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at in�nite strip of width � in the plane plane and half of a cylinderof radius 12 are isometric, but the strip has zero mean curvature while the cylinder2



has mean curvature 1.Here we will study those immersions which have mean curvature identically 1.These immersions are called CMC immersions for short. Notice that if the meancurvature is any other nonzero constant, then a homothety and possible reversalof orientation will yield an immersion with mean curvature 1. So immersions withconstant mean curvature fall into two categories: those with mean curvature zero(minimal immersions) and those with mean curvature one (CMC immersions). Re-cent years have seen many advances in the classi�cation of both CMC and minimalimmersions. The surfaces we will concentrate on here are complete, noncompact,CMC embeddings of �nite topology. Results of the last 15 years include theoremsdescribing the asymptotic structure of the ends of such surfaces (see [17]) and theregularity of the moduli spaces of such surfaces (see [20]).The results mentioned above are in some sense the sort of results common inmodern, twentieth-century geometric analysis. They are general uniqueness andclassi�cation results. Another small industry in this area is the production ofexamples, which is in some sense a typical nineteenth-century pursuit. The unitsphere S2 and the cylinder of radius 12 are basic examples of CMC surfaces. In1841 Delaunay (see [5]) found a one-parameter family of CMC surfaces which areall rotationally symmetric and interpolate between the cylinder and a string ofspheres which lie tangent to each other (see section 3.1 for a description of thesesurfaces). In contrast to the theory of minimal surfaces, it took a long time toconstruct more examples of CMC surfaces.Indeed, the next examples of embedded CMC surfaces did not appear untilKapouleas constructed them in 1990 in [16]. (The history of compact CMC surfaceswhich are immersed but not embedded is equally rich, but very di�erent.) Seesection 3.3 for a description of his construction. In [18] and [19] Mazzeo, Pacard,and Pollack solved nonlinear boundary value problems to glue either Delaunayends onto a k-noid with catenoid ends ([18]) or to glue two CMC surfaces togetherwith a catenoid neck. In these results, they found an explicit Greens kernel forthe linear operator and then matched the Cauchy data. The gluing method usedhere is to build the approximate solution by patching together known solutionswith cut-o� functions. Instead of the singular perturbation theory of [16] we willuse a better understanding of solutions to the linearized mean curvature operator.This understanding is similar to the analysis Melrose uses in [10] to study harmonicforms on compact manifolds with boundary. The guiding principle is that temperedsolutions (solutions with subexponential growth) to the linearized operator lie ina �nite dimensional vector space which arises from geometric deformations of theends (e.g. translations and rotations of the ends). We then use solutions to thelinearized mean curvature operator in this �nite dimensional space to adjust theapproximate solution. 3



The current project is to glue two CMC surfaces together \end-to-end" in asense to be described below. We start with two noncompact complete CMC em-bedded surfaces �1 and �2 of �nite topology. The ends of �i are the unboundedconnected components of �inBr(0), where r is taken large enough so that the num-ber of such components is constant. Pick ends Ei of �i. By a result of Korevaar,Kusner, and Solomon (see section 4.3) one can understand the asymptotic structureof the ends Ei. We require that the asymptotic structure of E1 matches that of E2.Align �1 and �2 such that E1 and E2 lie along the same axis, but point in oppositedirections. One can then patch �1 and �2 together using a cut-o� function to geta surface �� which has mean curvature 1 away from the patching region and hasmean curvature close to 1 in the patching region. The goal is to now perturb ��and �nd a nearby CMC surface �. We will describe this in more detail in Section6. The purpose of this project is to construct new families of CMC surfaces.Finally, we should remark that the theory of complete noncompact CMC im-mersions has many similarities to the theory of metrics constant positive scalarcurvature. Indeed, as noted in [22] and [20], each theorem regarding one prob-lem seems to have a counterpart with the other problem. For instance, the resultsabout the moduli spaces of k-ended CMC surfaces and the moduli spaces of singularYamabe metrics on Sn (complete metrics of constant positive scalar curvature on
Snnfp1 : : : pkg conformal to the usual metric) have remarkably similar statements(compare the statements of Theorem 1.4 of [22] and Theorem 1.3 of [20]). In fact,most of the analysis for the CMC problem carries over to the CPSC problem.2 Various Formulations of the CMC ConditionOne can formulate the condition that an immersion is of constant mean curvaturein various ways. Each is useful to understand some part of the general theory ofCMC surfaces.2.1 The Local Formulation: Principal CurvaturesWe start with the local formulation in terms of coordinates (s; �) on �. Theng = � E FF G � = � hXs; Xsi hXs; X�ihXs; X�i hX�; X�i � ;A = � L MM N � = � hXss; �i hXs�; �ihXs�; �i hX��; �i � ;4



and H = 12 trg A = 12 LG+NE � 2FMEG� F 2 :Near any point, we can write � as a graph over its tangent plane. Then theimmersion X takes the form X(s; �) = (s; �; f(s; �)):If X takes this form, the metric is given byg = � 1 + f 2s fsf�fsf� 1 + f 2� �and the second fundamental form is given byA = 1p1 + f 2s + f 2� � fss fs�fs� f�� � :In particular, the mean curvature is given byH = fss(1 + f 2� ) + f��(1 + f 2s )� 2fs�fsf�2(1 + f 2s + f 2� ) 32 :Setting H = 1 and rearranging yields0 = fss(1 + f 2� ) + f��(1 + f 2s )� 2fs�fsf� � 2(1 + f 2s + f 2� ) 32 : (1)Several remarks on equation (1) will prove useful. First, this is a quasilinear secondorder PDE in f . It is strongly elliptic. In fact, the linearization of the second orderpart the right hand side of equation (1) is given by the matrix� 1 + f 2� �fsf��fsf� 1 + f 2s � :And so the principal symbol of equation (1) is given by� � � � � 1 + f 2� �fsf��fsf� 1 + f 2s � � �� � = �2 + �2 + (�f� � �fs)2 � 0with equality only when � = 0 = �. This implies, among other things, thatCMC surfaces are analytic (elliptic regularity) and the function f obeys the strongmaximum principle (e.g . f can have no positive interior maxima; see, for example[12] or [13]).One can also attach a geometric interpretation to these coordinate computa-tions. In the following paragraph, we will work only at the origin in the (s; �)coordinates and we will assume that0 = f(0; 0) = fs(0; 0) = f�(0; 0):5



This amounts to setting the (s; �) plane to be the tangent plane to � at the pointcorresponding to (0; 0). Theng(0; 0) = � 1 00 1 � and A(0; 0) = � fss fs�fs� f�� � :Recalling the minimax method to �nd eigenvalues using the Raleigh quotient, wesee that the eigenvectors of A point in the direction of steepest descent and ascentfor the function f . Call these eigenvectors ~v1 and ~v2. Order them so that theirrespective eigenvalues k1 and k2 satisfy k1 � k2. Notice that setting k1 + k2 = 2and k1 � k2 implies k2 � 1 > 0. If we let h(t) = f(t~v2) the we see t = 0 is a localminimum for h. In fact, the graph of h is concave up and the circle lying abovethe graph which best �ts the graph will have radius 1h00(0) = 1k2 . Similar remarkshold for k1, although one must be careful of signs when treating this case. Thus wesee that the eigenvalues k1 and k2 correspond to radii of the largest and smallestcircles (taking signs into account) �tting curves in � one �nds by intersecting �with a plane normal to � at the origin. These eigenvalues k1 and k2 are calledthe principal curvatures of � and the eigendirections span~v1 and span~v2 are calledthe principal direction. A point on � is called umbilic if k1 = k2. The precedingdiscussion shows that the mean curvature of a surface at a point p is the averageof the curvature of curves in � through p in all directions, giving credence to thename \mean curvature".2.2 The Variational FormulationThe variational set-up described below is the same as in [14]. This formulation ofthe CMC condition is classical. One can �nd a modern treatment of it in volumeIV of [15] (towards the end of Chapter 9) and [8].On can also formulate the condition that X is a CMC immersion in variationalterms. First consider a one parameter family of immersions Xt : � ! R3 withX0 = X. Then the �rst variation of area ddt ��t=0 Area(Xt(�)) = ddt ��t=0 R�X�t (dV ) isgiven by ddt ����t=0Area(Xt(�)) = Z�h ddt ����t=0Xt; H�i:Now consider the following situation. Let X be a CMC immersion of � as aboveand let U � R3 be a bounded open set with @U = Q [ S where S is an opensubset of X(�) and @Q = @S = � is a smooth closed curve in X(�). Let V be avector �eld supported in Un �Q and denote its 
ow by �t. This vector �eld yields aone parameter family of surfaces St = �t(S) and a one parameter family of solidsUt = �t(U). Pick a real constant H and let h denote the mean curvature of X.6



Then the formula for the �rst variation of volume yieldsddt ����t=0 (Area(St)�H Vol(Ut)) = (h�H) Area(S):Thus we see that surfaces with mean curvature identically H are critical points ofthe functional Area�H Vol.2.3 The Hopf Di�erential, the Sinh-Gordon Equation, andHarmonicity of the Gauss MapMuch of this formulation can be found in [9].For this section we will work in conformal coordinates on �. In other words,we will let (s; �) be coordinates on � such that E = G = 2e2! and F = 0. Thenz = s+ i� is a complex coordinate on �. De�ne the vector �elds@z = 12(@s � i@�) and @�z = 12(@s + i@�):Notice that @z@�z = 14�:Consider the immersionX restricted to a simply connected region 
 on the surface.The condition that z = s+ i� is a conformal coordinate with conformal factor 2e2!is equivalent to hXz; Xzi = 0 hXz; X�zi = e2!:In addition, we also have h�;Xzi = 0 h�;X�zi = 0:Taking derivatives of these equations yieldshXzz; Xzi = 0 hXz�z; Xzi = 0 hXzz; X�zi = 2!ze2!and h�;Xzzi+ h�zXzi = 0 h�;Xz�zi+ h��z; Xzi = 0:If we let h�;Xzzi = Q and note h�;Xz�zi = 14h�;�Xi = 12e2!H, then the aboveequations implyXzz = 2!zXz +Q� Xz�z = 12e2!H� �z = �12HXz �Qe�2!X�z: (2)7



As a side note, Q is the coe�cient of a quadratic di�erential form Qdz2. Thefunction Q itself is only locally de�ned, but Qdz2 is a globally de�ned quadraticdi�erential form. This quadratic form is called the Hopf di�erential.We can rewrite equations (2) as24 XzX�z� 35z = 24 2!z 0 Q0 0 12e2!H�12H �Qe�2! 0 3524 XzX�z� 35 = U 24 XzX�z� 35 : (3)Similarly,24 XzX�z� 35�z = 24 0 0 12e2!H0 2!�z �Q� �Qe�2! �12H 0 3524 XzX�z� 35 = V 24 XzX�z� 35 : (4)Setting @�z of equation (3) equal to @z of equation (4) yieldsU�z � Vz + [U; V ] = 0: (5)One can compute thatU�z�Vz+[U; V ] = 24 2!z�z � jQj2e�2! + 14H2e2! 0 Q�z � 12e2!Hz0 �2!z�z + jQj2e�2! � 14H2e2! � �Qz + 12e2!H�z�12H�z + e�2! �Qz 12Hz � e�2!Q�z 0 35 :Setting this quantity to zero yields the following two equations:�! + 12H2e2! � 2jQj2e�2! = 0 (6)and Q�z � 12e2!Hz = 0: (7)Recalling that H is real-valued (and so H�z = �(Hz)), we see that the latter equationimplies H is constant if and only if Q is holomorphic. From this Hopf (see [11])provedTheorem 1 (Hopf's Theorem): Let � be a compact simply connected immersedCMC surface. Then � is a round sphere.First note that we can rewrite Q asQ = L�N2 � iM:8



From this formulation we conclude that zeroes of the Hopf di�erential are umbilicpoints. By uniformization, if � is a compact simply connected surface then � isconformally equivalent to a sphere. From the fact that � is CMC we conclude thatQdz2 is a holomorphic di�erential on the sphere. This forces Qdz2 = 0 on all of �,and so all points of � are umbilic. From this fact it is easy to show that � mustbe a round sphere.If X is a mean curvature one immersion of a torus, then one can extend thefunction Q from a small patch 
 about the origin to be a doubly periodic functionon the entire plane C. In particular, Q is a bounded holomorphic function on Cand hence must be constant. After multiplying by an appropriate number in thedomain, we can choose Q = 12 . With Q = 12 and H = 1, equation (6) now becomes�! + sinh 2! = 0; (8)which is known as the Sinh-Gordon equation. Notice that the rescaling to set Q = 12is a rescaling in the parameter space and the rescaling to set H = 1 is a rescalingin the target space. In particular, these rescalings can be done independently.Further computation shows�z�z = �[12H�zXz +Q�ze�2!X�z + (14H2e2! + jQj2e�2!)�]:Thus X is a CMC immersion if and only if �z�z is a multiple of �. Recalling that� : 
 ! S2, we see that �� = �� is precisely the condition that � is a harmonicmap into S2. Thus X is a CMC immersion if and only if the Gauss map � isharmonic.3 ExamplesAs mentioned above, the unit sphere and the cylinder of radius 12 are both CMC.The Delaunay surfaces provide the next example of embedded CMC surfaces. Onecan think of these surfaces as interpolating between spheres and cylinders.3.1 Delaunay SurfacesWe seek an embedding of the formD(t; �) = (�(t) cos �; �(t) sin �; t) : R� S
1 ! R
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with mean curvature 1. An embedding of this form is rotationally symmetricabout the z axis. The condition that D is an embedding implies � > 0. The CMCcondition implies that � satis�es the equation�tt � 1�(1 + �2t ) + 2(1 + �2t ) 32 = 0: (9)One particular solution is � = 12 . This solution corresponds to the cylinder. Nor-malize � so that � assumes a local minimum of � at t = 0 (this amounts to atranslation in the t variable). One can then show that � is periodic and in fact� is a global minimum for �. Critical points for � alternate between minima andmaxima. The minimum value (�) for � is called the necksize of the embedding.One can show that as � ! 0 the embedding D tends to a string of unit spheresfx2 + y2 + (z � 2n)2 = 1g for n 2 Z.PSfrag replacements 0 < � < 12
� = 0

� = 12We will change variables, �rst to make D into a conformal embedding. To thisend, we must replace t with k(s) where k satis�es the equation�(k(s)) = k0(s)(�0(k(s)) + 1):Now let � = 2�� �2 and de�ne �(s) by �(k(s)) = �e�(s). One can show that � is a�rst integral of equation (9), see section 4.2. Then one can show�ss + � 22 sinh 2� = 0 dkds = � 22 (e2� + 1):In fact, �nding solutions to the above equations is equivalent to �nding an embed-ded Delaunay surface.Geometrically, one can think of the Delaunay surfaces as interpolating betweenthe cylinder and the string of spheres. First place an ellipse tangent to the z axisin the x�z plane so that one of the foci is on the x axis and is positioned to that itis as close to the z axis as possible. Now roll the ellipse along the z axis. One canshow that the focal point which started on the x axis traces out the pro�le curveof a Delaunay surface (see [23]). Varying the eccentricity of the ellipse correspondsto varying the necksize of the surface. The cylinder corresponds to rolling a circleof radius 12 (the center is the only focal point and stays at constant height 12).The string of spheres corresponds to rolling a line segment of length 1 (this is thedegenerate case where the eccentricity goes to 1 and the focal points go to theendpoints of the line segment). 10



3.2 CMC ToriOne might think to look for CMC immersions of compact surfaces. In the 1950'sHopf proved that any simply connected CMC immersion of a compact surface hasto be a round sphere (see Hopf's theorem above, or [11]). Around the same time,Alexandrov proved that any embedded compact CMC surface must be the roundsphere (see Theorem 3 below). If one were looking for compact CMC immersions,then given these two results one might next look for CMC tori. Below we willregard a torus as R2=� where � is a lattice.To �nd CMC tori, we look for doubly periodic immersions R2 ! R3. We canreduce this problem as follows. First, note that any immersion of a surface isdetermined up to rigid motions by its metric and its second fundamental form.Also notice that locally, the metric is determined by its conformal factor and thatequations (3) and (4) determine the second fundamental form. Therefore, theconformal exponent ! will locally determine the immersion. Finally, notice that if� is a torus then ! must in fact be a doubly periodic function on R2. Thus thetask of �nding a CMC torus is the same as �nding a doubly periodic solution to theSinh-Gordon equation (equation (8)). In 1986, Wente proved [2] that such doublyperiodic solutions exist.In 1987, Aubresch ([3]) found many CMC tori by requiring that one line ofcurvature be planar. The condition that A has distinct eigenvalues allows us tosimultaneously diagonalize A and g, so away from umbilic points we can choose co-ordinate lines which are also lines of curvature. The condition that the � coordinateline in planar is equivalent to!s� cosh! � !s!� sinh! = 0:We combine this equation with equation (8) to get an overdetermined system ofequations. Under the change of variables W = cosh! this system becomes� (W 2 � 1)�W �W jrW j2 +W (W 2 � 1)2 = 0(W 2 � 1)Ws� � 2WWsW� = 0:Theorem 2 (Aubresch): The real analytic solutions of the above system are givenby W = fs + g�1 + f 2 + g2where f(s) and g(�) are elliptic functions. Moreover, one can recover f and g by� Ws = �f(s)(W 2 � 1)W� = �g(�)(W 2 � 1):11



However, one still has to �nd conditions so that W is doubly periodic (these arecalled closing conditions). This is a rationality condition on the initial conditionsc and d of f and g. Thus the CMC tori with one planar line of curvature are pa-rameterized by the two parameters c and d. Aubresch then �nds closing conditionson c and d (assuring that the solution W is in fact doubly periodic).In 1989 Pinkhall and Sterling classi�ed all CMC tori in [4]. Their idea is towrite solutions to equation (8) as the 
ows of two commuting vector �elds. Thenone can integrate to get solutions and show that there exist only �nitely manyindependent integrals. They then embed the ODE system in the Jacobian varietyof the torus and �nd the closing conditions.3.3 Kapouleas' SurfacesIn [16] Kapouleas produced many examples of noncompact embedded CMC sur-faces. As a �rst step, he creates a central graph, consisting of vertices, edges, rays,and weights for each vertex. He requires that the edges of these graphs have lengthsthat are even integers and that the graphs are balanced around each vertex (seesection 4.2). About each vertex he places a sphere of radius one. He places halfa Delaunay surface about each ray, with necksize determined by the weight at thestarting vertex of the ray. About the edges of length greater than 2, he placesa piece of a Delaunay surface to connect the two spheres centered at the verticeswhich are the endpoints of the edge in question. Again, the necksize of this joiningpiece of Delaunay surface is determined by the weights of the vertices (which mustbe the same by balancing).Next Kapouleas pieces all the surfaces together to form a smooth approximatesolution. He pastes the spheres and pieces of Delaunay surfaces together withappropriately chosen cut-o� functions. However, all the parts do not quite �ttogether without some sort of perturbation. For instance, the period of a Delaunaysurface with small necksize is almost, but not quite, 2. So the Delaunay piecejoining the two spheres mentioned above does not quite �t. To remedy this problem,Kapouleas �rst slightly perturbs the graph, and then slightly perturbs the necksizesof the Delaunay surfaces. After this step, he has a surface which has mean curvatureone everywhere except for small bands near each neck of the Delaunay pieces. Inthese bands about the Delaunay necks the mean curvature is close to one.Then Kapouleas solves the linearized problem (locally) on each bulge betweenthe Delaunay necks. However, in these regions he must avoid the spherical harmon-ics which arise from eigenfunctions of the operator �+2 on S2. Thus he solves thelinearized problem orthogonal to a �nite dimensional \substitute kernel" on each12



bulge. A further di�culty in piecing together a global solution to the linearized op-erator from all these local solutions is that the global solution must be orthogonalto each of the substitute kernels mentioned above. This means that one must �nd asolution to the linearized problem which is orthogonal of to an in�nite dimensionalsubspace. Finally, he must solve the nonlinear problem. To do this, Kapouleasshows one can �nd appropriate solutions for the linear problem after perturbingthe graph mentioned above, and then uses a Leray-Schauder �xed point argumentto show that a solution to the nonlinear problem for one of the perturbed graphsmust exist.4 General Properties of Almost Embedded CMCSurfacesAs stated above, we are concerned here with embedded CMC surfaces. However,many of the theorems still hold for a wider class of immersions, called almostembeddings.De�nition 1 An immersion X : � ! R3 is called an almost embedding (or anAlexandrov embedding) if one can write � as the boundary of a solid handle-body
 and X extends to be an immersion of 
.One can think of this property as distinguishing an \outside" and an \inside"for the surface (the inside corresponding to the interior of the solid handle-body).Roughly speaking, the condition that a surface is almost embedded is the weakestcondition one can place on the surface such that one can apply the Alexandrovre
ection argument below.4.1 Alexandrov Re
ectionAlexandrov re
ection is really an application of the maximum principle. To seehow it works, we will �rst apply it to a compact CMC surface.Let X : � ! R3 be a CMC embedding of a compact surface. Fix a largenegative T so that the � lies completely above the plane � = fz = Tg (one cando this because � is compact). Let �t = � + (0; 0; t) be the translate of � by tin the z direction. Let �t be the part of � which lies below �t and let ~�t be there
ection of �t through the plane �t. For t small, both �t and ~�t will be empty.13



If t0 is the �rst time of contact of �t with �, then (locally) one can write � as agraph over �t0 . Thus for t = t0 + �, with � > 0 small, the re
ected surface ~�t willlie completely inside �. In other words, for those values of t slightly larger that t0,the re
ected surface ~�t lies in the bounded component of R3n�. We pause to notethat this is where we need � to be embedded.Note that for t su�ciently large, � will lie completely below �t (again, by thecompactness of �), and so ~�t cannot be contained in the bounded component of
R3n� for all t. Let t1 be the in�mum of t > t0 such that ~�t is not contained in thebounded component of R3n� and let ~� be the re
ection of � through the plane�t1 . Then in fact � and ~� are tangent at some point p.If the tangency at p is not a vertical tangency, write � and ~� as graphs of uand u1 (respectively) over the plane �t1 . Let the tangency point p have coordinates(x; y) in this plane. Then u(x; y) = u1(x; y) and ru(x; y) = ru1(x; y). Also, u andu1 both satisfy the same strongly elliptic equation (equation (1)). By the maximumprinciple, u = u1, and therefore � locally agrees with ~�. Both surfaces are analyticand connected, so � = ~�.If the tangency is at p is a vertical tangency, one needs to apply the Hopfboundary lemma (see Theorem 10 of Chapter 2 of [12]). In either case, we see that� has a plane of symmetry parallel to the x � y plane. However, the x � y planehad no special relation to the original surface �, and so we conclude that � has aplane of symmetry in every direction. Alexandrov used this to concludeTheorem 3 (Alexandrov's Theorem): Let � ,! R3 be a compact embedded CMCsurface. Then � is the round sphere.In the case where � is noncompact, a similar construction (found in [17]) stillworks. Let � � R3 be a plane with unit normal v. Let L be the line parameterizedby L(t) = tv. For t 2 R and p 2 � de�ne�t = � + tv �t = [s�t�s Lp = L + p:For any set G � R3 letGt = G \ �t ~Gt = fp+ (t� r)v j p 2 �; p+ (t+ r)v 2 Gtg:Let � be an almost embedded surface, with � = @
. First we restrict to a pieceof � by taking an open set W � 
 and letting S = @W \�. Note that neither Wnor S need be connected nor bounded. Suppose p + tv 62 W for su�ciently larget. Let t1 be the supremum of t such that P + tv 2 W . Then P1 = p + t1v is the14



point of �rst contact of Lp with W . If this �rst contact is transverse, let t2 be thesupremum of t < t1 such that p + tv 62 W . Then P2 = p + t2v is the point whereLp �rst leaves W . Otherwise, let P1 = P2. If P1 and P2 are both in S, then (as in[17]) we de�ne �1(p) = t1 + t22 :Notice that �1 is not de�ned for all p 2 �.Lemma 4 (Korevaar, Kusner, Solomon): Fix a plane � and its normal v. If, withW � 
 and S � � as above, �1 has a local interior maximum value z at p 2 �then the plane �z is a plane of symmetry for �.Proof: First notice that P1(p) re
ects to P2(p) through �z, by construction.Pick a nearby q. Then by maximality t1(q) + t2(q) � 2z, and soz � (t1(q)� z) � t2(q):This means the re
ection of P1(q) through �z lies above P2(q). This implies aneighborhood of P2(p) in ~Sz lies inside W . If P1(p) 6= P2(p),Then S and ~Sz aretangent at P2(p) with nonvertical tangent. If P1(p) = P2(p), then S and ~Sz aretangent with vertical tangent. In either case, argue as above using the maximumprinciple to see that �z is a plane of symmetry for �. ¨The ends of � are the unbounded connected components of �nBr for su�cientlylarge r. Consider an end of � contained in a solid cylinder C+a;R(P ) = fp+ ta j jp�P j < R; hp�P; ai = 0; t > 0g. We take W = 
\C+a;R(P ) and S = @W \�. Meeksproved in [6] that any end of a complete embedded CMC surface is contained insuch a solid half-cylinder. Choose a plane � and normal v as above with a ? v.Let x(p) = hp; ai and de�ne �(x) = maxhp;ai=x�0�1(p):Then one can use this Alexandrov function and similar arguments as in the aboveLemma to show:Theorem 5 (Korevaar, Kusner, Solomon): If � is a properly embedded CMC sur-face contained in a solid cylinder, then � has a rotational axis of symmetry parallelto the axis of the cylinder. Also, if � has �nitely many ends and is contained in ahalf-space �0 for some plane �, then � has a plane of symmetry parallel to � andis thus contained in a solid slab. 15



4.2 The Balancing FormulaCMC surfaces must also obey a balancing condition. This means that the ends ofthe surface � must be arranged to balance each other. To see this, we start withthe following general proposition found in [8].Theorem 6 (Kusner): LetM be a 3 dimensional Riemannian manifold with H1(M)and H2(M) trivial. Let G be the isometry group of M and let g be its Lie algebra.For some constant H, let � be a surface in M with mean curvature H. Then thereis a natural cohomology class � 2 H1(�)
 g
� de�ned as follows: let � be a 1-cyclein � with � �M such that @� = �. Let � be the oriented normal to � and � theoriented conormal to �. Let Y 2 g. Thenh�(�); Y i = Z�h�; Y i �H Z�h�; Y i:The content of this theorem is that the formula above depends only on Y and thehomology class of �. Let ~� be another 1-cycle homologous to � in �. BecauseH1(M) = 0 there are surfaces � and ~� in M with @� = � and @ ~� = ~�. Also,�� ~� forms the boundary of some surface S � �. Then �� ~�+S forms a 2-cycleinM . Because H2(M) = 0, there is an open set U � M such that @U = �� ~�+S.Now take Y 2 g. Note �t = etY is a one-parameter family of isometries. In fact,the Killing �eld associated to �t is just the left-invariant vector �eld associated toY . Therefore, 0 = ddt ����t=0 [Area(@(�t(U)))�HVol(�t(U))]:Applying Stokes' Theorem, the right hand side becomesZ�h�; Y i � Z~�h�; Y i �H Z�h�; Y i+H Z ~�h�; Y i;which shows Z�h�; Y i �H Z�h�; Y i = Z~�h�; Y i �H Z ~�h�; yi:Now consider the case M = R3 and take Y = e1; e2; e3, the constant transla-tional vector �elds in the directions of the coordinate axes. Let W � 
 as aboveand @W = S [Q, where S = @W \ �. Then the above theorem impliesZ@S � �H ZQ � = 0:16



One useful choice ofW is to takeW = 
\B3R for some largeR. Let S = @W\�.As mentioned above, Meeks proved in [6] that any end of � must be contained in asolid cylinder. So we can take R large enough so that @S is k disjoint simple closedcurves, where � has k ends. Then we de�ne the weight vector of an end as follows.De�nition 2 For an end E which is contained in a solid half-cylinder C+a;r(P ),de�ne the weight of the end E asw(E) = ZE\� � � Z�\W �where � = a?, arranged so that � intersects E transversally, � is the normal to �,and � is the conormal to � \ E.By the balancing formula, the weights of all the ends of � must sum to the zerovector.Consider the case of a Delaunay end. We can take a = (0; 0; 1) and E(t; �) =(�(t) cos �; �(t) sin �; t), and � any plane � = fz = z0g. By symmetry, w(E) mustpoint along the z axis. Moreover, ha; �i = 1 and ha; �i = (1 + �2t )� 12 . Usinglength(� \ E) = 2�� and Area(� \W ) = ��2, we getw = ( 2��p1 + �2t � ��2)(0; 0; 1):One can check thatddt [ 2��p1 + �2t � ��2] = � ���t(1 + �2t ) 32 [�tt � 1�(1 + �2t ) + 2(1 + �2t ) 32 ] = 0;and so the coe�cient of the above weight vector is a �rst integral of equation (9). Infact, if we normalize so that �(0) = � is a minimum, then evaluating this constantat t = 0 shows 2�p1+�2t � �2 = 2�� �2 = � . Thus � = 2�� �2 determines the weightof a Delaunay end of necksize �.4.3 Asymptotic Behavior of the EndsLet E be a cylindrically bounded end of �, where � in a complete, noncompactCMC surface of �nite topological type. Say E is contained in the half-cylinderC+a;R(P ). Let b; c be an orthonormal basis for a? and let !(�) = b cos �+c sin �. Theresult of [17] is that for t large enough, we can parameterize E as �E(t; �)!(�)+ ta.17



Moreover, there exists an embedded Delaunay surface D(t; �) = �D(t)!(�) + tasuch that for t0 su�ciently large and some � > 0 the following estimate holds:k�E � �Dkk;�;(t0�1;t0+1) = O(e��t0);where k 2 N, � 2 (0; 1), and k � kk;�;(t0�1;t0+1) is the standard H�older norm on(t0� 1; t0+ 1)� S1. In this sense, each end of a CMC surface � is asymptotic to aunique embedded Delaunay surface. The idea of the proof is to look at a slide-backsequence Ek = E� tka and use a priori curvature estimates to extract a convergentsubsequence. This shows compact subsets of E near in�nity converge to translatesof a �xed Delaunay surface. To eliminate this translation, one can write smalltranslates of a Delaunay surface as normal variations of a �xed Delaunay surface,and then take a derivative of this family of Delaunay surfaces. These derivativesmust have a certain form (see the next section), which the a priori estimates oncurvature forbid.5 The Jacobi OperatorThe Jacobi operator of a immersed surface X : � ! R3 is the linearization of themean curvature operator. More precisely, let � be the normal to the surface X(�)and de�ne Xt(p) = X(p) + tu(p)�(p) : �! R3 for some smooth function u. Xt isalso an immersion for small t. Let Ht denote the mean curvature of the immersionXt and let H = H0. Then the Jacobi operator associated with the immersion X isthe di�erential operator de�ned byLX(u) = dHtdt ����t=0 :Writing a Taylor expansion in t yieldsHt = H + tLXu+O(t2):One can show that LX = 12(�� + kA�k2)where �� is the Laplace-Beltrami operator of the metric induced on � by X andA� is the second fundamental form of the immersion X (see Appendix C of [16]).Geometrically, one can think of solutions to the equation LXu = 0 as giving normalperturbations toX which preserve the mean curvature up to �rst order. In this way,the Jacobi operator is analogous to the well-known Jacobi equation for variations ofa geodesic. Thus vector �elds along X(�) of the form u� with LXu = 0 are calledJacobi �elds. In somewhat of an abuse of notation, the functions u themselves arecalled Jacobi �elds. 18



We will need to know about the mapping properties of L. In particular, we willneed to know on which function spaces L is Fredholm, injective, and surjective.Injectivity and surjectivity will stem in part from the following property.De�nition 3 A complete CMC immersion X : � ! R3 of a noncompact surfacewith �nite topology is said to be nondegenerate if the kernel L� = 12(�� + kA�k2)acting on L2 is trivial.Roughly speaking, this property will allow us some control over the behavior ofJacobi �elds (see Theorem 7).In the following two subsections we will establish some technical results we willneed to state and prove the conjectured result. In section 5.1 we will analyze theJacobi operator on a Delaunay surface. In section 5.2 we will analyze the Jacobioperator on general k-ended CMC surfaces. We will pay particular attention toJacobi �elds which arise from the bottom of the spectrum of ��.5.1 The Jacobi Operator on a Delaunay SurfaceRecall from section 3.1 that one can parameterize the embedded Delaunay surfacesas D� (s; �) = (�e�(s) cos �; �e�(s) sin �; k(s))where � is the necksize of the Delaunay surface D� , � = 2�� �2,d2�ds2 + � 22 sinh 2� = 0; (10)and dkds = � 22 (e2� + 1):Given solutions � and k to the above equations, the embedding D� is a conformalmap with conformal factor �e�(s) (see [18]). In these coordinates the Jacobi operatorbecomes Lu = 1� 2e2� (@2su+ @2�u+ � 2 cosh 2�):Thus solutions of the Jacobi equation solve the PDE@2su+ @2�u+ � 2 cosh(2�)u = 0: (11)We can separate variables and writeu(s; �) = 1X�1 �j(�)u�j (s)19



where @2��j = �j2�j for j 2 Z, andLj(u�j ) = @2su�j + � 2 cosh(2�)u�j � j2u�j = 0: (12)As we seek real solutions u, we will choose the eigenfunctions�j(�) = 8><>: 1p� cos j� for j > 01p2� for j = 01p� sin j� for j < 0 :Note f�jg form an orthonormal basis for L2(S1) and so it is no loss of generalityto write u as a sum this way. The functions u�j are called the j-th eigenmodes ofu. One can identify the lower eigenmodes (jjj � 1) with explicit geometric defor-mations of D. First change variables in the above parameterization of D by lettingt = k(s) and �(t) = �e�(s). ThusD(t; �) = (�(t) cos �; �(t) sin �; t):Note that in these coordinates the normal vector � is given by �(t; �) = 1p1+�2t (� cos �;� sin �; �t).We wish to write a translationD�(t; �) = D(t; �)+(0; 0; �) = D(t0; �0)+u(t0; �0)�(t0; �0)as a normal variation of D(t; �). We are left with three equations8>>><>>>: �(t) cos � = �(t0) cos �0 � 1p1+�2t (t0)u(t0; �0) cos �0�(t) sin � = �(t0) sin �0 � 1p1+�2t (t0)u(t0; �0) sin �0t+ � = t0 + �t(t0)u(t0;�0)p1+�2t (t0) : (13)Squaring the �rst two equations of (13) and adding them together we get�2(t) = �2(t0) + u2(t0; �0)1 + �2t (t0) � 2�(t0)u(t0; �0)p1 + �2t (t0) :Notice that from this equation we can take u to be a function of t alone. Multiplyingthrough by 1 + �2t (t0) and rearranging yieldsu2(t0)� 2�(t0)q1 + �2t (t0)u(t0) + (�2(t0)� �2(t))(1 + �2t (t0)) = 0:The quadratic formula then impliesu(t0) = (�(t0)� �(t))q1 + �2t (t0):From the third equation of (13),t� t0 = u(t0)�t(t0)p1 + �2t (t0) � �:20



Thus�(t) = �(t0) + (t� t0)�t(t0) +O(t� t0)2 = �(t0) + �2t (t0)u(t0)p1 + �2t (t0) � ��t(t0) +O(t� t0)2:Using this expression for �(t) yieldsu(t0) = ��t(t0)p1 + �2t (t0) +O(t� t0)2and thus the Jacobi �eld which generates this translational deformation of D is thefunction u = u+0 = �tp1 + �2t = �s: (14)Notice that u(s) = �s(s) solves equation (12) for j = 0:uss + � 2u cosh 2� = �sss + � 2�s cosh 2� = 0:In fact, this equation is just the derivative of the equation (10). This computationshows that one can actually integrate one of the 0-mode Jacobi �elds �0(�)u+0 (s)and obtain a deformation of D given by translation along the axis of D.Similarly, one can recover the two translations of the axis (from the 1 and �1eigenmodes), and the two rotations of the axis (also from the 1 and �1 eigen-modes), and the family of surfaces one obtains by varying the necksize (the otherof the 0 eigenmodes). To �x notation, we will always take u+j to be the Jacobi�elds which generate translations and u�j the Jacobi �elds which generate eitherrotations of the axis of symmetry (jjj = 1) or variations in the necksize (j = 0).In particular, all the low eigenmodes u�j (s)�j(�) for jjj � 1 grow at most linearly.Thus, e��jsju�j (s)�(�) 2 L2(D) for any � > 0. In fact, the low eigenmodes are theonly Jacobi �elds which are globally exponentially bounded. This motivates use ofthe following spaces.De�nition 4 Given an immersion of k-ended surface X : �! R3 where the endscan each be written as graphs over a cylinder, we say u 2 Hs� (�) if upon restrictionto each end E, e��tu 2 Hs(E). Here we give the cylinder (a;1) � S1 coordinatest 2 (a;1) and � 2 S1.Notice that e�t 2 Hs� ((0;1)� S1) for all � < �, but not for � � �. Let X : �!
R3 be a complete nondegenerate immersion of a noncompact surface � of �nitetopology. For � > 0, Hs+2�� (�) � L2(�), and so by the nondegeneracy assumption,L� : Hs+2�� ! Hs�� is injective. Then by duality and the fact that L� is self adjoint,L� : H�s� ! H�s�2� is surjective. By elliptic regularity, L� : Hs+2� ! Hs� is alsosurjective. 21



5.2 The Jacobi Operator on k-Ended SurfacesNow consider a more general k-ended complete embedded CMC surface X : � !
R3. As noted above, each end of this surface is asymptotic to an embedded De-launay surface D. Therefore, over this end, one can write the Jacobi operatoras L� = LD + e��sRwhere s is the variable parameterizing the distance away from a compact set ofa point on the end, � is a positive number, and R is a second order operatorwith smooth bounded coe�cients. The deformations of the Delaunay surfacescorresponding to low eigenmode solutions found above are asymptotic Jacobi �eldson �. Pick some large R such that X(�)nBR(0) = [k1Ej is a disjoint union ofk ends, each of which is a graph of a function �j over an embedded Delaunaysurface Dj. Let � be a smooth cut-o� function with � = 1 on BR(0) and � = 0 on
R3nBR+1(0) and let ~� be the surface which agrees with � inside BR(0) and is thegraph of � � �j over each Dj outside BR(0). Note � and ~� are di�eomorphic andlet � : � ! ~� be a di�eomorphism between them. In fact, one can choose the �to be the identity inside BR(0). For jjj � 1, de�new�;ij (p) = ��1(�(p) � u�;ij (p))where u�;ij is the Jacobi �eld corresponding to the jth eigenmode over the theDelaunay surface Di. Notice that L�w�;ji decays exponentially on each end of �.We will refer to w�;ij as the asymptotic Jacobi �elds arising from the jth eigenmodeon Ei.De�nition 5 Let X : � ! R3 be a complete noncompact CMC immersion. Thede�ciency space W is the span of all the asymptotic Jacobi �elds arising from loweigenmode deformations of the underlying Delaunay ends; W = spanfw�;ji j 1 �j � k; i = �1; 0; 1g. The bounded null space B is the set of all Jacobi �elds whichdo not grow exponentially, but also do not decay exponentially. In other words,B = fu j L�u = 0; u 2 Hs� (�); u 62 Hs��(�) 8 � > 0g:These two spaces are related as follows (see the Linear Decomposition Lemmas of[20] and [22]):Theorem 7 (Kusner, Mazzeo, Pollack) Let X : � ! R3 be a complete CMCimmersion of a noncompact surface with �nite topology. Let u 2 Hs+2� (�) andf 2 Hs��(�) for � > 0 and su�ciently small such that L�u = f . Then u = w + �where w 2 W and � 2 Hs+2�� (�). 22



Thus there is a well de�ned map � : B ! W given by projection. Notice thatif u; v 2 B and �(u) = �(v) = w 2 W then L�(u� v) = 0 and u� v 2 Hs��(�).If � is also nondegenerate, then u = v. Thus in the nondegenerate case this mapB ! W is injective. In this case, we will identify B with its image in W . Forthe general immersion (which may be degenerate) the element �(u) = w 2 Wdetermines u 2 B only up to terms which decay exponentially.In fact, W and B carry more structure. To see this, �rst recall that given twosolutions u1 and u2 to a linear second order ODE u00+pu0+ qu = 0, the WronskianWr(u1; u2) = u1u02 � u2u01 satis�es the equation (Wr)0 + pWr = 0. Notice thatequation (12) (uss + � 2u cosh 2� � j2u = 0) is a linear second order ODE with no�rst order terms. So the Wronskian Wr(u+j ; u�j ) = u+j (s)@su�j (s)� u�j (s)@su+j (s) isa non-zero constant. We normalize u�j such that Wr(u+j ; u�j ) = 1.Let Wj be the part of W arising from the j eigenmodes of the model Delaunaysurfaces for the ends of �. Write u; v 2 W0 asu = kX1 (aiui0;+ + biui0;�)and v = kX1 (�iui0;+ + �iui0;�)where ui0;� is the element of W arising from the 0;� eigenmode of the modelDelaunay surface for the ith end. As in [22] we de�ne!(u; v) = limR!1Z�\BR(0)(L�u)v � u(L�v) = limR!1Z�\BR(0)(�u)v � u(�v)where BR(0) is a large ball as in the de�nition of W . Upon integrating by parts,we �nd!(u; v) = limR!1Z@(�\BR(0)) @u@� v � u@v@�= limR!1[ kX1 [(ai�j � bi�j)Wr(ui0;+; ui0;�) 12� Z 2�0 d�] +O(e�R)]= kX1 (ai�i � bi�i):Thus ! is the standard symplectic structure on R2k. Similarly, W1 and W�1 carrythe standard symplectic structure on R2k and soW carries the standard symplecticstructure on R6k. From the de�nition of !, B � W is an isotropic subspace. By23



a relative index theorem (see [20]), dimB = 3k = 12 dimW and thus B � W isLagrangian.Given an end E, let WE = spanf��1(�(p)u�j )g where the u�j are the low eigen-mode Jacobi �elds of the model Delaunay surface for E. Functions u 2 B suchthat �(u) 2 WE are Jacobi �elds on � which decay exponentially on all but oneend of � and grow at most linearly on the remaining end E. As remarked above,in the nondegenerate case we can identify B with a subspace of W . In this casewe will again abuse notation slightly and say u 2 B \ WE. Thus u 2 B \ WEcorresponds to a deformation of � which �xes the asymptotics of all ends except Eand changes the asymptotics of E. However, � and its deformations must balancein the following sense.Lemma 8 If u 2 B \WE for some end E of a noncompact, complete, embeddedCMC surface � of �nite topology, then u can only correspond to an asymptotictranslation of the end E. Notice that u decays exponentially on all ends but Ebecause u 2 B\WE, and so a curve in moduli space with tangent vector u �xes theasymptotics of all ends except E.Proof: To each end Ej associate the vector �j ~aj where Ej is asymptotic tothe Delaunay surface Dj with necksize �j, ~aj is a unit vector parallel to the axisof symmetry of Dj and pointing in the direction in which Ej in unbounded, and�j = 2�j � �2j . Then it is a theorem of Kusner (see [8] or [17]) thatkX1 �j ~aj = 0:Suppose u 2 B \WE and relabel the ends such that E = E1. Writeu(p) =X(aj��1(�(p)u+j (p)) + bj��1(�(p)u�j (p))):Let �t be a deformation of � such thatddt�t����t=0 = u��:Then �1 and ~a1 could depend on t but �j and ~aj are constant for j � 2. Bybalancing, ��1 ~a1 = kX2 �j ~ajand is thus constant. This implies that bj = 0 for j = �1; 0; 1. Thus any u 2 B\WEmust correspond only to asymptotic translations of an the end E. ¨24



5.3 An Application: Structure of the Moduli SpaceOne of the main goals of the theory behind CMC immersions is to understand theirmoduli spaces, as de�ned below.De�nition 6 Fix natural numbers k and g. We denote by Mg;k the space of allCMC almost embeddings X : � ! R3 where � has genus g and k ends whereimmersions are identi�ed if and only if they di�er by a Euclidean motion. In thecase where g = 0 we will write Mk instead of M0;k. We give these spaces thetopology induced by the Hausdor� topology on the closed sets �\BR for su�cientlylarge R.It is a theorem of Meeks (see [6] and [17]) that there are no one ended CMCsurfaces. Another theorem of Korevaar, Kusner, and Solomon ([17]) states thatany two ended CMC surface must be a Delaunay surface. Thus M1 = ? andM2 = (0; 1] (the parameter being the necksize of the surface). More recently,Kusner, Grosse-Braukman and Sullivan have shown that M3 is homeomorphic to
B3 (see [7]). The other moduli spaces are as yet unknown.The general structure of the moduli spacesMk also not completely understood.As mentioned in the de�nition, they have a natural topological structure, but ingeneral they may not have a natural smooth structure. Below we will sketch theproof of the following theorem (Theorem 3.1 of [20]):Theorem 9 (Kusner, Mazzeo, and Pollack) Let X : � ! R3 be a complete, non-degenerate, CMC almost embedding of a k-ended surface, with k > 2. Then thereexists an open neighborhood U � Mk containing X(�) which is the quotient of areal analytic 3k � 6 dimensional manifold by a �nite isotropy group.The general idea of the proof is to write CMC surfaces nearby X(�) in modulispace as the zero-set of a function. The di�culty is that for some immersions ~Xwhich are \nearby" X cannot be written as normal variations of X. For instance,some functions in the bounded null space B may correspond to asymptotic Jacobi�elds which rotate the axis of symmetry of the model Delaunay surface of someof the ends. Integrating these Jacobi �eld yields a one-parameter family of CMCimmersions where some of the ends rotates as the parameter varies. However, evenfor small values of the parameter none of these surfaces can be written as a graphover the original immersion. To see this, think of rotating a cylinder perpendicularto its axis. No matter how small the angle of rotation, one cannot write the rotated25



cylinder as a graph over the original cylinder. Thus we need to consider Jacobi�elds over surfaces obtained by deforming the original immersion by elements ofits de�ciency space.Recall the construction of the de�ciency space immediately preceding de�nition5. The de�ciency space W of the immersion X is a 6k-dimensional vector space.Let � 2 W � W , where W is a small ball, and denote by X� the immersion oneobtains via the above deformation. We write X�;� for immersions which of the formX�;� (p) = X� (p)+�(p)�� (p) where �� is the unit normal vector to X� . For � smalland positive, let V be a small ball in Hs+2�� (�). Then CMC immersions nearby toX are zeroes of the function N(�; �) = H(X�;�)� 1. Note that N is a real analyticfunction. Moreover, for � 2 W and � 2 Hs+2�� (�), the directional derivative ofN in the direction (�; �) is L(� + �) = 12(�X(� + �) + kAXk2(� + �)). By thenondegeneracy of �, this is zero only if � + � = 0. So by the Implicit FunctionTheorem, the zero set U0 = f(�; �) 2 V � W j N(�; �) = 0g is a real analyticmanifold whose dimension that of the null space of L acting on Hs+2�� �W . This isthe dimension of the bounded null space B, which is 3k. The neighborhood of themoduli space U is the quotient of U0 by the Euclidean motions. In the case where �has at least three ends, the isotropy group Iso(�) is �nite and possibly empty (thisisotropy group is the groups of Euclidean motions which �x �). The dimensioncount of the neighborhood U is 3k � dim(Isom(R3)) + dim(Iso(�)) = 3k � 6. Alsonote that U is smooth in the case where Iso(�) = ?. This is the case where theoriginal surface X(�) has no dihedral symmetries. In the case where � has twoends, � has a rotational symmetry. The isotropy group is generated by this rotationand hence one-dimensional. Therefore, the dimension of M2 is 3 � 2 � 6 + 1 = 1,which agrees with the theorem of Korevaar, Kusner, and Solomon that all two-ended CMC surfaces are Delaunay surfaces.In general, the moduli space Mk has the structure of a real analytic varietywith formal dimension 3k � 6 for k > 2 (see theorem 4.1 of [20]).6 Gluing6.1 Other Gluing ConstructionsThe construction explained below most closely follows the gluing construction ofMazzeo, Pollack, and Uhlenbeck in [21]. In this paper they start with two compactRiemannian manifolds (M1; g1) and (M2; g2) of constant positive scalar curvatureand construct a metric g of constant positive scalar curvature on the connect sum,provided the Jacobi operator on each original manifold was nondegenerate. The26



nonlinear operator they work with is the Yamabe operator, whose Jacobi operator(linearization) is � + n. First they construct an approximate solution as follows.They remove small metric ballsB2�1(p1) and B2�2(p2) fromM1 andM2 respectively.For 0 < � < 1 they identify the annuli B�i(pi)nB��i(pi) by the rule (r1; �1) � (r2; �2)if and only if �1 = �2 and r1r2 = ��1�2, where (ri; �i) are geodesic polar coordinatesabout pi. On this manifold M� they construct a metric with a cut-o� function.One can think of the gluing region (the identi�ed annuli) as a neck which joinsa punctured M1 and a punctured M2. Letting � ! 0 corresponds to making thejoining neck long. Mazzeo, Pollack, and Uhlenbeck then prove that the approximatesolution is nondegenerate for small � and that the Greens kernel for the Jacobioperator is uniformly bounded. This allows them to iterate the Jacobi operator andthe Greens kernel and �nd a solution. The analysis they perform di�ers in severalkey ways from the analysis in our case. First, only the 0 eigenmode solutions tothis Jacobi operator have subexponential growth. Second, the equation they mustsolve is conformally invariant.More recently, Mazzeo and Pacard ([18]) and Mazzeo, Pacard, and Pollack([19]) have constructed CMC surfaces with another gluing method. Each construc-tion �nds a solution by solving an in�nite dimensional family of boundary valueproblems, instead of constructing a approximate solution and perturbing. In [18],Mazzeo and Pacard glue half Delaunay surfaces to k-noids with catenoid ends.They show that, for small necksizes, one can match the Cauchy data and attach aDelaunay surface to a truncated end of a k-noid. In [19] Mazzeo, Pacard, and Pol-lack construct new CMC surfaces nearby �1#�2 where �i are nondegenerate CMCsurfaces, and one realizes �1#�2 by placing �1 tangent to �2 such that �1 \�2 isa isolated point near the point of tangency. For this construction they must matchthe Cauchy data on the boundaries of �1nB�(p1), �2nB�(p2), and a small catenoidneck.6.2 Statement of Intended ResultsThe gluing construction described below is an \end-to-end" gluing. We constructan approximate solution (see section 6.3) by patching together some ends of CMCsurfaces.Conjecture 10 Let �0 be a nondegenerate three-ended CMC surface and pick anend E. Without loss of generality, align �0 so that E has the x axis as its asymptoticaxis of symmetry. Let the bounded null space B of �0 satisfy one of the followingconditions: 27



1. B \WE = ?2. B \WE = spanfw+1 g where w+1 is the asymptotic Jacobi �eld which corre-sponds to a translation of the axis of E in the y direction3. B \WE = spanfw+�1g where w+�1 is the asymptotic Jacobi �eld which corre-sponds to a translation of the axis of E in the z direction.Let �00 be the surface obtained from �0 by rotating �0 about an axis perpendicular tothe axis on the model Delaunay surface for E, and possibly rotating about the axisto the model Delaunay surface for E. Let �� be the surface one obtains by patching�0 and �00 with a cut-o� function along the end E (see section 6.3). Then thereexists a 4-ended CMC surface � which is nearby �� in the sense that the Hausdor�distance between �� \ B3R(0) and � \ B3R(0) is small. In addition, the asymptoticdata for � is close to that of ��. Moreover, the new surface � is nondegenerate.Recall that functions in B�0 \WE0 correspond to deformations of the surface �0which �x the asymptotics of all ends except E 0 and change the asymptotics of E 0.The above conjecture is a special case of the following more general conjecture.Conjecture 11 Let �1 and �2 be complete nondegenerate embedded CMC surfacesof �nite topology and k1 and k2 ends, respectively. Label an end E1 of �1 and anend E2 of �2. Suppose E1 and E2 are asymptotic to the same Delaunay surface.Without loss of generality, align �1 and �2 so that the x axis is the asymptoticaxis of both E1 and E2. Moreover, suppose the bounded null space B1 of �1 andthe bounded null space B2 of �2 both satisfy one of the following conditions:1. (B1 \WE1) \ (B2 \WE2) = f0g2. Bi \WEi = spanfw+1 g where w+1 is the asymptotic Jacobi �eld which corre-sponds to a translation of the axis of Ei in the y direction for both i = 1 andi = 23. Bi \WEi = spanfw+�1g where w+�1 is the asymptotic Jacobi �eld which corre-sponds to a translation of the axis of Ei in the z direction for both i = 1 andi = 2Let �� be the surface one obtains by patching �1 and �2 with a cut-o� functionalong the ends E1 and E2, possibly after rotating �2 about the common axis for E1and E2. Then there exists a CMC surface � with k1 + k2 � 2 ends which is nearby�� in the sense that the Hausdor� distance between �� \ B3R(0) and � \ B3R(0) issmall. In addition, the asymptotic data for � is close to that of ��. Moreover, thenew surface � is nondegenerate. 28



This conjecture has much geometric appeal. By translating �1 and �2 alongthe x axis, one can arrange them so that the distance between �1 and �2 is expo-nentially small in a neighborhood of the gluing region (see section 6.3 for details).The di�culties lies in preventing Jacobi �elds in B�1 and B�2 from combining toyield Jacobi �elds on the approximate solution �� with �nite L2 norm. See the �rstparagraph of section 6.6 for more details.As mentioned in the introduction, the purpose of this project is to constructnew examples of CMC surfaces. It grew out of an attempt to answer the followingquestion of Kusner. Given a three-ended CMC surface �1 with chosen end E1, let�2 be the surface one obtains by �rst re
ecting �1 through a plane perpendicularto the asymptotic axis of E1 and then rotating by angle � about that axis. Kusnerasked the question of whether the resulting CMC surfaces one obtains by perturbingthis approximate solution (which depends on the angle �) forms a loop in modulispace. To answer this question one must �rst prove that one can �nd CMC surfacesby this gluing technique, and so we started the present investigations. The originalquestion might now be rephrased as follows. First, can one then glue �1 and �2together to produce a new CMC surface �? Second, as one varies � through a fullrotation, does one obtain a closed loop in moduli space?Our approach for proving these conjectures is the following. First, we constructan approximate solution �� from the original summands with a cut-o� function(see section 6.3). One important property of the approximate solution is the meancurvature of the approximate solution is very close to 1 and the support of H��� 1is a compact set. Next we study the linearized problem. In particular, we showthat we can solve the equation L��u = fwith f 2 Hs�� and u 2 Hs+2� for � > 0 small. To solve this equation we need toknow that L�� is injective on L2 and that it is Fredholm for small positive weights.We also need a version of the earlier Linear Decomposition Lemma (theorem 7).The de�ciency space for �� should come from the ends of �0 and �00 which are notused in the gluing construction. Finally, we need to know that L�� composed witha Greens operator is a contraction. This will allow us to iterate the two operatorsand converge to a solution.6.3 Constructing the Approximate SolutionThe �rst step is to construct an approximate solution. We start with a surfaceX 0 : �0 ,! R3 which is a noncompact, complete embedded k-ended CMC surface of�nite topology. The ends of the surface are the unbounded connected components of�0\(R3nBr0) where r0 is taken large enough so that the number of such components29



remains constant if r0 increases. Roughly speaking, we can decompose the surface�0 into a union of a compact piece and k noncompact ends. Label one of these endsE 0. Recall the result of Korevaar, Kusner. and Solomon stated earlier, that theend E 0 is asymptotic to a Delaunay surface D = D� of necksize �. In particular, ifwe write E 0 as the cylindrical graph of the function �E0 and D as the cylindricalgraph of the function �D, the the result of Korevaar, Kusner, and Solomon impliesthe following estimate holds:k�D(s)� �E0(s; �)k2;� = O(e�s0)for 0 < � < 1 and s0 � r + 1. The norm k � k2;� is the standard H�older normon (s0 � 1; s0 + 1) � S1. Without loss of generality, we can suppose D has the xaxis as its axis of symmetry and that �D has a minimum occurring at x = 0. Thisamounts to a translation and rotation of �0. Moreover, by another translation of�0 we can take the ball Br in the above de�nition of the ends to be centered at(�R; 0; 0) where R is a large positive parameter with R > r+ 1. After this secondtranslation, we can write E 0 as a graph over the cylinder (r �R;1)� S1.
PSfrag replacements �(�R; 0; 0) x-axisE 0 (0; 0; 0)�0 �

Now note that under this situation k�E0(s; �) � �D(s)k2;� = O(e�R) where thenorm is the standard H�older norm on bounded neighborhoods of f0g � S1. Wealso remark that the embedding X : �0 ! R3 depends on R. We will suppressthis dependence, as two such embeddings of �0 described above can only di�er bya translation along the x axis.At this point it is useful to discuss surfaces written as graphs over a cylinder(a; b)� S1. Such surfaces can be parameterized as(s; �) 7! (s; �(s; �) cos �; �(s; �) sin �)for some positive function �. The induced metric from R3 is given byg = (1 + (@s�)2)ds2 + 2(@s�)(@��)dsd� + �2d�2:30



They have a normal vector given by�(s; �) = 1p�2 + (@��)2 + �2(@s�)2 (�@s�;�� cos ��(@��) sin �;�� sin �+(@��) sin �):The have second fundamental formA = [��@2s�ds2 + 2((@s�)(@��)� �(@s@��))dsd� + (�(�� @2��) + 2(@��)2)d�2]p�2 + (@��)2 + �2(@s�)2 :In particular, we can read o� from this information that the mean curvature isgiven byH = ��3(@2s�� @2��) + �2(1 + (@s�)2) + �((@s�)(@��)(@s@��)� @2��) + 2(@��)2(�2 + �2(@s�)2 � 4(@s�)2(@��)2)p�2 + (@��)2 + �2(@s�)2 :Let �00 be the image of �0 under a rotation about the z axis by an angle of �
PSfrag replacements x-axis� (0; 0; 0) �� (R; 0; 0)�00

E 00
and let � = �(s) � 0 be a cuto� function where�(s) = � 1 for s < �10 for s > 1and d�ds , d2�ds2 are bounded. Here we have to be careful about the parameterizationsof E 0 and its image under the rotation E 00. Both are asymptotic to the sameDelaunay surface D, but they are asymptotic to opposite ends of D. We couldjust parameterize E 00 by composing the rotation with the parameterization for E 0.Then we have E 0 parameterized by(s; �) 7! (�s; �E0(�s;��) cos(��); �E0(�s;��) sin(��)) : (r � R;1)� S

1:But then the points E 0(s; �) and E 00(s; �) are far apart. Thus we need to adjust theparameterization to make E 0(s; �) close to E 00(s; �). We can do this by replacing s31



with �s and and � with �� after we rotate. Now we have E 0 written as the graphof �E0 over the cylinder (r � R;1)� S1 and E 00 written as the graph of �E00 overthe cylinder (�1; R� r)� S1. Moreover,k�E0(s; �)� �D(s)k2;� = O(e�R)for s > r � R and k�E00(s; �)� �D(s)k2;� = O(e�R)for s < R � r. So k�E0(s; �)� �E00(s; �)k2;� = O(e�R)for r � R < �1 � s � 1 < R� r.Now we construct the approximate solution �� as follows. We can write part of�� as a graph over the cylinder (r�R;R� r)� S1. In the region corresponding tor � R < s < �1 let �� be parameterized by(s; �) 7! (s; �E0(s; �) cos �; �E0(s; �) sin �)(i.e. in (r � R;�1)� S1 �� is the graph of �E0). In the region 1 < s < R � r let ��be parameterized by (s; �) 7! (s; �E00(s; �) cos �; �E00(s; �) sin �)(i.e. �� is the graph of �E00 in (r � R;�1) � S1). In the region �1 � s � 1parameterize �� by (s; �) 7! (s; ���(s; �) cos �; ��� sin �)where ���(s; �) = �(s)�E0(s; �) + (1� �(s))�E00(s; �):This gives a smooth surface with two boundary components written as a graph overa bounded cylinder. Because �� and �0 are given as graphs of the same functionover the cylinder (r�R;�1)� S1, we can extend �� past the boundary componentfr � Rg � S1 by letting it agree with �0. We can similarly extend �� past theboundary component fR� rg� S1 to agree with �00. Then �� is a smooth surface,and it is CMC in the regions corresponding to s < �1 and s > 1.
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In the region �1 � s � 1 we can use the explicit formula for the mean curvatureof a graph over a cylinder above and the fact thatk�E0(s; �)� ���(s; �)k2;� = O(e�R)to conclude that H�� = 1 +O(e�R).In the gluing region �1 � s � 1 the mean curvature is H�� = �H = 1�  wherethe error term  = O(e�R) by the above computations. However, we can adjustthis construction by changing the translation parameter R. In particular, we canmake R as large as we please. Thus we can make this error  as small as we wishto start the construction.6.4 Nondegeneracy of the Approximate SolutionIn this gluing construction, we need the approximate solution �� to be nondegen-erate, at least when the summands �0 and �00 are. Without nondegeneracy, wemight not even be able to solve the linearized problem to �nd a perturbation ofthe approximate solution to a CMC surface. Unfortunately, this may not alwaysbe the case and we must place additional hypotheses on �0 and �00.Proposition 12 We consider the situation as in section 6.3. Suppose that �0 (andhence �00) is nondegenerate. Suppose further that B�0 satis�es one of the followingconditions:1. B�0 \WE0 = ?2. B�0 \WE0 = spanfw+1 g where w+1 is the asymptotic Jacobi �eld which corre-sponds to a translation along the y axis.33



3. B�0 \WE0 = spanfw+�1g where w+�1 is the asymptotic Jacobi �eld which cor-responds to a translation along the z axis.Then, after possibly rotating �00 about the x-axis by an arbitrarily small angle, forR su�ciently large �� is nondegenerate.The proof of this proposition is somewhat complicated. The idea of the proofgoes as follows. First divide �� into three parts: the original two summands trun-cated at the end we are trying to glue, and the middle \neck" which joins them.We have a parameter R which controls how long the neck is. As R!1, the threepieces converge to the original summands and the model Delaunay surface for theend in question.Suppose the proposition were false. Then there would exist a sequence Ri !1and 0 6= wi 2 L2(��Ri) such that Liwi = L��Riwi = 0. We normalize the sequence sothat kwikL2 = 1. De�ne the surfaces �1;R = �� \ fx � �R2 g, �2;R = �� \ fx � R2 g,and �3;R = �� \ f�R2 � x � R2 g. Also de�ne the surfaces ~�1;R = �� \ fx � �Rg,~�2;R = �� \ fx � Rg, and ~�3;R = �� \ f�R � x � Rg. Note that ~�1;Ri and ~�1;Rjdi�er only by a translation. We will sometimes �nd it convenient to ignore thisdi�erence. Similar remarks hold for ~�2;Ri and ~�2;Rj .Restricted to �1;Ri , we can show that wi ! 0 in Ck using an elliptic boot-strapping argument. Similarly, wij�2;Ri ! 0 in Ck and wij�3;Ri converges to aJacobi �eld in Ck. Now we have three cases to consider: kwikL2(~�1;Ri ) � � > 0,kwikL2(~�2;Ri ) � � > 0, or kwikL2(~�1;Ri ) ! 0 and kwikL2(~�2;Ri ) ! 0. This �rst twocases are similar; one can rule them out by the nondegeneracy of �0 and �00. Inthe last case, we can take kwikL2(~�3;Ri ) > 12 . In this last case, we rescale wi to geta sequence �wi whose weighted sup-norm is 1. We choose the weighting function tobe 1 on ~�1;Ri and ~�2;Ri and large in the middle of ~�3;Ri . Each weighted function�wi must attain its supremum. Again, we have three di�erent cases: the supremumcan occur near one of ~�1;Ri or ~�2;Ri , in the middle of ~�3; Ri, or at unboundeddistance from ~�1;Ri , ~�2;Ri , and the middle of ~�3;Ri . We can rule out the formercase by nondegeneracy of �00 and �00. We can rule out the last case (unboundeddistance from both ~�1;Ri and ~�2;Ri and the middle of ~�3;Ri) by showing �wi mustconverge to a Jacobi �eld on a Delaunay surface with exponential decay on oneend, where the coe�cient in the exponent is too small. For the last case, we mustbring the additional conditions on the bounded null space B�0 to bear. If such asequence �wi did exist, then we could produce a Jacobi �eld on either �0 or �00 whichis not allowed by the hypotheses of the Proposition. (See the opening paragraphof section 6.6 for remarks on what kind of behavior can occur if we do not makethese assumptions.) 34



6.5 Linear Theory to be ProvenWe wish to prove the following about the approximate solution.First we wish to show that the operator L�� : Hs+2� ! Hs� is Fredholm if andonly if � 62 � = f: : : ;�
2;�
1; 0; 
1; 
2; : : : g, where 0 < 
j < 
j+1 !1. The ideabehind this result is that Fredholm properties of L on Hs+2� can be understoodin terms of the Fredholm properties of L on a compact piece K of � and onthe ends Ei. In particular, if L is Fredholm on Hs+2(K) and Hs+2� (Ei), then itis Fredholm on Hs+2� (�). Because L is elliptic, it is Fredholm on Hs+2(K) bystandard microlocal methods. Thus the question is reduced to �nding out whenthe Delaunay Jacobi operator LD is Fredholm on Hs+2� ((0;1) � S1). To addressthis problem, one introduces the Fourier-Laplace transformF(u)(�; t; �) = û(�; t; �) = 1X1 e�i�ku(t+ k; �):Notice that if u 2 Hs� ((0;1) � S1) then û 2 Holo((=(�) < ��);H2((0;1) �
S1)). One conjugates L by F and multiplication by ei�t to get an operator ~L(�) :Hs+2((0;1)� S1) ! Hs((0;1) � S1) which depends holomorphically on �. Thedesired result follows from the analytic Fredholm theorem if we can show ~L isFredholm for one value of �. The 
j's arise as �=(�) where � is a pole of theGreens operator to ~L(�).Next we wish to show the de�ciency space W�� is spanned by the asymptoticJacobi �elds on �� which arise from ends of �0 and/or �00 which are not E 0 or E 00.Let u0 be an asymptotic Jacobi �eld on �0 which decays exponentially on E 0 andlet u00 be an asymptotic Jacobi �eld on �00 which decays exponentially on E 00. Thenwe can construct u on �� which agrees with u0 on �0nE 0 outside a compact set andagrees with u00 on �00nE 00 outside a compact set via a cut-o� function whose gradientis supported in the gluing region. This function u has the right asymptotics to beginthe de�ciency space of ��. By a dimension count, this construction would accountfor all of the de�ciency space of ��.Finally, we wish to show that if u 2 Hs+2� and f 2 Hs�� for � > 0 small andL��u = f then u = w + � where w 2 W�� and � 2 Hs+2� . This would follow from acontour integral. We can invert F by the following formula. Let (t; �) 2 (0;1)�S1and let t = l + ~t where l 2 Z and 0 � ~t < 1. ThenF�1u(t; �) = 12� Z 2�0 ei(�+i�)lu(�+ i�; ~t; �)d�:Moreover, the above integral converges so long as u(� + i�; �; �) 2 Hs��. Shifting� amounts to shifting the contour in the integration of F�1. Shifting the contour35



across � = 0 in the de�nition of ~L above amounts to shifting across a pole of theGreens kernel of ~L.6.6 QuestionsAt �rst glance, the additional restrict on the form of B�0 in Proposition 12 mightseem unnecessary. However, the following can occur. Suppose �0 has a Jacobi �eldwhich decays exponentially on all ends of �0 except E 0 and is asymptotic on E 0to the Jacobi �eld which translates the model Delaunay surface D along its axis.Then one can patch u on �0 to �u on �00 to get an approximate Jacobi �eld on�� with �nite L2 norm. One can construct this approximate Jacobi �eld for allR in the construction of ��. Moreover, one can still construct this approximateJacobi �eld after rotating �00 about the axis of D (recall the Jacobi �elds on Dwhich correspond to translations along the axis are rotationally invariant). Thissituation is similar to that of the Dirac operators studied by Cappell, Lee, andMiller in [1]. They prove that in the case corresponding to the one discussed inthis paragraph, one can �nd arbitrarily small eigenvalues to the Dirac operator.One might hope to prove a similar theorem for the Jacobi operator.The following is an interesting related question. When can one rule out thisbehavior in the bounded null space? In other words, can one characterize the CMCsurfaces � with no Jacobi �elds in B� which decay exponentially on all but one end?As dimB = 12 dimW , one might expect B \WE = f0g most of the time. Anotherinteresting question is the following: if the original summand �0 has one of thesetroublesome Jacobi �elds which prevents us from proving that the approximatesolution is nondegenerate, when can one perturb �0 in M3 and obtain a surfacewith which one can perform this gluing construction? Finally, one can pose thefollowing question. For the above discussion, we have been concentrating on onechosen end E. If � does not satisfy the condition B \WE = f0g, might it satisfythe same condition for another end ~E? For which nondegenerate CMC surfaces �can we not choose such an end? If � 2 M3 is nondegenerate are does not satisfythe hypotheses of Proposition 12 for any choice of end E, then there must existthree curves in M3 through � which each correspond deforming the asymptoticsof one end of � and leaving the asymptotics of the other ends �xed. Moreover,these curves intersect transversely at �. Recall that M3 is smooth near �, so itmakes sense to speak of transverse intersections. If, further, we cannot perturb �inM3 so that we can perform the above gluing construction of some choice of end,then a small neighborhood ofM3 must be foliated by the curves mentioned above.These three foliations would be transverse to each other. Can one ever rule outthis behavior? 36
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