this pole is the same foreach contour. The above computation yields the Linear Decomposition theorem stated



70above, and in fact yields a more general asymptotic expansion for solutions to the equationLDu = f by further contour shifting. Notice all these computations only use the asymptoticbehavior of LX , and so all the linear analysis results we have for CMC embeddings X alsoapply to the approximate solutions �XR;� we constructed.
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