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Abstract

We review the recently developed program for constructing and
studying solutions of the Einstein constraint equations using gluing
techniques. We discuss what we believe are sharp conditions sufficient
for a pair of solutions to admit gluing via a connected sum or “worm-
hole”, and describe how one carries out the gluing. We also discuss a
number of useful applications.

1 Introduction

The initial value formulation is the most widely used procedure for con-
structing solutions of Einstein’s gravitational filed equations, and the first
step in carrying out such a construction is that of finding a set of initial data
(Σ3, γ,K, ψ, π) which satisfies the Einstein constraint equations

R(γ)− |K|2γ − (trγK)2 = 2ρ(γ, ψ, π) (1.1)

Di(Kij − trγKγ
ij) = J(γ, ψ, π). (1.2)

Here Σ3 is a 3 dimensional manifold, γ is a Riemannian metric on Σ3 with
scalar curvature R(γ), K is a symmetric tensor field, (ψ, π) represent any
non gravitational fields which may be present, and ρ and J are the energy
density and momentum density functions of these non gravitational fields.
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Since the early 1970’s, the predominately used procedure for construct-
ing and studying sets of data which satisfy the constraints has been the
conformal method [3, 5] and the closely related conformal thin sandwich
method [18]. These conformal techniques have been very useful both prac-
tically (for explicit construction of solutions) and theoretically (for proving
theorems regarding properties of the solutions). They have not, however,
been very successful in handling non constant mean curvature data sets.
They are also somewhat limited in their ability to construct data for mod-
eling prescribed physical systems.

As an alternative analytical tool, since 2000, “gluing techniques” have
been developed for working with solutions of the constraints. One of the
ideas in this context is to choose a pair of points p1 and p2 on a pair
of known solutions (Σ3

1, γ1,K1, ψ1, π1) and (Σ3
2, γ2,K2, ψ2, π2) of the con-

straints, and construct a new solution on the connected sum manifold Σ3
1#Σ3

2

which agrees exactly with the original solutions outside a small neighbor-
hood of the neck S2×I (for I an interval) now connecting the regions around
the excised points p1 and p2.

Such a gluing operation cannot be carried out for every possible choice
of pairs of data and pairs of points; however it can be done for generic such
choices. We describe in Section 2 the explicit conditions on the data and
the points which guarantee that gluing can be done, and we argue that
these conditions are likely sharp. We then discuss in Section 3 some of the
ideas and techniques used in carrying out the gluing and in showing that it
can be carried out to completion in the appropriate cases. In Section 4 we
review a number of the applications of gluing. Using it, we can attach black
holes and wormholes to given spacetimes, we can prove that there are no
topological restrictions on manifolds admitting asymptotically Euclidean or
asymptotically hyperbolic solutions of the constraints, and we can show that
there exist maximally developed vacuum solutions of Einstein’s equations
which contain a compact Cauchy surface but do not admit any constant
mean curvature Cauchy surfaces. We make concluding remarks in Section
5.

Note that in this review paper, none of the proofs of the theorems we
discuss are carried out in any detail; those appear in the succession of papers
[7, 8, 13–15].

2



2 When Gluing Can be Done

Gluing techniques have been applied to solutions of a number of geometri-
cally motivated PDE systems, so much so that they are now regarded as a
standard tool in geometric analysis. In all cases, one has to impose a “non
degeneracy” requirement which serves as a sufficient condition for successful
gluing. This is true here as well for the Einstein constraint equations. While
in our earlier results [14,15] we have stated alternatives, we now believe that
the sharpest condition for gluing is based on the following

Definition 1 Let (Σ3, γ.K) be a set of initial data satisfying the Einstein
vacuum constraint equations, and let p ∈ Σ3 and let U be an open set
containing p. The data has No KIDs in U if there do not exist non trivial
solutions (N,Y ) to the formal adjoint of the linearized constraint equations:

0 =


2(∇(iYj) −∇lYlgij −KijN + trK Ngij)

∇lYlKij − 2K l
(i∇j)Yl +Kq

l∇qY
lgij −∆Ngij +∇i∇jN

+(∇pKlpgij −∇lKij)Y l −NRic (g)ij

+2NK l
iKjl − 2N(tr K)Kij

 , (2.1)

in U .

A similar definition holds for the Einstein-Maxwell, Einstein-Yang-Mills,
Einstein-Vlasov, and other Einstein-matter systems. Geometrically, the No
KIDs condition means that there are no Killing vectors defined on the do-
main of dependence of U in the spacetime development [17].

With the No KiDs definition in hand, we may now state the vacuum
version of our main gluing result:

Theorem 2.1 Let (Σ3
1, γ1,K1) and (Σ3

2, γ2,K2) be a pair of smooth initial
data sets which satisfy the vacuum (ρ = 0 and J = 0) constraint equations
(1.1)-(1.2). Let p1 ∈ Σ3

1 and p2 ∈ Σ3
2 be a pair of points, with open neigh-

borhoods p1 ∈ U1 and p2 ∈ U2 in which the No KIDs condition is satisfied.
There exists a smooth data set (Σ3

1#Σ3
2, γ̂, K̂) which satisfies the Einstein

constraint equations everywhere, and which agrees with (γ1,K1) and (γ2,K2)
away from U1 ∪ U2.

To see that some non degeneracy condition (of the nature of No KIDs)
is indeed needed for gluing to be permitted, it is useful to consider the
following example: Let (Σ3

1, γ1,K1) be any solution of the constraints which
has Σ3

1 compact and γ1 non flat, and let (Σ3
2, γ2,K2) = (R3, f lat, 0). If one

3



could glue these two initial data sets, then one would have an asymptotically
Euclidean data set which is not data for Minkowski spacetime, and yet is
identical to such data outside of a compact region. It would follow that the
data would have mass zero, which would be a violation of the positive mass
theorem [20–22]. We are this forced to conclude that the gluing of these
particular data sets cannot be done. We note that the data (Σ3

2, γ2,K2) =
(R3, f lat, 0) violates the No KIDs condition at every point.

How restrictive is the No KIDs condition? As shown by Beig, Chrusciel
and Schoen [4], a generic initial data set (appropriately defined) satisfies the
No KIDs condition almost everywhere, so the condition is fairly mild.

While we believe that a result very similar to Theorem 2.1 holds for
Einstein-Maxwell and other Einstein-matter field theories, no such theorem
has yet been proven. We have in fact established conformal (“non local-
ized”) gluing results of the nature discussed in Section 3 for many Einstein-
matter theories (See [13]); however to complete the job and obtain results
(“localized”) of the nature of Theorem 2.1, we need also to show that the
Corvino-Schoen [6, 10, 11] type procedures can be extended to non vacuum
theories. While this has not yet been done, there do not appear to be any
fundamental impediments to doing it.

3 How Gluing Works

Our gluing results have been developed and proven in three stages (with Rafe
Mazzeo contributing to the first two). The first result, appearing in [14],
shows that if we have a pair of initial data sets (Σ3

1, γ1,K1) and (Σ3
2, γ2,K2)

which both have constant mean curvature (“CMC”) of the same value, and
which satisfy the non degeneracy condition that, if either Σ3

1 or Σ3
2 is a

closed manifold, then the corresponding K1 or K2 may not be identically
zero, and the corresponding geometry γ1 or γ2 does not have a conformal
Killing field with a zero at the gluing points p1 or p2, then a gluing of the
following sort can be carried out (which we call a “non localized gluing”).
One can find a one parameter family (Σ3

1#Σ3
2, γT ,KT ) of initial data sets,

all of which satisfy the constraints everywhere on Σ3
1#Σ3

2, with (γT ,KT )
approaching arbitrarily close to (γ1K1) and (γ2,K2), away from the “neck”
(or bridge) connecting Σ3

1 to Σ3
2, as T → ∞. Note that this type of “non

localized” gluing, involving changes in the data everywhere, approaching
the original data only in a limit, is the traditional form of gluing theorem
which has generally been proven for geometric PDE systems such as those
corresponding to constant scalar curvature metrics.
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In our second work [15], we show that the CMC condition need only be
imposed locally near the points about which one wishes to glue: gluing can
then be carried out regardless of the mean curvature of the data sets away
from the resulting neck, so long as an additional non degeneracy condition
(concerning the linearization of the equations which arise in solving the
constraints via the conformal method) holds.

Finally in our third work [7,8] we obtain the result stated in Theorem 2.1.
In particular, we show that gluing can be carried out with no restrictions
whatsoever on the mean curvature. In addition, we show that the gluing
can be done in such a way that the data changes only locally; away from a
neighborhood of the gluing points, the data remains completely unchanged.
We call this “localized gluing”.

Since the proof (and constructions) of our localized gluing result (Theo-
rem 2.1) rely on those of the non localized result, and since the non localized
gluing theorem is of interest in its own right, we now sketch the ideas used
to obtain both results.

The proof of the non localized gluing theorem relies primarily on the
conformal method. It proceeds roughly as follows: We first apply to each
of the given sets of data (Σ3

1, γ1,K1) and (Σ3
2, γ2,K2) a conformal transfor-

mation which is singular at the gluing point, and the identity away from a
neighborhood of that point. Along with the transformations γ → γc = ψ4γ
of the metrics , one transforms the traceless part σ of K via the formula
σ → σc = ψ−2σ, thereby guaranteeing that if divγσ = 0, then divγcσc = 0.
As a result of these transformations, the data (Σ3

1, γ1,K1) and (Σ3
2, γ2,K2)

near the gluing points are each replaced by data on an infinite half tube
whose geometry approaches that of a round S2 ×R1 cylinder.

Next, we connect the two cylinders at a coordinate parameter length
T/2 along each, using cutoff functions to smoothly join the data fields from
each side. We obtain (Σ3

1#Σ3
2, γ̂T , K̂T ), which is no longer a solution of the

constraints.
It follows from the construction of γ̂T and K̂T that divγT σT is non zero.

The next step in the gluing construction is to find a vector field XT such that
divγT (LXT ) = −divγT σT , where L is the conformal Killing operator. For
such a vector field, one verifies that divγT σ̃T = 0, where σ̃T := σT + LXT .
In the course of finding XT one also shows that, while LXT is generally non
zero everywhere on Σ3

1#Σ3
2, it approaches zero away from the bridge joining

Σ3
1 and Σ3

2 for large T .
There is one remaining step to carry out in proving our first gluing result:
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to solve the Lichnerowicz equation

∆γ̂T
φT =

1
8
Rγ̂T

φT −
1
8
|σ̃|2γ̂T

φ−7 +
1
12
τ2φ5, (3.1)

for the positive scalar φT , thus obtaining data γ̄T = φ4
T γ̂T and K̄T = φ−2σ̃+

1
3φ

4γ̂T τ which satisfies the constraints everywhere on Σ3
1#Σ3

2 for all T . (Here
τ is the trace of K.) To prove that the solution φT exists, and further
to prove that for large T , the data (γ̄, K̄) approaches the original data
(γ1,K1)) and (γ2,K2) in appropriate regions, one needs to show that for
an appropriate construction of a scalar ψT from the conformal blow up
functions ψ1 and ψ2, together with cutoff functions, ψT is arbitrarily close
to a solution of the Lichnerowicz equation for sufficiently large T .

We note that while this non localized gluing result is generally weaker
than our later results, it does have the virtue that it allows Minkowski data
to be glued (non locally) to other solutions of the constraints, since the
hypotheses for our first result do not require a non degeneracy condition for
data on R3. There is no violation of the positive mass theorem, since after
the non localized gluing is done, the data on Σ3#R3 differs from Minkowski
data in the asymptotically flat region, and in particular may have non zero
mass.

As noted above, one of the key features of our work on the local gluing
results of [7, 8] is the removal altogether of any CMC requirement on the
sets of data to be glued. We do this through the use of a result due to
Bartnik [2], which says that for any choice of a set of initial data satisfying
the constraints, for any real number τ , and for any point p, there is always
a deformation of the data in a neighborhood of p (via the Einstein evolution
equations) which is still a solution of the constraint equations, and which has
mean curvature equal to the constant value τ throughout that neighborhood.
Using this result, we show that we may glue any given pair of sets of initial
data satisfying the constraints in a fixed (now CMC) neighborhood of the
points about which we wish to glue, regardless of their mean curvatures,
since we may first deform the data to CMC data in neighborhoods of the
gluing points, and then proceed as in our first result adapted to a manifold
with boundary (as a boundary value problem).

The further changes involved in going from our global results in [14, 15]
to Theorem 2.1 are two-fold. First, we replace our earlier non degeneracy
condition by the No KIDs condition. Second, we introduce a non conformal
deformation as a tool to replace non localized gluing by localized gluing, in
which the data is completely unchanged away from the bridge connecting
the gluing regions. Specifically, working with the constraints as an under-
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determined system, we use techniques developed by Corvino and refined by
Corvino-Schoen and Chruściel-Delay, to deform the data in an annular re-
gion around each end of the bridge in such a way that all of the gluing is
done in the bridge and in its neighborhood, with no changes occurring away
from this region. The details are found in [7, 8].

Our discussion here has focussed on gluing solutions of the Einstein vac-
uum constraint equations. As shown in [13], non localized conformal gluing
can readily be carried out for the Einstein-Maxwell, Einstein-Yang-Mills,
Einstein-fluid, Einstein-Vlaxov, and other non vacuum field theories. To
obtain non localized gluing for these field equations, it will be necessary to
first extend the Corvino-Schoen technique to these non vacuum theories;
this has not been done yet. We do note however that we have, in [8], estab-
lished a non-vacuum version of Theorem 2.1 which allows for arbitrary non-
gravitational fields satisfying the dominant energy condition. These results
insure that the dominant energy condition is preserved under the gluing; we
do not, however, claim to control any additional evolution equations (such
as the Maxwell equations) which these additional fields may satisfy.

4 Applications of Gluing

Studies of the gluing of solutions of the Einstein constraint equations have
always been strongly motivated by applications. Indeed, we initiated the
whole program with the goal in mind of constructing “skew data sets”,
which are instrumental in showing that there are vacuum maximal globally
hyperbolic spacetime solutions of the Einstein field equations which have no
CMC Cauchy surfaces. The idea is this: We define a skew data set to be
a solution (Σ3, γ,K) of the constraint equations with Σ3 = Λ3#Λ3 being a
manifold which does not admit a metric with scalar curvature R ≥ 0 [19],
and with η : Λ3#Λ3 → Λ3#Λ3 a reflection map (η2 = Id) such that η∗γ =
γ (reflection symmetry) and η∗K = −K (reflection skew symmetry). As
indicated by Eardley and Witt (unpublished) and Bartnik [1] the maximal
spacetime development of a skew symmetric set of data cannot contain a
CMC Cauchy surface. This is because one verifies that if a Cauchy surface
with data (γ̄, K̄) is contained in the development of skew symmetric data,
then there is a Cauchy surface with data (γ̄,−K̄) in the development as well.
Thus if (γ̄, K̄) has CMC τ , then there is a Cauchy surface with CMC −τ as
well. It then follows from barrier theorems [1], that if the development of a
set of skew symmetric data has a CMC Cauchy surface, then it must have a
maximal (trK = 0) Cauchy surface as well. Now if this were true, it would
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follow from the constraints that the data on this maximal Cauchy surface
would have R = |K|2 ≥ 0. This would violate our assumption regarding the
geometries admitted by Σ3. We conclude that the development admits no
CMC Cauchy surfaces.

To prove that there are vacuum spacetimes with no CMC Cauchy data
surfaces, it remains to show that we can construct skew data sets. But this
can be done readily via using our local gluing techniques as follows (see [8]
for details). We first use the conformal method to find a solution of the
constraints (T 3, γ,K) which has no KIDs. Then noting that if (T 3, γ,K)
solves the constraints, then so to does (T 3, γ,−K). We proceed to glue
(T 3, γ,−K) to (T 3, γ,K) at equivalent points. A bit of analysis shows that
this gluing produces skew symmetric data, as desired.

Most of our applications of gluing are more direct than this one. We
may, for example, use gluing to produce initial data for spacetimes con-
taining multiple black holes. We do this by choosing an arbitrary set of
asymptotically Euclidean initial data, choosing a set of points {p1, p2, ...pN}
on that data set, and then gluing (non locally) a copy of Euclidean space
data (with K=0) to each of the points {...pk...}. (This can also be done lo-
cally with a generic asymptotically flat solution which satisfies the no KIDs
condition on every open set.) Clearly this procedure produces data with N
minimal surfaces, or apparent horizons. As shown in [9], in fact, in certain
situations, one can verify that N independent black holes develop.

We can also use gluing to add an arbitrary number of wormholes, at least
for a short period, to a given spacetime. Indeed, given a set of constraint-
satisfying initial data (Σ3, γ,K) and a choice of a pair of open regions U
and W in Σ3, we can use gluing to find a new solution which is identical to
(Σ3, γ,K) outside of U and W , and which contains an arbitrary number of
wormholes connecting U and W . To do this, we simply note that with small
deformations, we can guarantee that U and W admit no KIDs; further, we
note that while our gluing results have been stated for points on independent
sets of data, in fact one readily shows using the same techniques that gluing
can be carried out for two points on the same data set (see [14]). This tells
us nothing about the long time future development of an initial data set
with multiple wormholes.

We note one further application: verifying that there are no topological
restrictions on constraint-satisfying initial data sets. To show this, we first
recall that since any closed three manifold Σ3 admits a constant negative
scalar curvature metric γ̂ , one can always produce constraint-satisfying
data on Σ3 simply by choosing K to be pure trace of the right magnitude.
This has long been known. Our new application is to show that for any
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closed three manifold Σ3 we can always find asymptotically Euclidean as
well as asymptotically hyperbolic solutions of the constraints on Σ3 with
a point removed. One finds these by gluing either an asymptotically flat
or asymptotically hyperbolic solution of the constraints on R3 to a small
deformation of the simple solution (Σ3, γ,K = cγ). For the details of these
applications we refer the interested reader to [14] (for the asymptotically
hyperbolic case) and [15] (for the asymptotically Euclidean case).

5 Concluding Remarks

It is unlikely that the gluing results we have obtained for solutions of the
Einstein constraint equations can be significantly strengthened, apart from
allowing the presence of non gravitational fields (with coupled, additional
evolution equations). (Note that while we have not discussed the issue here,
as shown in our papers, all of our results do hold for general dimension.)

On the other hand, we believe that there might be a way to generalize
gluing in the following sense: One might consider gluing along corresponding
embedded submanifolds, of codimension at least three, of the initial data
sets, rather than at corresponding points. Recent work of Mazzieri [16] with
constant scalar curvature metrics suggests that this should indeed work. If
so, gluing could prove useful in the study of the stability of black rings, and
more generally, the topology of all “black objects” in higher dimensional
spacetimes.

Whether or not this new version of gluing works, it is clear that gluing
provides a powerful new tool for constructing and studying solutions of the
Einstein constraint equations.
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