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1 Introduction and Notation

The general situation we will consider is the following. We have an immersion
X : ¥ — R? of a surface with finite topology. We will assume that the induced
metric on ¥ is complete. If (s, 6) are coordinates on X, we will denote the induced
metric by ¢ = Fds? + 2Fdsdf + Gdb?, the Gauss map as v = %, and the
second fundamental form as A = Lds? + 2Mdsdf + Ndf*. We denote the Gauss
curvature by K = det A and the mean curvature as H = %trg A. Notice that A is
an extrinsically defined object; it depends on the immersion X. It turns out that
K is a Riemannian invariant of 3. This is essentially Gauss’ Theorem Egregium.
On the other hand, the mean curvature H is not a Riemannian invariant. For
instance, a flat infinite strip of width 7 in the plane plane and half of a cylinder
1

of radius 3 are isometric, but the strip has zero mean curvature while the cylinder
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has mean curvature 1.

Here we will study those immersions which have mean curvature identically 1.
These immersions are called CMC immersions for short. Notice that if the mean
curvature is any other nonzero constant, then a homothety and possible reversal
of orientation will yield an immersion with mean curvature 1. So immersions with
constant mean curvature fall into two categories: those with mean curvature zero
(minimal immersions) and those with mean curvature one (CMC immersions). Re-
cent years have seen many advances in the classification of both CMC and minimal
immersions. The surfaces we will concentrate on here are complete, noncompact,
CMC embeddings of finite topology. Results of the last 15 years include theorems
describing the asymptotic structure of the ends of such surfaces (see [17]) and the
regularity of the moduli spaces of such surfaces (see [20]).

The results mentioned above are in some sense the sort of results common in
modern, twentieth-century geometric analysis. They are general uniqueness and
classification results. Another small industry in this area is the production of
examples, which is in some sense a typical nineteenth-century pursuit. The unit
sphere S? and the cylinder of radius % are basic examples of CMC surfaces. In
1841 Delaunay (see [5]) found a one-parameter family of CMC surfaces which are
all rotationally symmetric and interpolate between the cylinder and a string of
spheres which lie tangent to each other (see section 3.1 for a description of these
surfaces). In contrast to the theory of minimal surfaces, it took a long time to

construct more examples of CMC surfaces.

Indeed, the next examples of embedded CMC surfaces did not appear until
Kapouleas constructed them in 1990 in [16]. (The history of compact CMC surfaces
which are immersed but not embedded is equally rich, but very different.) See
section 3.3 for a description of his construction. In [18] and [19] Mazzeo, Pacard,
and Pollack solved nonlinear boundary value problems to glue either Delaunay
ends onto a k-noid with catenoid ends ([18]) or to glue two CMC surfaces together
with a catenoid neck. In these results, they found an explicit Greens kernel for
the linear operator and then matched the Cauchy data. The gluing method used
here is to build the approximate solution by patching together known solutions
with cut-off functions. Instead of the singular perturbation theory of [16] we will
use a better understanding of solutions to the linearized mean curvature operator.
This understanding is similar to the analysis Melrose uses in [10] to study harmonic
forms on compact manifolds with boundary. The guiding principle is that tempered
solutions (solutions with subexponential growth) to the linearized operator lie in
a finite dimensional vector space which arises from geometric deformations of the
ends (e.g. translations and rotations of the ends). We then use solutions to the
linearized mean curvature operator in this finite dimensional space to adjust the
approximate solution.



The current project is to glue two CMC surfaces together “end-to-end” in a
sense to be described below. We start with two noncompact complete CMC em-
bedded surfaces ¥; and 5 of finite topology. The ends of 3J; are the unbounded
connected components of ¥;\B, (0), where 7 is taken large enough so that the num-
ber of such components is constant. Pick ends F; of ¥;. By a result of Korevaar,
Kusner, and Solomon (see section 4.3) one can understand the asymptotic structure
of the ends FE;. We require that the asymptotic structure of F; matches that of Fs.
Align ¥4 and X5 such that E; and FE, lie along the same axis, but point in opposite
directions. One can then patch 3; and X5 together using a cut-off function to get
a surface ¥ which has mean curvature 1 away from the patching region and has
mean curvature close to 1 in the patching region. The goal is to now perturb ¥
and find a nearby CMC surface . We will describe this in more detail in Section
6. The purpose of this project is to construct new families of CMC surfaces.

Finally, we should remark that the theory of complete noncompact CMC im-
mersions has many similarities to the theory of metrics constant positive scalar
curvature. Indeed, as noted in [22] and [20], each theorem regarding one prob-
lem seems to have a counterpart with the other problem. For instance, the results
about the moduli spaces of k-ended CMC surfaces and the moduli spaces of singular
Yamabe metrics on S” (complete metrics of constant positive scalar curvature on
S™\{p1 ...px} conformal to the usual metric) have remarkably similar statements
(compare the statements of Theorem 1.4 of [22] and Theorem 1.3 of [20]). In fact,
most of the analysis for the CMC problem carries over to the CPSC problem.

2 Various Formulations of the CMC Condition

One can formulate the condition that an immersion is of constant mean curvature
in various ways. Each is useful to understand some part of the general theory of
CMC surfaces.

2.1 The Local Formulation: Principal Curvatures

We start with the local formulation in terms of coordinates (s, ) on X. Then

o= [7 6] [8% &3).

=l v =16 G|



and
1 1LG+NE —2FM

H=—-tr,A=
2 7 2 EG — F?
Near any point, we can write ¥ as a graph over its tangent plane. Then the
immersion X takes the form

X(s,0) = (s,0, f(s,0)).
If X takes this form, the metric is given by

|:1+f52 fsfﬂ :|

N fsfﬂ 1+ f02
and the second fundamental form is given by
— 1 |: fss fsﬂ :|
VI+ 22 fso foo

In particular, the mean curvature is given by

_ fss(l +f02) +f06(1 +fs2) _ 2fs€fsf0‘

H 3
200+ f2+ 13)2

Setting H = 1 and rearranging yields
0= fos(L+ f3) + foo(L+ f2) — 2fsafofo — 201+ f2+ f3)2. (1)

Several remarks on equation (1) will prove useful. First, this is a quasilinear second
order PDE in f. It is strongly elliptic. In fact, the linearization of the second order
part the right hand side of equation (1) is given by the matrix

[1+fg _fsf0 :|
_fsf0 1+f52 ‘

And so the principal symbol of equation (1) is given by

[ A #] [1;‘;2 fi}c‘é] [H = X+ (Mo — pf)? 20

with equality only when A\ = 0 = p. This implies, among other things, that
CMC surfaces are analytic (elliptic regularity) and the function f obeys the strong
maximum principle (e.g . f can have no positive interior maxima; see, for example
[12] or [13]).

One can also attach a geometric interpretation to these coordinate computa-
tions. In the following paragraph, we will work only at the origin in the (s,6)
coordinates and we will assume that

0= f(OaO) = fS(O,O) = fg(0,0).
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This amounts to setting the (s, ) plane to be the tangent plane to 3 at the point
corresponding to (0,0). Then

9(0,0) = [(1) (1)] and A(0,0) = [ jja ;03 } .

Recalling the minimax method to find eigenvalues using the Raleigh quotient, we
see that the eigenvectors of A point in the direction of steepest descent and ascent
for the function f. Call these eigenvectors ¢} and @,. Order them so that their
respective eigenvalues k; and ko satisfy k; < ky. Notice that setting ki + ky = 2
and k; < ko implies ko > 1 > 0. If we let h(t) = f(tt) the we see t = 0 is a local
minimum for A. In fact, the graph of A is concave up and the circle lying above
the graph which best fits the graph will have radius h"#(o) = kl—? Similar remarks
hold for £, although one must be careful of signs when treating this case. Thus we
see that the eigenvalues k; and ky correspond to radii of the largest and smallest
circles (taking signs into account) fitting curves in ¥ one finds by intersecting X
with a plane normal to X at the origin. These eigenvalues k; and k, are called
the principal curvatures of ¥ and the eigendirections span #; and span ¥, are called
the principal direction. A point on ¥ is called umbilic if k; = ky. The preceding
discussion shows that the mean curvature of a surface at a point p is the average
of the curvature of curves in ¥ through p in all directions, giving credence to the

name “mean curvature”.

2.2 The Variational Formulation

The variational set-up described below is the same as in [14]. This formulation of
the CMC condition is classical. One can find a modern treatment of it in volume
IV of [15] (towards the end of Chapter 9) and [8].

On can also formulate the condition that X is a CMC immersion in variational
terms. First consider a one parameter family of immersions X, : ¥ — R?® with
Xy = X. Then the first variation of area Area(Xy (X)) = %‘tzo Jo X;(dV) is
given by

it
dt [t=0

d d
7 Area( X, (X)) = /2<%

t=0

X, Hv).

t=0

Now consider the following situation. Let X be a CMC immersion of ¥ as above
and let U C R? be a bounded open set with U = ) U S where S is an open
subset of X (X) and 0Q = 0S =T is a smooth closed curve in X(X). Let V be a
vector field supported in U\Q and denote its flow by ¢;. This vector field yields a
one parameter family of surfaces S; = ¢;(5) and a one parameter family of solids
U = ¢;(U). Pick a real constant H and let h denote the mean curvature of X.



Then the formula for the first variation of volume yields

% ) (Area(S;) — H Vol(U;)) = (h — H) Area(S).

Thus we see that surfaces with mean curvature identically H are critical points of
the functional Area —H Vol.

2.3 The Hopf Differential, the Sinh-Gordon Equation, and
Harmonicity of the Gauss Map

Much of this formulation can be found in [9].

For this section we will work in conformal coordinates on . In other words,
we will let (s, 0) be coordinates on X such that F = G = 2¢*” and F = 0. Then
z = s+ 10 is a complex coordinate on X. Define the vector fields

1 1
0. = 5(0, — i0y) and 9; = (9, +id)).

Notice that .
azaz — —A.
4

Consider the immersion X restricted to a simply connected region €2 on the surface.
The condition that z = s +i6 is a conformal coordinate with conformal factor 2e?*

is equivalent to
(X,,X,)=0 (X,, X;) = e*.

In addition, we also have
(v, X,) =0 (v, X;) =0.
Taking derivatives of these equations yields
(X0 X)) =0 (X X)) =0 (X, X.) = 2w,e™

and
(v, X,.) + (1, X,) =0 (v,X,;) + (vs;,X,) =0.

If we let (v, X,.) = @Q and note (v, X,;) = 1(v,AX) = Le*’H, then the above
equations imply

1
q

1 1
X, =2w,X,+Qv X,;= §€2wHV v, = —§HXZ — Qe 2 X. (2)



As a side note, () is the coefficient of a quadratic differential form Qdz?.

The

function () itself is only locally defined, but Qdz? is a globally defined quadratic

differential form. This quadratic form is called the Hopf differential.

We can rewrite equations (2) as

Xz — 0 0 %QQ“}H Xg — U Xz
v, —%H —Qe v 0 v v

Similarly,

IR
L e 0 V)T

Setting 0; of equation (3) equal to 0, of equation (4) yields

z

X
X
v

I — |

U, —V,+[U,V]=0.

One can compute that

2w,; — |QPe + L H?e* 0
U, =V, +[U, V] = 0 —2w,; + |Q%e * — L H?e*
1 —2w ) 1 —2w
—§H2—|—€ 2 Qz §Hz_€ 2 QZ

Setting this quantity to zero yields the following two equations:
1 2 2w 2 —2w
Aw+§He —2|Qe =0

and

1
Qg - EGQMHZ — 0

(7)

Recalling that H is real-valued (and so H; = (H,)), we see that the latter equation
implies H is constant if and only if @ is holomorphic. From this Hopf (see [11])

proved

Theorem 1 (Hopf’s Theorem): Let ¥ be a compact simply connected immersed

CMC surface. Then ¥ is a round sphere.

First note that we can rewrite () as

Q:%—iM.



From this formulation we conclude that zeroes of the Hopf differential are umbilic
points. By uniformization, if ¥ is a compact simply connected surface then ¥ is
conformally equivalent to a sphere. From the fact that ¥ is CMC we conclude that
Qdz? is a holomorphic differential on the sphere. This forces Qdz? = 0 on all of 2,
and so all points of ¥ are umbilic. From this fact it is easy to show that ¥ must
be a round sphere.

If X is a mean curvature one immersion of a torus, then one can extend the
function ) from a small patch 2 about the origin to be a doubly periodic function
on the entire plane C. In particular, ) is a bounded holomorphic function on C
and hence must be constant. After multiplying by an appropriate number in the
domain, we can choose @ = 7. With @ = 1 and H = 1, equation (6) now becomes

Aw + sinh 2w = 0, (8

~—

which is known as the Sinh-Gordon equation. Notice that the rescaling to set () = %
is a rescaling in the parameter space and the rescaling to set H =1 is a rescaling
in the target space. In particular, these rescalings can be done independently.

Further computation shows

1 1
V,; = —[ngXZ + Qe X, + (ZH262“’ + Qe ).
Thus X is a CMC immersion if and only if v,; is a multiple of v. Recalling that
v:Q — S? we see that Av = \v is precisely the condition that v is a harmonic
map into S2. Thus X is a CMC immersion if and only if the Gauss map v is
harmonic.

3 Examples

As mentioned above, the unit sphere and the cylinder of radius % are both CMC.

The Delaunay surfaces provide the next example of embedded CMC surfaces. One
can think of these surfaces as interpolating between spheres and cylinders.

3.1 Delaunay Surfaces

We seek an embedding of the form

D(t,0) = (p(t) cos 0, p(t)sinf,t) : R x S — R?



with mean curvature 1. An embedding of this form is rotationally symmetric
about the z axis. The condition that D is an embedding implies p > 0. The CMC
condition implies that p satisfies the equation

3
2

1
Ptt*;(l"‘ﬂf)"‘?(l"‘ﬁ) = 0. (9)

%. This solution corresponds to the cylinder. Nor-
malize p so that p assumes a local minimum of € at ¢ = 0 (this amounts to a
translation in the ¢ variable). One can then show that p is periodic and in fact
e is a global minimum for p. Critical points for p alternate between minima and
maxima. The minimum value (¢) for p is called the necksize of the embedding.
One can show that as ¢ — 0 the embedding D tends to a string of unit spheres
{z> +y?> + (2 — 2n)*> =1} for n € Z.

One particular solution is p =

e=0

¢
\KEEEI

2

1
0<€<§

We will change variables, first to make D into a conformal embedding. To this
end, we must replace ¢ with k(s) where k satisfies the equation

p(k(s)) =K' (s)(p'(k(s)) + 1).
Now let 7 = 2¢ — ¢ and define o(s) by p(k(s)) = 7¢’®®). One can show that 7 is a
first integral of equation (9), see section 4.2. Then one can show
2 dk 2
Oy + %sinh20 =0 = %(e% +1).
In fact, finding solutions to the above equations is equivalent to finding an embed-
ded Delaunay surface.

Geometrically, one can think of the Delaunay surfaces as interpolating between
the cylinder and the string of spheres. First place an ellipse tangent to the z axis
in the # — 2z plane so that one of the foci is on the x axis and is positioned to that it
is as close to the z axis as possible. Now roll the ellipse along the z axis. One can
show that the focal point which started on the x axis traces out the profile curve
of a Delaunay surface (see [23]). Varying the eccentricity of the ellipse corresponds
to varying the necksize of the surface. The cylinder corresponds to rolling a circle
of radius § (the center is the only focal point and stays at constant height ).
The string of spheres corresponds to rolling a line segment of length 1 (this is the
degenerate case where the eccentricity goes to oo and the focal points go to the
endpoints of the line segment).
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3.2 CMC Tori

One might think to look for CMC immersions of compact surfaces. In the 1950’s
Hopf proved that any simply connected CMC immersion of a compact surface has
to be a round sphere (see Hopf’s theorem above, or [11]). Around the same time,
Alexandrov proved that any embedded compact CMC surface must be the round
sphere (see Theorem 3 below). If one were looking for compact CMC immersions,
then given these two results one might next look for CMC tori. Below we will
regard a torus as R?/T" where T is a lattice.

To find CMC tori, we look for doubly periodic immersions R? — R3. We can
reduce this problem as follows. First, note that any immersion of a surface is
determined up to rigid motions by its metric and its second fundamental form.
Also notice that locally, the metric is determined by its conformal factor and that
equations (3) and (4) determine the second fundamental form. Therefore, the
conformal exponent w will locally determine the immersion. Finally, notice that if
¥ is a torus then w must in fact be a doubly periodic function on R?. Thus the
task of finding a CMC torus is the same as finding a doubly periodic solution to the
Sinh-Gordon equation (equation (8)). In 1986, Wente proved [2] that such doubly
periodic solutions exist.

In 1987, Aubresch ([3]) found many CMC tori by requiring that one line of
curvature be planar. The condition that A has distinct eigenvalues allows us to
simultaneously diagonalize A and ¢, so away from umbilic points we can choose co-
ordinate lines which are also lines of curvature. The condition that the 6 coordinate
line in planar is equivalent to

wgp cosh w — wewy sinhw = 0.

We combine this equation with equation (8) to get an overdetermined system of
equations. Under the change of variables W = cosh w this system becomes

(W2 = DAW = W|VW2+W(W2 -1)2 = 0
(W2 = )W,y — 2WW, W, = 0.

Theorem 2 (Aubresch): The real analytic solutions of the above system are given
by

_ fs + 9p

1+ Pt
where f(s) and g(0) are elliptic functions. Moreover, one can recover f and g by

{Ws = —fls(W?*-1)
Wy = —g(0)(W? - 1).

11



However, one still has to find conditions so that W is doubly periodic (these are
called closing conditions). This is a rationality condition on the initial conditions
¢ and d of f and ¢g. Thus the CMC tori with one planar line of curvature are pa-
rameterized by the two parameters ¢ and d. Aubresch then finds closing conditions
on ¢ and d (assuring that the solution W is in fact doubly periodic).

In 1989 Pinkhall and Sterling classified all CMC tori in [4]. Their idea is to
write solutions to equation (8) as the flows of two commuting vector fields. Then
one can integrate to get solutions and show that there exist only finitely many
independent integrals. They then embed the ODE system in the Jacobian variety
of the torus and find the closing conditions.

3.3 Kapouleas’ Surfaces

In [16] Kapouleas produced many examples of noncompact embedded CMC sur-
faces. As a first step, he creates a central graph, consisting of vertices, edges, rays,
and weights for each vertex. He requires that the edges of these graphs have lengths
that are even integers and that the graphs are balanced around each vertex (see
section 4.2). About each vertex he places a sphere of radius one. He places half
a Delaunay surface about each ray, with necksize determined by the weight at the
starting vertex of the ray. About the edges of length greater than 2, he places
a piece of a Delaunay surface to connect the two spheres centered at the vertices
which are the endpoints of the edge in question. Again, the necksize of this joining
piece of Delaunay surface is determined by the weights of the vertices (which must
be the same by balancing).

Next Kapouleas pieces all the surfaces together to form a smooth approximate
solution. He pastes the spheres and pieces of Delaunay surfaces together with
appropriately chosen cut-off functions. However, all the parts do not quite fit
together without some sort of perturbation. For instance, the period of a Delaunay
surface with small necksize is almost, but not quite, 2. So the Delaunay piece
joining the two spheres mentioned above does not quite fit. To remedy this problem,
Kapouleas first slightly perturbs the graph, and then slightly perturbs the necksizes
of the Delaunay surfaces. After this step, he has a surface which has mean curvature
one everywhere except for small bands near each neck of the Delaunay pieces. In
these bands about the Delaunay necks the mean curvature is close to one.

Then Kapouleas solves the linearized problem (locally) on each bulge between
the Delaunay necks. However, in these regions he must avoid the spherical harmon-
ics which arise from eigenfunctions of the operator A +2 on S?. Thus he solves the
linearized problem orthogonal to a finite dimensional “substitute kernel” on each
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bulge. A further difficulty in piecing together a global solution to the linearized op-
erator from all these local solutions is that the global solution must be orthogonal
to each of the substitute kernels mentioned above. This means that one must find a
solution to the linearized problem which is orthogonal of to an infinite dimensional
subspace. Finally, he must solve the nonlinear problem. To do this, Kapouleas
shows one can find appropriate solutions for the linear problem after perturbing
the graph mentioned above, and then uses a Leray-Schauder fixed point argument
to show that a solution to the nonlinear problem for one of the perturbed graphs
must exist.

4 General Properties of Almost Embedded CMC
Surfaces

As stated above, we are concerned here with embedded CMC surfaces. However,
many of the theorems still hold for a wider class of immersions, called almost
embeddings.

Definition 1 An immersion X : X — R? is called an almost embedding (or an
Alexzandrov embedding) if one can write X as the boundary of a solid handle-body
Q and X extends to be an immersion of €.

One can think of this property as distinguishing an “outside” and an “inside”
for the surface (the inside corresponding to the interior of the solid handle-body).
Roughly speaking, the condition that a surface is almost embedded is the weakest
condition one can place on the surface such that one can apply the Alexandrov
reflection argument below.

4.1 Alexandrov Reflection

Alexandrov reflection is really an application of the maximum principle. To see
how it works, we will first apply it to a compact CMC surface.

Let X : ¥ — R? be a CMC embedding of a compact surface. Fix a large
negative 7' so that the ¥ lies completely above the plane 7 = {z = T'} (one can
do this because ¥ is compact). Let m; = m + (0,0,¢) be the translate of 7 by ¢
in the z direction. Let ¥; be the part of ¥ which lies below m; and let it be the
reflection of ¥; through the plane 7;. For ¢ small, both ¥; and it will be empty.

13



If ¢y is the first time of contact of m; with X, then (locally) one can write ¥ as a
graph over m;,. Thus for ¢t =ty + ¢, with § > 0 small, the reflected surface >, will
lie completely inside Y. In other words, for those values of ¢ slightly larger that ¢,
the reflected surface ¥, lies in the bounded component of R*\X. We pause to note
that this is where we need X to be embedded.

Note that for ¢ sufficiently large, ¥ will lie completely below 7; (again, by the
compactness of X)), and so Y, cannot be contained in the bounded component of
R3\X for all £. Let #; be the infimum of ¢ > #, such that it is not contained in the
bounded component of R*\¥ and let Y be the reflection of ¥ through the plane
my,. Then in fact ¥ and S are tangent at some point p.

If the tangency at p is not a vertical tangency, write ¥ and ¥ as graphs of u
and u; (respectively) over the plane 7y, . Let the tangency point p have coordinates
(x,y) in this plane. Then u(z,y) = ui(x,y) and Vu(z,y) = Vus(z,y). Also, u and
uq both satisfy the same strongly elliptic equation (equation (1)). By the maximum
principle, u = w1, and therefore ¥ locally agrees with 3. Both surfaces are analytic
and connected, so ¥ = X.

If the tangency is at p is a vertical tangency, one needs to apply the Hopf
boundary lemma (see Theorem 10 of Chapter 2 of [12]). In either case, we see that
> has a plane of symmetry parallel to the x — y plane. However, the x — y plane
had no special relation to the original surface ¥, and so we conclude that > has a
plane of symmetry in every direction. Alexandrov used this to conclude

Theorem 3 (Alexandrov’s Theorem): Let 3 < R* be a compact embedded CMC
surface. Then X is the round sphere.

In the case where ¥ is noncompact, a similar construction (found in [17]) still
works. Let 7 C R? be a plane with unit normal v. Let L be the line parameterized
by L(t) =tv. For t € R and p € 7 define

T = 7T+t'1) Ht = Usztﬂ—s Lp = L+p
For any set G C R? let
Gy =GNl Gi={p+{t—rv|pemp+(t+r)veG).

Let ¥ be an almost embedded surface, with ¥ = 0€2. First we restrict to a piece
of ¥ by taking an open set W C €2 and letting S = W N X. Note that neither W
nor S need be connected nor bounded. Suppose p + tv ¢ W for sufficiently large
t. Let t; be the supremum of ¢ such that P 4+ tv € W. Then P, = p + t,v is the
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point of first contact of L, with W. If this first contact is transverse, let ¢ be the
supremum of £ < ¢; such that p+tv ¢ W. Then P, = p + tyv is the point where
L, first leaves W. Otherwise, let Py = P,. If P, and P, are both in S, then (as in

[17]) we define
t1 + 1o

a1 (p) = 5

Notice that oy is not defined for all p € 7.

Lemma 4 (Korevaar, Kusner, Solomon): Fiz a plane © and its normal v. If, with
W C Q and S C ¥ as above, aq has a local interior mazimum value z at p € 7
then the plane w, is a plane of symmetry for 3.

Proof: First notice that P;(p) reflects to Py(p) through m,, by construction.
Pick a nearby ¢. Then by maximality ¢;(q) + t2(q) < 2z, and so

z— (ti(q) — 2) > ta(q).

This means the reflection of P;(q) through m, lies above Py(¢q). This implies a
neighborhood of Py(p) in S, lies inside W. If Py(p) # Py(p),Then S and S, are
tangent at P,(p) with nonvertical tangent. If Py(p) = Py(p), then S and S, are
tangent with vertical tangent. In either case, argue as above using the maximum
principle to see that 7, is a plane of symmetry for 3. |

The ends of ¥ are the unbounded connected components of ¥\B, for sufficiently
large r. Consider an end of 3 contained in a solid cylinder C,(P) = {p+ta | |p—
P| < R;(p—P,a) = 0;t > 0}. We take W = QN C, x(P) and S = 0W NX. Meeks
proved in [6] that any end of a complete embedded CMC surface is contained in
such a solid half-cylinder. Choose a plane m and normal v as above with a | v.
Let z(p) = (p,a) and define

alr) = max aq(p).
(@) = max_ ou(p)
Then one can use this Alexandrov function and similar arguments as in the above
Lemma to show:

Theorem 5 (Korevaar, Kusner, Solomon): If ¥ is a properly embedded CMC' sur-
face contained in a solid cylinder, then Y has a rotational axis of symmetry parallel
to the axis of the cylinder. Also, if > has finitely many ends and is contained in a
half-space Iy for some plane w, then ¥ has a plane of symmetry parallel to © and
15 thus contained in a solid slab.
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4.2 The Balancing Formula

CMC surfaces must also obey a balancing condition. This means that the ends of
the surface ¥ must be arranged to balance each other. To see this, we start with
the following general proposition found in [§].

Theorem 6 (Kusner): Let M be a 8 dimensional Riemannian manifold with Hy(M)
and Hy(M) trivial. Let G be the isometry group of M and let g be its Lie algebra.

For some constant H, let ¥ be a surface in M with mean curvature H. Then there

is a natural cohomology class u € H'(X) ®@ g* defined as follows: let T be a 1-cycle

in X with A C M such that OA =T. Let v be the oriented normal to A and n the

oriented conormal to I'. LetY € g. Then

W)y = [y [ @y,

The content of this theorem is that the formula above depends only on Y and the
homology class of T'. Let T be another 1-cycle homologous to I' in . Because
Hi(M) = 0 there are surfaces A and A in M with A =T and A = T. Also,
I — T forms the boundary of some surface S C ¥. Then A — A + S forms a 2-cycle
in M. Because Hy(M) = 0, there is an open set U C M such that 90U = A —A+S.
Now take Y € g. Note ¢, = €'Y is a one-parameter family of isometries. In fact,
the Killing field associated to ¢; is just the left-invariant vector field associated to
Y. Therefore,

0 [Area(9(¢:(U))) — HVol(¢,(U))].

t=0

T dt
Applying Stokes” Theorem, the right hand side becomes

[ar=[avi-# [ wy)n [ wn,
Ja-# [ wy)= [y [ v

Now consider the case M = R? and take Y = e, ey, €5, the constant transla-
tional vector fields in the directions of the coordinate axes. Let W C () as above
and OW = SUQ, where S = 0W N X. Then the above theorem implies

/ T]—H/yzo.
s Q
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One useful choice of W is to take W = QNB3, for some large R. Let S = OWNXY.
As mentioned above, Meeks proved in [6] that any end of ¥ must be contained in a
solid cylinder. So we can take R large enough so that 05 is k disjoint simple closed
curves, where ¥ has k ends. Then we define the weight vector of an end as follows.

Definition 2 For an end E which is contained in a solid half-cylinder C[ (P),
define the weight of the end E as

0= L

where m = a—, arranged so that 7w intersects E transversally, v is the normal to m,
and n s the conormal to m N E.

1

By the balancing formula, the weights of all the ends of ¥ must sum to the zero
vector.

Consider the case of a Delaunay end. We can take a = (0,0,1) and E(¢,0) =
(p(t) cosB, p(t)sinf,t), and 7 any plane 7 = {z = z;}. By symmetry, w(E) must
point along the z axis. Moreover, (a,v) = 1 and (a,n) = (1 + p?)~2. Using
length(m N E) = 27p and Area(mr N W) = mp?, we get

2mp

V1+p;

w = ( —7p*)(0,0,1).

One can check that
21 PP

d. 27mp 1 3

= — 'l = ——— =l — —(1+ ) +2(1+ p})2] =0,
dt"\/1+ p; (1+p7)> p

and so the coefficient of the above weight vector is a first integral of equation (9). In
fact, if we normalize so that p(0) = € is a minimum, then evaluating this constant
at t = 0 shows \/?—i—pf — p? =2¢ — € = 1. Thus 7 = 2¢ — ¢* determines the weight

of a Delaunay end of necksize e.

4.3 Asymptotic Behavior of the Ends

Let E be a cylindrically bounded end of ¥, where ¥ in a complete, noncompact
CMC surface of finite topological type. Say F is contained in the half-cylinder
O r(P). Let b, ¢ be an orthonormal basis for a* and let w(#) = bcosf+csinf. The
result of [17] is that for ¢ large enough, we can parameterize E as pg(t, 0)w(0) + ta.
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Moreover, there exists an embedded Delaunay surface D(t,6) = pp(t)w(8) + ta
such that for ¢, sufficiently large and some A > 0 the following estimate holds:

lpE — PD||k,a,(to—1,t0+1) = 0(67”0)

Y

where £ € N, a € (0,1), and || - ||x,a,(0-1,t0+1) is the standard Holder norm on
(to — 1,9+ 1) x S'. In this sense, each end of a CMC surface ¥ is asymptotic to a
unique embedded Delaunay surface. The idea of the proof is to look at a slide-back
sequence Fy, = E —1ra and use a priori curvature estimates to extract a convergent
subsequence. This shows compact subsets of E near infinity converge to translates
of a fixed Delaunay surface. To eliminate this translation, one can write small
translates of a Delaunay surface as normal variations of a fixed Delaunay surface,
and then take a derivative of this family of Delaunay surfaces. These derivatives
must have a certain form (see the next section), which the a priori estimates on
curvature forbid.

5 The Jacobi Operator

The Jacobi operator of a immersed surface X : ¥ — R? is the linearization of the
mean curvature operator. More precisely, let v be the normal to the surface X (X)
and define X,(p) = X (p) + tu(p)v(p) : ¥ — R? for some smooth function u. X; is
also an immersion for small ¢. Let H; denote the mean curvature of the immersion
X; and let H = Hy. Then the Jacobi operator associated with the immersion X is
the differential operator defined by

dH,

t=0

Writing a Taylor expansion in ¢ yields
H, = H +tLxu+ O(t?).

One can show that .
Lx = 55+ [4s])

where Ay is the Laplace-Beltrami operator of the metric induced on ¥ by X and
Ay is the second fundamental form of the immersion X (see Appendix C of [16]).
Geometrically, one can think of solutions to the equation £Lxu = 0 as giving normal
perturbations to X which preserve the mean curvature up to first order. In this way,
the Jacobi operator is analogous to the well-known Jacobi equation for variations of
a geodesic. Thus vector fields along X (X) of the form ur with £xu = 0 are called
Jacobi fields. In somewhat of an abuse of notation, the functions u themselves are
called Jacobi fields.
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We will need to know about the mapping properties of £. In particular, we will
need to know on which function spaces L is Fredholm, injective, and surjective.
Injectivity and surjectivity will stem in part from the following property.

Definition 3 A complete CMC immersion X : ¥ — R?® of a noncompact surface
with finite topology is said to be nondegenerate if the kernel Ls = 5(As + ||As]|?)
acting on L? is trivial.

Roughly speaking, this property will allow us some control over the behavior of
Jacobi fields (see Theorem 7).

In the following two subsections we will establish some technical results we will
need to state and prove the conjectured result. In section 5.1 we will analyze the
Jacobi operator on a Delaunay surface. In section 5.2 we will analyze the Jacobi
operator on general k-ended CMC surfaces. We will pay particular attention to
Jacobi fields which arise from the bottom of the spectrum of Ay.

5.1 The Jacobi Operator on a Delaunay Surface

Recall from section 3.1 that one can parameterize the embedded Delaunay surfaces

as
D, (s,0) = (1e°® cos 6, 7 sin 6, k(s))
2

where € is the necksize of the Delaunay surface D,, 7 = 2¢ — €,

d2 2
d—; + % sinh 20 = 0, (10)
and o )
7— a
% = 3(62 + 1)

Given solutions o and £ to the above equations, the embedding D, is a conformal
map with conformal factor 7e”(*) (see [18]). In these coordinates the Jacobi operator
becomes

Lu = (02u + dyu + 7° cosh 20).

7'2620
Thus solutions of the Jacobi equation solve the PDE
O%u + du + 72 cosh(20)u = 0. (11)

We can separate variables and write
u(s, 0) =Y x;(0)ui(s)
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where 9} x; = —j%x; for j € Z, and
Lj(uji) = 852uji +7° (:osh(2<7)u;IE - jQuji = 0. (12)

As we seek real solutions u, we will choose the eigenfunctions

1
™

cosjfl for 5 >0
x;(0) = 7% for 7=0 .

ﬁsinj@ for 7 <0

S

Note {x;} form an orthonormal basis for L?(S') and so it is no loss of generality
to write u as a sum this way. The functions qu are called the j-th eigenmodes of
u.

One can identify the lower eigenmodes (|j| < 1) with explicit geometric defor-
mations of D. First change variables in the above parameterization of D by letting
t = k(s) and p(t) = 7e’®). Thus

D(t,0) = (p(t) cos b, p(t)sin b, t).

1
140}
We wish to write a translation D, (t,0) = D(t,6)+(0,0,7n) = D(t',0")+u(t', 0" )v(t', ')
as a normal variation of D(t,#). We are left with three equations

Note that in these coordinates the normal vector v is given by v(t, 0) =

p(t)cosf = p(t')cosf —
p(t)sinf = p(t')sinf —

u(t',0") cos 0’

N S
\/H-lpf(t’)
/ / s /

Tmu(t,@)sm@ . (13)
+ — oy p(tut 0

i o)
Squaring the first two equations of (13) and adding them together we get
u?(t',0")  2p(t")u(t', 0
1+ p7(t) 1+ (t)
Notice that from this equation we can take u to be a function of ¢ alone. Multiplying
through by 1 + p?(#) and rearranging yields

pi(t) = p(t) +

u?(#) = 2p(t)\/1+ pf ()u(t') + (p*(t') — p*(£)) (1 + p; (1)) = 0.

The quadratic formula then implies

u(®) = (p(t') — p(t))\/ 1+ pi (t').

From the third equation of (13),

t—t =

(—cosf, —sinf, p;).
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p(t) = p(t') +(t —)p(t') + Ot — t')* = p(t')

Using this expression for p(t) yields

tl
u(t/) _ 77Pt( )
V1+pi(t)
and thus the Jacobi field which generates this translational deformation of D is the
function

+O0(t —t)?

u:ua“:L:as. (14)

Vit i

Notice that u(s) = o,(s) solves equation (12) for j = 0:
Ugs + 72U cosh 20 = o4, + 720, cosh 20 = 0.

In fact, this equation is just the derivative of the equation (10). This computation
shows that one can actually integrate one of the 0-mode Jacobi fields xq(6)ug (s)

and obtain a deformation of D given by translation along the axis of D.

Similarly, one can recover the two translations of the axis (from the 1 and —1
eigenmodes), and the two rotations of the axis (also from the 1 and —1 eigen-
modes), and the family of surfaces one obtains by varying the necksize (the other
of the 0 eigenmodes). To fix notation, we will always take u;L to be the Jacobi
fields which generate translations and u; the Jacobi fields which generate either
rotations of the axis of symmetry (|j| = 1) or variations in the necksize (j = 0).
In particular, all the low eigenmodes u;-t(s)xj(ﬁ) for |j| <1 grow at most linearly.
Thus, e*‘ﬂsmf(s)x(@) € L*(D) for any § > 0. In fact, the low eigenmodes are the
only Jacobi fields which are globally exponentially bounded. This motivates use of
the following spaces.

Definition 4 Given an immersion of k-ended surface X : ¥ — R?® where the ends
can each be written as graphs over a cylinder, we say u € H{(X) if upon restriction
to each end £, e 'u € H*(E). Here we give the cylinder (a,o0) x S' coordinates
t € (a,00) and 6 € S".

Notice that e € H$((0,00) x S') for all € < §, but not for € > 6. Let X : & —
R? be a complete nondegenerate immersion of a noncompact surface ¥ of finite
topology. For § > 0, H*}*(X) € L%(X), and so by the nondegeneracy assumption,
Ly : Hf“(;Q — H?® 5 is injective. Then by duality and the fact that Ly, is self adjoint,
Ly : Hy® — H;* 7 is surjective. By elliptic regularity, Ly : Hi"® — H} is also
surjective.
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5.2 The Jacobi Operator on k-Ended Surfaces

Now consider a more general k-ended complete embedded CMC surface X : ¥ —
R3. As noted above, each end of this surface is asymptotic to an embedded De-
launay surface D. Therefore, over this end, one can write the Jacobi operator
as

['Z = ﬁD + e ¥R

where s is the variable parameterizing the distance away from a compact set of
a point on the end, « is a positive number, and R is a second order operator
with smooth bounded coefficients. The deformations of the Delaunay surfaces
corresponding to low eigenmode solutions found above are asymptotic Jacobi fields
on 3. Pick some large R such that X(X)\Bg(0) = UYE; is a disjoint union of
k ends, each of which is a graph of a function p; over an embedded Delaunay
surface D;. Let x be a smooth cut-off function with x =1 on Bx(0) and x =0 on
R*\Bx1(0) and let ¥ be the surface which agrees with 3 inside B (0) and is the
graph of x - p; over each D; outside B(0). Note ¥ and ¥ are diffeomorphic and
let ®:% — X be a diffeomorphism between them. In fact, one can choose the ®
to be the identity inside Bg(0). For |j| < 1, define

w; ' (p) = @ (x(p) - u; " (p))

=1 is the Jacobi field corresponding to the jth eigenmode over the the

J .
Delaunay surface D;. Notice that ngii’] decays exponentially on each end of 3.
We will refer to wr™ as the asymptotic Jacobi fields arising from the jth eigenmode

J
on F;.

where u

Definition 5 Let X : ¥ — R? be a complete noncompact CMC immersion. The
deficiency space W is the span of all the asymptotic Jacobi fields arising from low
etgenmode deformations of the underlying Delaunay ends; W = span{wii’] 1<
J <kyi=-1,0,1}. The bounded null space B is the set of all Jacobi fields which
do not grow exponentially, but also do not decay exponentially. In other words,

B={u| Lsu=0;u€ Hj(X),ug H°;(X) V § > 0}.

These two spaces are related as follows (see the Linear Decomposition Lemmas of
[20] and [22]):

Theorem 7 (Kusner, Mazzeo, Pollack) Let X : ¥ — R* be a complete CMC
immersion of a noncompact surface with finite topology. Let u € H;”(E) and
f € H*;(X) for § > 0 and sufficiently small such that Lyu = f. Then u=w + ¢
where w € W and ¢ € H*F*(2).
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Thus there is a well defined map 11 : B — W given by projection. Notice that
if u,v € B and [I(u) = II(v) = w € W then Ly(u—v) =0 and u—v € H*;(X).
If ¥ is also nondegenerate, then v = v. Thus in the nondegenerate case this map
B — W is injective. In this case, we will identify B with its image in W. For
the general immersion (which may be degenerate) the element II(u) = w € W
determines v € B only up to terms which decay exponentially.

In fact, W and B carry more structure. To see this, first recall that given two
solutions u; and uy to a linear second order ODE u” + pu’ + gu = 0, the Wronskian
Wr(uq,uy) = ujuly — uguy satisfies the equation (Wr)" + pWr = 0. Notice that
equation (12) (uss + 72w cosh 20 — j2u = 0) is a linear second order ODE with no
first order terms. So the Wronskian Wr(u, u; ) = u] (s)0su; (s) — uj (s)0su; (s) is
a non-zero constant. We normalize u; such that Wr(u},u;) = 1.

Let W; be the part of W arising from the j eigenmodes of the model Delaunay
surfaces for the ends of ¥. Write u, v € W, as

k
u= Z(aménL + biug,_)

1

and .
v = Z(aiu6’+ + ﬂzu%]f)
1

where uf . is the element of W arising from the 0,4 eigenmode of the model
Delaunay surface for the ith end. As in [22] we define

w(u,v) = lim (Lsu)v —u(Lxv) = lim (Au)v — u(Av)

R=00 [y B R (0) R=00 [ynBR(0)

where Br(0) is a large ball as in the definition of W. Upon integrating by parts,
we find

, ou ov
w(u,v) = lim —v — u—
R—oo A(SNBg (0)) ov ov
k ) ) 1 2
= i (3l = e W) | do+ o
k

= ) (@i — bicw).

1

Thus w is the standard symplectic structure on R?*. Similarly, W; and W_; carry
the standard symplectic structure on R?* and so W carries the standard symplectic
structure on R, From the definition of w, B C W is an isotropic subspace. By
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a relative index theorem (see [20]), dim B = 3k = 1 dim W and thus B C W is
Lagrangian.

Given an end E, let Wy = span{@’l(x(p)ujt)} where the uj-t are the low eigen-
mode Jacobi fields of the model Delaunay surface for E. Functions u € B such
that II(u) € Wg are Jacobi fields on ¥ which decay exponentially on all but one
end of > and grow at most linearly on the remaining end F. As remarked above,
in the nondegenerate case we can identify B with a subspace of W. In this case
we will again abuse notation slightly and say v € BN Wg. Thus u € BN Wg
corresponds to a deformation of ¥ which fixes the asymptotics of all ends except E
and changes the asymptotics of E. However, ¥ and its deformations must balance

in the following sense.

Lemma 8 If u € BN Wy for some end F of a noncompact, complete, embedded
CMC surface ¥ of finite topology, then u can only correspond to an asymptotic
translation of the end E. Notice that u decays exponentially on all ends but FE
because uw € BNWg, and so a curve in moduli space with tangent vector u fizes the
asymptotics of all ends except E.

Proof: To each end F; associate the vector 7;a; where F; is asymptotic to
the Delaunay surface D; with necksize €;, a; is a unit vector parallel to the axis
of symmetry of D; and pointing in the direction in which E; in unbounded, and
7; = 2¢; — €. Then it is a theorem of Kusner (see [8] or [17]) that

k
Z Tjaj} = 0
1
Suppose u € BN Wy and relabel the ends such that £ = F;. Write
u(p) =Y (a;0 (x(p)uj (p)) +b; @ (x(p)u; (p))).

Let 3; be a deformation of ¥ such that
d

— = uvsy.
', >

Then 7 and @i could depend on ¢ but 7; and a; are constant for j > 2. By

balancing,
k
—Tiay = g ;0
2

and is thus constant. This implies that b; = 0 for j = —1,0,1. Thus any u € BNWkg
must correspond only to asymptotic translations of an the end F. |
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5.3 An Application: Structure of the Moduli Space

One of the main goals of the theory behind CMC immersions is to understand their
moduli spaces, as defined below.

Definition 6 Fiz natural numbers k and g. We denote by Mg the space of all
CMC almost embeddings X : ¥ — R3 where ¥ has genus g and k ends where
immersions are identified if and only if they differ by a Fuclidean motion. In the
case where g = 0 we will write My, instead of My y. We give these spaces the
topology induced by the Hausdorff topology on the closed sets X NBg for sufficiently
large R.

It is a theorem of Meeks (see [6] and [17]) that there are no one ended CMC
surfaces. Another theorem of Korevaar, Kusner, and Solomon ([17]) states that
any two ended CMC surface must be a Delaunay surface. Thus M; = & and
My = (0,1] (the parameter being the necksize of the surface). More recently,
Kusner, Grosse-Braukman and Sullivan have shown that M3 is homeomorphic to
B? (see [7]). The other moduli spaces are as yet unknown.

The general structure of the moduli spaces My, also not completely understood.
As mentioned in the definition, they have a natural topological structure, but in
general they may not have a natural smooth structure. Below we will sketch the
proof of the following theorem (Theorem 3.1 of [20]):

Theorem 9 (Kusner, Mazzeo, and Pollack) Let X : ¥ — R? be a complete, non-
degenerate, CMC almost embedding of a k-ended surface, with k > 2. Then there
exists an open neighborhood U C My, containing X (X) which is the quotient of a
real analytic 3k — 6 dimensional manifold by a finite isotropy group.

The general idea of the proof is to write CMC surfaces nearby X (X) in moduli
space as the zero-set of a function. The difficulty is that for some immersions X
which are “nearby” X cannot be written as normal variations of X. For instance,
some functions in the bounded null space B may correspond to asymptotic Jacobi
fields which rotate the axis of symmetry of the model Delaunay surface of some
of the ends. Integrating these Jacobi field yields a one-parameter family of CMC
immersions where some of the ends rotates as the parameter varies. However, even
for small values of the parameter none of these surfaces can be written as a graph
over the original immersion. To see this, think of rotating a cylinder perpendicular
to its axis. No matter how small the angle of rotation, one cannot write the rotated
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cylinder as a graph over the original cylinder. Thus we need to consider Jacobi
fields over surfaces obtained by deforming the original immersion by elements of
its deficiency space.

Recall the construction of the deficiency space immediately preceding definition
5. The deficiency space W of the immersion X is a 6k-dimensional vector space.
Let 7 € W C W, where W is a small ball, and denote by X, the immersion one
obtains via the above deformation. We write Xy . for immersions which of the form
Xy (p) = X;(p) + ¢(p)v;(p) where v, is the unit normal vector to X,. For § small
and positive, let V be a small ball in H*}?(X). Then CMC immersions nearby to
X are zeroes of the function N(¢,7) = H(X,,) —1. Note that N is a real analytic
function. Moreover, for n € W and ¢ € H*5*(X), the directional derivative of
N in the direction (¢,n) is L(n+ ¢) = $(Ax(n+ @) + [|Ax||*(n + ¢)). By the
nondegeneracy of X, this is zero only if n + ¢ = 0. So by the Implicit Function
Theorem, the zero set Uy = {(¢,7) € V x W | N(¢,7) = 0} is a real analytic
manifold whose dimension that of the null space of £ acting on Hng x W. This is
the dimension of the bounded null space B, which is 3k. The neighborhood of the
moduli space U is the quotient of Uy by the Euclidean motions. In the case where X
has at least three ends, the isotropy group Iso(X) is finite and possibly empty (this
isotropy group is the groups of Euclidean motions which fix ¥). The dimension
count of the neighborhood U is 3k — dim(Isom(R?)) + dim(Iso(X)) = 3k — 6. Also
note that U is smooth in the case where Iso(X) = @. This is the case where the
original surface X (X) has no dihedral symmetries. In the case where ¥ has two
ends, X has a rotational symmetry. The isotropy group is generated by this rotation
and hence one-dimensional. Therefore, the dimension of My is3-2—-6+1 =1,
which agrees with the theorem of Korevaar, Kusner, and Solomon that all two-
ended CMC surfaces are Delaunay surfaces.

In general, the moduli space M} has the structure of a real analytic variety
with formal dimension 3k — 6 for £ > 2 (see theorem 4.1 of [20]).

6 Gluing

6.1 Other Gluing Constructions

The construction explained below most closely follows the gluing construction of
Mazzeo, Pollack, and Uhlenbeck in [21]. In this paper they start with two compact
Riemannian manifolds (M, g;) and (Ms, go) of constant positive scalar curvature
and construct a metric g of constant positive scalar curvature on the connect sum,
provided the Jacobi operator on each original manifold was nondegenerate. The
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nonlinear operator they work with is the Yamabe operator, whose Jacobi operator
(linearization) is A + n. First they construct an approximate solution as follows.
They remove small metric balls By, (p1) and Ba,, (p2) from M; and M, respectively.
For 0 < e < 1 they identify the annuli By, (p;)\Bea, (i) by the rule (r1,0;) ~ (72, 6)
if and only if 6; = 05 and riry = eajay, where (r;, 0;) are geodesic polar coordinates
about p;. On this manifold M, they construct a metric with a cut-off function.
One can think of the gluing region (the identified annuli) as a neck which joins
a punctured M; and a punctured M,. Letting ¢ — 0 corresponds to making the
joining neck long. Mazzeo, Pollack, and Uhlenbeck then prove that the approximate
solution is nondegenerate for small € and that the Greens kernel for the Jacobi
operator is uniformly bounded. This allows them to iterate the Jacobi operator and
the Greens kernel and find a solution. The analysis they perform differs in several
key ways from the analysis in our case. First, only the 0 eigenmode solutions to
this Jacobi operator have subexponential growth. Second, the equation they must
solve is conformally invariant.

More recently, Mazzeo and Pacard ([18]) and Mazzeo, Pacard, and Pollack
([19]) have constructed CMC surfaces with another gluing method. Each construc-
tion finds a solution by solving an infinite dimensional family of boundary value
problems, instead of constructing a approximate solution and perturbing. In [18],
Mazzeo and Pacard glue half Delaunay surfaces to k-noids with catenoid ends.
They show that, for small necksizes, one can match the Cauchy data and attach a
Delaunay surface to a truncated end of a k-noid. In [19] Mazzeo, Pacard, and Pol-
lack construct new CMC surfaces nearby > #35 where ¥; are nondegenerate CMC
surfaces, and one realizes X1 #X5 by placing ¥; tangent to ¥ such that ¥; N Y, is
a isolated point near the point of tangency. For this construction they must match
the Cauchy data on the boundaries of ¥1\B, (p1), X2\B.(p2), and a small catenoid
neck.

6.2 Statement of Intended Results

The gluing construction described below is an “end-to-end” gluing. We construct
an approximate solution (see section 6.3) by patching together some ends of CMC
surfaces.

Conjecture 10 Let X' be a nondegenerate three-ended CMC surface and pick an
end E. Without loss of generality, align X' so that E has the x axis as its asymptotic
axis of symmetry. Let the bounded null space B of X' satisfy one of the following
conditions:
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2. BN Wy = span{w;} where wi is the asymptotic Jacobi field which corre-
sponds to a translation of the axis of E in the y direction

8. BNWpg = span{w™,} where w?, is the asymptotic Jacobi field which corre-
sponds to a translation of the axis of E in the z direction.

Let X" be the surface obtained from ¥' by rotating X' about an axis perpendicular to
the axis on the model Delaunay surface for E, and possibly rotating about the axis
to the model Delaunay surface for E. Let X be the surface one obtains by patching
¥ and X" with a cut-off function along the end E (see section 6.3). Then there
exists a 4-ended CMC surface X which is nearby X in the sense that the Hausdorff
distance between ¥ N B%(0) and X N B%(0) is small. In addition, the asymptotic
data for Y is close to that of ¥. Moreover, the new surface ¥ is nondegenerate.

Recall that functions in Byy N Wy correspond to deformations of the surface ¥’
which fix the asymptotics of all ends except E' and change the asymptotics of E’.
The above conjecture is a special case of the following more general conjecture.

Conjecture 11 Let 34 and 9 be complete nondegenerate embedded CMC surfaces
of finite topology and ki and ko ends, respectively. Label an end Ey of 1 and an
end Fy of 9. Suppose Fy and FEy are asymptotic to the same Delaunay surface.
Without loss of generality, align ¥, and X9 so that the x axis is the asymptotic
axis of both Ey and E,. Moreover, suppose the bounded null space By of ¥1 and
the bounded null space By of Yo both satisfy one of the following conditions:

1. (BiNWg, )N (ByNWg,) ={0}

2. B; N Wy, = span{w;} where wy is the asymptotic Jacobi field which corre-
sponds to a translation of the axis of F; in the y direction for both i =1 and
i =2

8. B;N Wy, = span{w™,} where w*, is the asymptotic Jacobi field which corre-
sponds to a translation of the axis of E; in the z direction for both ¢ =1 and
i =2

Let ¥ be the surface one obtains by patching ¥, and Yo with a cut-off function
along the ends E7 and E5, possibly after rotating o about the common azis for E;
and Fy. Then there exists a CMC surface ¥ with ki + ko — 2 ends which is nearby
Y in the sense that the Hausdorff distance between > N B%(0) and X N B%(0) is
small. In addition, the asymptotic data for Y is close to that of X. Moreover, the
new surface ¥ is nondegenerate.
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This conjecture has much geometric appeal. By translating ¥; and 3, along
the x axis, one can arrange them so that the distance between >; and ¥, is expo-
nentially small in a neighborhood of the gluing region (see section 6.3 for details).
The difficulties lies in preventing Jacobi fields in By, and By, from combining to
yield Jacobi fields on the approximate solution ¥ with finite L? norm. See the first
paragraph of section 6.6 for more details.

As mentioned in the introduction, the purpose of this project is to construct
new examples of CMC surfaces. It grew out of an attempt to answer the following
question of Kusner. Given a three-ended CMC surface ¥; with chosen end Fj, let
Y5 be the surface one obtains by first reflecting ¥; through a plane perpendicular
to the asymptotic axis of F; and then rotating by angle # about that axis. Kusner
asked the question of whether the resulting CMC surfaces one obtains by perturbing
this approximate solution (which depends on the angle ) forms a loop in moduli
space. To answer this question one must first prove that one can find CMC surfaces
by this gluing technique, and so we started the present investigations. The original
question might now be rephrased as follows. First, can one then glue ¥; and ¥,
together to produce a new CMC surface X7 Second, as one varies ¢ through a full
rotation, does one obtain a closed loop in moduli space?

Our approach for proving these conjectures is the following. First, we construct
an approximate solution Y from the original summands with a cut-off function
(see section 6.3). One important property of the approximate solution is the mean
curvature of the approximate solution is very close to 1 and the support of Hy — 1
is a compact set. Next we study the linearized problem. In particular, we show
that we can solve the equation

Lsu=f

with f € H*°; and u € H§+2 for 6 > 0 small. To solve this equation we need to
know that Ly is injective on L? and that it is Fredholm for small positive weights.
We also need a version of the earlier Linear Decomposition Lemma (theorem 7).
The deficiency space for ¥ should come from the ends of ¥’ and X" which are not
used in the gluing construction. Finally, we need to know that L5 composed with
a Greens operator is a contraction. This will allow us to iterate the two operators
and converge to a solution.

6.3 Constructing the Approximate Solution

The first step is to construct an approximate solution. We start with a surface
X' : ¥ < R? which is a noncompact, complete embedded k-ended CMC surface of
finite topology. The ends of the surface are the unbounded connected components of
Y'N(R*\B,,) where ry is taken large enough so that the number of such components
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remains constant if ry increases. Roughly speaking, we can decompose the surface
> into a union of a compact piece and k noncompact ends. Label one of these ends
E’. Recall the result of Korevaar, Kusner. and Solomon stated earlier, that the
end E' is asymptotic to a Delaunay surface D = D, of necksize €. In particular, if
we write E' as the cylindrical graph of the function pgr and D as the cylindrical
graph of the function pp, the the result of Korevaar, Kusner, and Solomon implies
the following estimate holds:

lop(s) = prr(s,0)ll20 = O(e ™)

for 0 < @ < 1 and sy > r + 1. The norm || - |2, is the standard Holder norm
on (sy — 1,89 + 1) x St. Without loss of generality, we can suppose D has the x
axis as its axis of symmetry and that pp has a minimum occurring at « = 0. This
amounts to a translation and rotation of ¥'. Moreover, by another translation of
Y’ we can take the ball B, in the above definition of the ends to be centered at
(—R,0,0) where R is a large positive parameter with R > r+ 1. After this second
translation, we can write E' as a graph over the cylinder (r — R, o0) x St.

B 0,0,0) .
'(_R, 07 0) ZTr-aXl1s

El

Now note that under this situation ||pw (s,60) — pp(s)|l2.a = O(e ) where the
norm is the standard Holder norm on bounded neighborhoods of {0} x S!. We
also remark that the embedding X : ¥’ — R?® depends on R. We will suppress
this dependence, as two such embeddings of ¥’ described above can only differ by
a translation along the z axis.

At this point it is useful to discuss surfaces written as graphs over a cylinder
(a,b) x S'. Such surfaces can be parameterized as

(s,0) — (s,p(s,0)cosb, p(s,0)sin)
for some positive function p. The induced metric from R3 is given by

9= (1+ (9sp)*)ds” + 2(9sp) (Dpp)dsdh + p*db”.
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They have a normal vector given by
B 1

PR+ (0ep)2 + p2(0,p)
The have second fundamental form

A [=p02pds® +2((05p) (99p) — p(0:09p))dsd + (p(p — 9 p) + 2(9p)*)d0?]

V2 + (80p)? + p2(0sp)?

In particular, we can read off from this information that the mean curvature is

v(s,0)

= (p0sp, —p cos 0—(9pp) sin B, —psin 6+ (0yp) sin f).

given by

—0*(05p = 95p) + p*(1 + (9:p)%) + p((95) (0p) (9 90p) — Dip) +2(Dup)”*

H —
(p? + p*(0sp)? — 4(050)%(09p)?)/ P* + (0ap)* + p?*(Dsp)?

Let X" be the image of ¥’ under a rotation about the z axis by an angle of 7

EII
s Uy (R’ 0’ 0) T-axis
EII
and let x = x(s) > 0 be a cutoff function where
(s) = 1 for s< -1
A=Y 0 for s>1
and ‘2—’;, % are bounded. Here we have to be careful about the parameterizations

of E' and its image under the rotation E”. Both are asymptotic to the same
Delaunay surface D, but they are asymptotic to opposite ends of D. We could
just parameterize E"” by composing the rotation with the parameterization for E’.
Then we have E’ parameterized by

(5,0) = (=5, per(—s, —0) cos(—0), pe (—s, —0) sin(—0)) : (r — R, 00) x S*.

But then the points E'(s, ) and E"(s, ) are far apart. Thus we need to adjust the
parameterization to make E'(s,f) close to E”(s,). We can do this by replacing s
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with —s and and 6§ with —@ after we rotate. Now we have E’ written as the graph
of pg over the cylinder (r — R,oc) x S' and E” written as the graph of pg» over
the cylinder (—oo, R — r) x S'. Moreover,

lpr (s,0) = po(8) 2.0 = Oe ")

for s >r — R and
o5 (5,0) — pp(5)]|2.0 = O(e™™)
for s < R —r. So
lprr(5,0) — prn(s,0) |20 = O(e™ ")
forr—-R<-1<s<1<R-r.

Now we construct the approximate solution ¥ as follows. We can write part of
¥ as a graph over the cylinder (r — R, R — r) x S. In the region corresponding to
r— R < s < —1 let X be parameterized by

(Sa 9) = (Sa PE (Sa 9) cos 97 PE (Sa 9) sin 9)

(i.e. in (r — R, —1) x S! ¥ is the graph of pg/). In the region 1 < s < R —r let &
be parameterized by

(s,0) = (s, prr(s,0)cost, pp(s,d)sind)

(i.e. X is the graph of pgs in (r — R, —1) x S'). In the region -1 < s < 1
parameterize 3 by
(Sa 9) = (Sapi(sa 9) cos §, ps sin 9)

where
pi(sa 9) = X(S)pE’(Sa 9) + (1 - X(S))pE”(Sa 9)

This gives a smooth surface with two boundary components written as a graph over
a bounded cylinder. Because ¥ and ¥ are given as graphs of the same function
over the cylinder (r — R, —1) x S', we can extend ¥ past the boundary component
{r — R} x S! by letting it agree with ¥'. We can similarly extend ¥ past the
boundary component {R — 7} x S! to agree with X”. Then ¥ is a smooth surface,
and it is CMC in the regions corresponding to s < —1 and s > 1.
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In the region —1 < s < 1 we can use the explicit formula for the mean curvature
of a graph over a cylinder above and the fact that

lprr(5.0) — ps(s,0)[l20 = Oe™")
to conclude that Hy, = 1+ O(e ).

In the gluing region —1 < s < 1 the mean curvature is Hy, = H = 1 — ¢ where
the error term 1 = O(e %) by the above computations. However, we can adjust
this construction by changing the translation parameter K. In particular, we can
make R as large as we please. Thus we can make this error i) as small as we wish
to start the construction.

6.4 Nondegeneracy of the Approximate Solution

In this gluing construction, we need the approximate solution ¥ to be nondegen-
erate, at least when the summands >’ and ¥" are. Without nondegeneracy, we
might not even be able to solve the linearized problem to find a perturbation of
the approximate solution to a CMC surface. Unfortunately, this may not always
be the case and we must place additional hypotheses on X' and X".

Proposition 12 We consider the situation as in section 6.3. Suppose that ¥’ (and
hence ¥" ) is nondegenerate. Suppose further that By satisfies one of the following
conditions:

1. le N WE'I =y
2. By N Wy = span{w; } where w{ is the asymptotic Jacobi field which corre-

sponds to a translation along the y axis.
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8. By N Wy = span{w™,} where w™, is the asymptotic Jacobi field which cor-
responds to a translation along the z axis.

Then, after possibly rotating X" about the x-axis by an arbitrarily small angle, for
R sufficiently large ¥ is nondegenerate.

The proof of this proposition is somewhat complicated. The idea of the proof
goes as follows. First divide X into three parts: the original two summands trun-
cated at the end we are trying to glue, and the middle “neck” which joins them.
We have a parameter R which controls how long the neck is. As R — oo, the three
pieces converge to the original summands and the model Delaunay surface for the
end in question.

Suppose the proposition were false. Then there would exist a sequence R; — oc
and 0 # w; € LQ(ZRi) such that L;w; = Lg, w; = 0. We normalize the sequence so
that ||w;||;2 = 1. Define the surfaces ¥ — 5N {z <L} S p=Sn{z>E}
and Y3 = SN {- & <z < £} Also define the surfaces Yir=Yn{z < R}
Yor =X N{r > R}, and Y3 = ¥ N{-R < x < R}. Note that X, g, and ¥ g,
differ only by a translation. We will sometimes find it convenient to ignore this
difference. Similar remarks hold for ¥ i, and ¥ ..

Restricted to X, r,, we can show that w; — 0 in C* using an elliptic boot-
strapping argument. Similarly, U}i|22,Ri — 0 in C* and wi‘%m converges to a
Jacobi field in C*. Now we have three cases to consider: HwiHLQ(iLR,—) >0 > 0,
||11)Z~||,12(22,R1_) > 6 >0, or ||U}i||L2(iI,RZ—) — 0 and ”with(iz,Ri) — 0. This first two
cases are similar; one can rule them out by the nondegeneracy of ¥’ and ¥". In
the last case, we can take |wil[2(s, , ) > > L. In this last case, we rescale w; to get
a sequence w; whose weighted sup-norm is 1 We choose the weighting function to
be 1 on 21 r, and 22 r; and large in the middle of E«; r;- Bach weighted function
w; must attain its supremum. Agaln we have three different cases: the supremum
can occur near one of ZlR or ZQR, in the middle of Zg,R“ or at unbounded
distance from 3, Ry 3y r;» and the middle of 233 We can rule out the former
case by nondegeneracy of ¥ and X". We can rule out the last case (unbounded
distance from both ¥, i, and >y r; and the middle of s r;) by showing w; must
converge to a Jacobi field on a Delaunay surface with exponential decay on one
end, where the coefficient in the exponent is too small. For the last case, we must
bring the additional conditions on the bounded null space Bsy to bear. If such a
sequence w; did exist, then we could produce a Jacobi field on either ¥’ or X" which
is not allowed by the hypotheses of the Proposition. (See the opening paragraph
of section 6.6 for remarks on what kind of behavior can occur if we do not make
these assumptions.)
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6.5 Linear Theory to be Proven

We wish to prove the following about the approximate solution.

First we wish to show that the operator Ly : Hi** — H} is Fredholm if and
onlyif 6 ¢ T'={..., =%, —7,0,7,7%,...}, where 0 < ; < ;41 — oo. The idea
behind this result is that Fredholm properties of £ on H§+2 can be understood
in terms of the Fredholm properties of £ on a compact piece K of ¥ and on
the ends F;. In particular, if £ is Fredholm on H**?(K) and H:™*(E;), then it
is Fredholm on H;™(¥). Because L is elliptic, it is Fredholm on H*'?(K) by
standard microlocal methods. Thus the question is reduced to finding out when
the Delaunay Jacobi operator £ is Fredholm on H;*?((0,00) x S'). To address
this problem, one introduces the Fourier-Laplace transform

o0

Fu)(C.t,0) = a(C,t,0) =Y e “Fult + k,0).
Notice that if u € H((0,00) x S') then u € Holo((¥(¢) < —d); H*((0,00) X
S)). One conjugates £ by F and multiplication by e’ to get an operator £() :
H**2((0,00) x S') = H*((0,00) x S') which depends holomorphically on ¢. The
desired result follows from the analytic Fredholm theorem if we can show L is
C\/

Fredholm for one value of (. The ;s arise as —3(¢) where ( is a pole of the
Greens operator to £(().

Next we wish to show the deficiency space Ws is spanned by the asymptotic
Jacobi fields on ¥ which arise from ends of ¥ and/or X" which are not E' or E".
Let u' be an asymptotic Jacobi field on ' which decays exponentially on E’ and
let u” be an asymptotic Jacobi field on X" which decays exponentially on E”. Then
we can construct u on ¥ which agrees with u’ on ¥\ E’ outside a compact set and
agrees with u” on X"\ E” outside a compact set via a cut-off function whose gradient
is supported in the gluing region. This function u has the right asymptotics to begin
the deficiency space of ¥. By a dimension count, this construction would account
for all of the deficiency space of X.

Finally, we wish to show that if u € H{™ and f € H*; for § > 0 small and
Lsu = f then u = w + ¢ where w € Wy, and ¢ € H;™. This would follow from a
contour integral. We can invert F by the following formula. Let (¢,6) € (0,00) x S!
and let t =1+ ¢ where [ € Z and 0 <t < 1. Then

| Y S -
Flu(t,0) = —/ Wy + v, T, 0)dp.
0

™

Moreover, the above integral converges so long as u(u + iv,-,-) € H*®,. Shifting
v amounts to shifting the contour in the integration of F~!. Shifting the contour
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across v = 0 in the definition of L above amounts to shifting across a pole of the
Greens kernel of L.

6.6 Questions

At first glance, the additional restrict on the form of By, in Proposition 12 might
seem unnecessary. However, the following can occur. Suppose ¥’ has a Jacobi field
which decays exponentially on all ends of X' except E' and is asymptotic on E’
to the Jacobi field which translates the model Delaunay surface D along its axis.
Then one can patch u on ¥’ to —u on X" to get an approximate Jacobi field on
Y with finite L? norm. One can construct this approximate Jacobi field for all
R in the construction of ¥. Moreover, one can still construct this approximate
Jacobi field after rotating ¥" about the axis of D (recall the Jacobi fields on D
which correspond to translations along the axis are rotationally invariant). This
situation is similar to that of the Dirac operators studied by Cappell, Lee, and
Miller in [1]. They prove that in the case corresponding to the one discussed in
this paragraph, one can find arbitrarily small eigenvalues to the Dirac operator.
One might hope to prove a similar theorem for the Jacobi operator.

The following is an interesting related question. When can one rule out this
behavior in the bounded null space? In other words, can one characterize the CMC
surfaces ¥ with no Jacobi fields in By, which decay exponentially on all but one end?
As dim B = § dim W, one might expect BN Wg = {0} most of the time. Another
interesting question is the following: if the original summand Y’ has one of these
troublesome Jacobi fields which prevents us from proving that the approximate
solution is nondegenerate, when can one perturb ¥’ in M3 and obtain a surface
with which one can perform this gluing construction? Finally, one can pose the
following question. For the above discussion, we have been concentrating on one
chosen end E. If ¥ does not satisfy the condition BN Wg = {0}, might it satisfy
the same condition for another end E? For which nondegenerate CMC surfaces ¥
can we not choose such an end? If ¥ € Mj is nondegenerate are does not satisfy
the hypotheses of Proposition 12 for any choice of end F, then there must exist
three curves in M3 through > which each correspond deforming the asymptotics
of one end of ¥ and leaving the asymptotics of the other ends fixed. Moreover,
these curves intersect transversely at . Recall that M3 is smooth near ¥, so it
makes sense to speak of transverse intersections. If, further, we cannot perturb ¥
in M3 so that we can perform the above gluing construction of some choice of end,
then a small neighborhood of M3 must be foliated by the curves mentioned above.
These three foliations would be transverse to each other. Can one ever rule out
this behavior?
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At this time, we cannot speculate about the answers to any of the above ques-

tions.

References

1]

[10]
[11]

[12]

[13]

[CLM] S. Cappel, R. Lee, and E. Miller. Self-Adjoint Operators and Manifold
Decompositions Part I: Low Eigenmodes and Stretching. Comm. Pure Appl.
Math., 49:825 866, 1996.

[We] H. Wente. Counterexample to a Conjecture of H. Hopf. Pacific J. Math.
121:193 243, 1986.

[Ab] U. Aubresch. Constant Mean Curvature Tori in Terms of Elliptic Func-
tions. J. Reine. Angew. Math. 374:169 192, 1987.

[PS] U. Pinkhall and I. Sterling. On the Classification of Constant Mean Cur-
vature Tori. Ann. of Math. 130:407 451, 1989.

[De| C. Delaunay. Sur la Surface de Revolution dont la Courbure Moyenne est
Constant. J. Math. Pures Appl. 6:309 320, 1841.

[Me] W. Meeks. The Topology and Geometry of Embedded Surfaces of Constant
Mean Curvature. J. Differential Geom. 27:539-552, 1988.

[KGS] R. Kusner, K. Grosse-Braukman, and J. Sullivan. Constant Mean Cur-
vature Surfaces with Three Ends. preprint, math.DG/9903101.

[Kus| R. Kusner. Bubbles, Conservation Laws, and Balanced Diagrams. in
Geometric Analysis and Computer Graphics, P. Concus, R. Finn, and D. A.
Hoffman ed. Springer-Verlag, 1991.

[Woo| J.C. Wood. Harmonic Maps into Symmetric Spaces and Integrable Sys-
tems in Harmonic Maps and Integrable Systems, A. P. Fordy and J. C. Wood,
ed. Vieeg, Brauncsheig/Weisbaden, 1994.

[Mel] R. Melrose. The Atiyah-Patodi-Singer Index Theorem. A K Peters, 1993.
[Ho] H. Hopf. Differential Geometry in the Large. Springer-Verlag, 1956.

[PW] M. Protter and H. Weinberger. Mazimum Principles in Differential
Equations. Springer-Verlag, 1984.

[GT] D. Gilbarg and N. S. Trudinger. Elliptic Partial Differential Equations
of Second Order. Springer-Verlag, 1977.

37



[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[Li] P. Li. Lecture Notes on Geometric Analysis. Research Institue of Math-
ematics, Global Analysis Research Center, Seoul Nation University, Korea,
1993

[Sp] M. Spivak. A Comprehensive Introduction to Differential Geometry. Pub-
lish or Perish, Inc., 1975.

[Kap] N. Kapouleas. Complete Constant Mean Curvature Surfaces in Eu-
clidean Three-Space. The Ann. of Math. 131:239 330, 1990.

IKKS] N. Korevaar, R. Kusner, and B. Solomon. The Structure of Com-
plete Embedded Surfaces with Constant Mean Curvature. J. Differential Geom.
30:465 503, 1989.

IMP] R. Mazzeo and F. Pacard. Constant Mean Curvature Surfaces with De-
launay Ends. preprint, math.DG/9807039.

IMPP] R. Mazzeo, F. Pacard, and D. Pollack. Connected Sums of Constant
Mean Curvature Surfaces in FEuclidean 3-Space. preprint, math.DG /9905077

[KMP] R. Kusner, R. Mazzeo, and D. Pollack. The Moduli Space of Complete
Embedded Constant Mean Curvature Surfaces. Geom. Funct. Anal. 6:120-137,
1996.

IMPU1] R. Mazzeo, D. Pollack, and K. Uhlenbeck. Connected Sum Construc-
tions for Constant Scalar Curvature Metrics. Topol. Methods Nonlinear Anal.
6:207 233, 1995.

IMPU2| R. Mazzeo, D. Pollack, and K. Uhlenbeck. Moduli Spaces of Singular
Yamabe Metrics. J. Amer. Math. Soc. 9:303 344, 1996.

[Eel] J. Eells. The Surfaces of Delaunay. Math. Intelligencer 9:53-57, 1987.

38



