Second cohomology for finite groups of Lie type

Christopher M. Drupieski

University of Georgia ⇒ DePaul University

August 4, 2012

References: University of Georgia VIGRE Algebra Group, Second cohomology for finite groups of Lie type, J. Algebra **360** (2012), 21–52. First cohomology for finite groups of Lie type: Simple modules with small dominant weights, to appear in Trans. Amer. Math. Soc.

Ground rules:

- k algebraically closed field of characteristic p > 0
- G simple, simply-connected algebraic group scheme over k
- T maximal torus of G
- B Borel subgroup of G containing T
- U unipotent radical of B
- $F: G \rightarrow G$ standard Frobenius morphism on G
- $G(\mathbb{F}_q)=G^{F'}$ finite subgroup of \mathbb{F}_q -rational points in $G,\ q=p^r$
- $G_r = \ker(F^r)$ scheme-theoretic r-th Frobenius kernel of G

Example: The Special Linear Group

- $G = SL_n(k)$
- T diagonal matrices in G
- B lower triangular matrices in G
- ullet U lower triangular unipotent matrices in G
- $F:(a_{ij})\mapsto(a_{ij}^p)$
- $G(\mathbb{F}_q) = SL_n(\mathbb{F}_q)$
- For each commutative k-algebra A,

$$(SL_n)_r(A) = \left\{ (a_{ij}) \in SL_n(A) : (a_{ij}^{p^r}) = \text{ the identity matrix} \right\}.$$

 $(SL_n)_r(A)$ is a nontrivial group if and only if A contains nilpotents.

The Goal

Find $H^1(G(\mathbb{F}_q), V)$ and $H^2(G(\mathbb{F}_q), V)$ for V an irreducible $G(\mathbb{F}_q)$ -module.

Subgoals (i.e., what people have actually managed to do):

- Compute for V in various classes of irreducible $G(\mathbb{F}_q)$ -modules
- Determine sufficient conditions for the cohomology groups to vanish
- Compute under restrictions on p and q (specific small values, or $\gg 0$)

Refined Goal

Relate $H^1(G(\mathbb{F}_q), V)$ and $H^2(G(\mathbb{F}_q), V)$ to rational cohomology for G.

Refined Goal

Relate $H^1(G(\mathbb{F}_q), V)$ and $H^2(G(\mathbb{F}_q), V)$ to rational cohomology for G.

Why this is reasonable and desirable:

- The irreducible $kG(\mathbb{F}_q)$ -modules all lift to rational G-modules.
- More machinery available for dealing with rational G-cohomology.
- Rational G-modules carry more information: Every rational G-module decomposes into simultaneous eigenspaces (weight spaces) for T.

Example: Adjoint representation of $SL_3(\mathbb{F}_4)$ on \mathfrak{sl}_3

Adjoint representation \mathfrak{sl}_3 - traceless 3×3 matrices with coefficients in k. Basis of eigenvectors for the conjugation action of T:

$$\{E_{ij}, E_{ii} - E_{i+1,i+1} : 1 \le i, j \le n, i \ne j\}$$

If n=3, then $T(\mathbb{F}_4)$ can't distinguish the eigenvalues of E_{12} and E_{23} . In fact, all root spaces look the same to $T(\mathbb{F}_4)$ up to twisting by $Gal(\mathbb{F}_4)$.

Important and popular facts:

$$H^{i}(G(\mathbb{F}_{q}), V) \hookrightarrow H^{i}(B(\mathbb{F}_{q}), V) = H^{i}(U(\mathbb{F}_{q}), V)^{T(\mathbb{F}_{q})}$$

$$H^{i}(G, V) \cong H^{i}(B, V) = H^{i}(U, V)^{T}$$

$$H^{i}(B_{r}, V) = H^{i}(U_{r}, V)^{T_{r}}$$

Cline, Parshall, Scott (1975, 1977), Jones (1975)

Computed, for all p and q, the dimension of $H^1(G(\mathbb{F}_q), L(\lambda))$ for λ a nonzero minimal dominant weight, i.e., a minuscule weight or a maximal short root.

- $L(\lambda)$ is the head of the Weyl module $V(\lambda)$.
- Lower bound: $\dim \operatorname{rad}_G V(\lambda) \leq \dim \operatorname{H}^1(G(\mathbb{F}_q), L(\lambda))$
- Upper bound in terms of spaces of cocycles for root subgroups:

$$\sum_{\alpha \in \Delta} \dim Z^1(U_\alpha(\mathbb{F}_q), L(\lambda))^{T(\mathbb{F}_q)} - (\dim L(\lambda)^{T(\mathbb{F}_q)} - \dim L(\lambda)^{B(\mathbb{F}_q)})$$

For λ a nonzero minimal dominant weight, dim $H^1(G(\mathbb{F}_q), L(\lambda)) \leq 1$, except for type D_{2n} with p=2, where the dimension is sometimes 2.

Avrunin (1978)

Suppose for all weights μ of $T(\mathbb{F}_q)$ in V and for all $\alpha, \beta \in \Phi$ that $\alpha \not\equiv \mu$ and $(\alpha, \beta) \not\equiv \mu$ mod $Gal(\mathbb{F}_q)$. Then $H^2(G(\mathbb{F}_q), V) = 0$.

Proof

Look at a central series for $U(\mathbb{F}_q)$ where the factors are products of root subgroups to analyze the weights of $T(\mathbb{F}_q)$ in $H^2(U(\mathbb{F}_q),V)$. Use this to deduce that $H^2(U(\mathbb{F}_q),V)^{T(\mathbb{F}_q)}=0$, and hence $H^2(G(\mathbb{F}_q),V)=0$.

Corollary (Avrunin)

Suppose q > 4. Let $\lambda \in X(T)_+$ be a nonzero minimal dominant weight. Then $H^2(G(\mathbb{F}_q), L(\lambda)) = 0$, except maybe type A_2 , q = 5, $\lambda \in \{\omega_1, \omega_2\}$.

Cline, Parshall, Scott, van der Kallen (1977)

Let V be a finite-dimensional rational G-module, and let $i \in \mathbb{N}$. Then for all sufficiently large e and q, the restriction map is an isomorphism

$$\mathsf{H}^i(G,V^{(e)})\stackrel{\sim}{\longrightarrow} \mathsf{H}^i(G(\mathbb{F}_q),V^{(e)}).$$

$$H^{i}(G, V) \xrightarrow{\sim} H^{i}(B, V)$$

$$\downarrow \qquad \qquad \downarrow$$

$$H^{i}(G(\mathbb{F}_{q}), V) \hookrightarrow H^{i}(B(\mathbb{F}_{q}), V).$$

So for H^1 and H^2 , we can get answers for $G(\mathbb{F}_q)$ in terms of G-cohomology if we take q large, and if we sometimes also replace V by $V^{(1)}$ or $V^{(2)}$.

Consider $\operatorname{ind}_{G(\mathbb{F}_q)}^{G}(-)$. There exists a short exact sequence

$$0 o k o \mathsf{ind}_{G(\mathbb{F}_q)}^G(k) o \mathsf{N} o 0.$$

Let M be a rational G-module. Obtain the new short exact sequence

$$0 \to M \to \mathsf{ind}_{G(\mathbb{F}_q)}^G(M) \to M \otimes N \to 0.$$

Now using $\operatorname{Ext}_G^n(k,\operatorname{ind}_{G(\mathbb{F}_q)}^G(M))\cong \operatorname{Ext}_{G(\mathbb{F}_q)}^n(k,M)$, we get:

Long exact sequence for restriction

Bendel, Nakano, Pillen (2010)

 $\operatorname{ind}_{G(\mathbb{F}_q)}^G(k)$ admits a filtration by G-submodules with sections of the form

$$H^0(\mu)\otimes H^0(\mu^*)^{(r)} \quad \mu\in X(T)_+.$$

Corollary: $N = \operatorname{coker}(k \to \operatorname{ind}_{G(\mathbb{F}_q)}^G(k))$ admits such a filtration with $\mu \neq 0$.

Then $\operatorname{Ext}_G^i(k,L(\lambda)\otimes N)=0$ if it is zero for each section, i.e., if for $\mu\neq 0$,

$$\operatorname{Ext}_G^i(V(\mu)^{(r)}, L(\lambda) \otimes H^0(\mu)) = 0.$$

30,000 ft (9,144 m) view of our strategy

Isomorphism theorem for first cohomology

Let $\lambda \in X_r(T)$. Suppose $\operatorname{Ext}^1_{U_r}(k,L(\lambda))$ is semisimple as a B/U_r -module, and that $\operatorname{Ext}^1_{U_r}(k,L(\lambda))^{T(\mathbb{F}_q)} = \operatorname{Ext}^1_{U_r}(k,L(\lambda))^T$. Then

$$\mathsf{H}^1(G,L(\lambda))\cong \mathsf{H}^1(G(\mathbb{F}_q),L(\lambda)).$$

Isomorphism theorem for first cohomology

Let $\lambda \in X_r(T)$. Suppose $\operatorname{Ext}^1_{U_r}(k, L(\lambda))$ is semisimple as a B/U_r -module, and that $\operatorname{Ext}^1_{U_r}(k, L(\lambda))^{T(\mathbb{F}_q)} = \operatorname{Ext}^1_{U_r}(k, L(\lambda))^T$. Then

$$\mathsf{H}^1(G,L(\lambda))\cong \mathsf{H}^1(G(\mathbb{F}_q),L(\lambda)).$$

Isomorphism theorem for second cohomology

Let $\lambda \in X_r(T)$. Suppose $\operatorname{Ext}^1_{U_r}(k,L(\lambda))$ is semisimple as a B/U_r -module, that $\operatorname{Ext}^i_{U_r}(k,L(\lambda))^{T(\mathbb{F}_q)} = \operatorname{Ext}^i_{U_r}(k,L(\lambda))^T$ for $i \in \{1,2\}$, and that

$$p^r > \max\left\{-(\nu, \gamma^{\vee}) : \gamma \in \Delta, \; \operatorname{Ext}^1_{U_r}(k, L(\lambda))_{\nu} \neq 0\right\}.$$

Then $H^2(G, L(\lambda)) \cong H^2(G(\mathbb{F}_q), L(\lambda))$.

Theorem 3.2.4. Suppose $\lambda \in X(T)_+$ is a dominant root or is less than or equal to a fundamental weight. Assume that p > 5 if Φ is of type E_8 or G_2 , and p > 3 otherwise. Then as a B/U_r -module, $\operatorname{Ext}^1_{U_r}(L(\lambda), k) = \operatorname{soc}_{B/U_r}\operatorname{Ext}^1_{U_r}(L(\lambda), k)$, that is,

$$\operatorname{Ext}^1_{U_r}\big(L(\lambda),k\big) \cong \bigoplus_{\alpha \in \Delta} -s_\alpha \cdot \lambda \oplus \bigoplus_{\substack{\alpha \in \Delta \\ 0 < n < r}} -\big(\lambda - p^n \alpha\big) \oplus \bigoplus_{\substack{\sigma \in X(T)_+ \\ \sigma < \lambda}} (-\sigma)^{\oplus m_\sigma}$$

where $m_{\sigma} = \dim \operatorname{Ext}_{G}^{1}(L(\lambda), H^{0}(\sigma)).$

- Determine the socle using Andersen's results on $\operatorname{Ext}_B^1(L(\lambda),\mu)$.
- Get an injection $\operatorname{Ext}^1_{U_r}(L(\lambda),k) \hookrightarrow Q$ into the injective hull of the socle. Then show that $\operatorname{soc}_{B/U_r}\operatorname{Ext}^1_{U_r}(L(\lambda),k) = \operatorname{Ext}^1_{U_r}(L(\lambda),k)$ by showing that no weight from the second socle layer of Q can be a weight of $\operatorname{Ext}^1_{U_r}(L(\lambda),k)$.

First Cohomology Main Theorem

Let $\lambda \in X(T)_+$ be a fundamental dominant weight. Assume q>3 and

$$p > 2$$
 if Φ has type A_n , D_n ;
 $p > 3$ if Φ has type B_n , C_n , E_6 , E_7 , F_4 , G_2 ;
 $p > 5$ if Φ has type E_8 .

Then dim $H^1(G(\mathbb{F}_q), L(\lambda)) = \dim H^1(G, L(\lambda)) \leq 1$.

The spaces are nonzero (and one-dimensional) in the following cases:

- Φ has type E_7 , p=7, and $\lambda=\omega_6$; and
- Φ has type C_n , $n \ge 3$, and $\lambda = \omega_j$ with $\frac{j}{2}$ a nonzero term in the p-adic expansion of n+1, but not the last term in the expansion.

Second Cohomology Main Theorem A

Suppose p>3 and q>5. Let $\lambda\in X(T)_+$ be less than or equal to a fundamental dominant weight. Assume also that λ is not a dominant root. Then $H^2(G,L(\lambda))\cong H^2(G(\mathbb{F}_q),L(\lambda))$.

Corollary

Suppose p, q, λ are as above. Then $H^2(G(\mathbb{F}_q), L(\lambda)) = 0$ except possibly in a small number of explicit cases in exceptional types, and except possibly in type C_n when $\lambda = \omega_j$ with j even and $p \leq n$.

Second Cohomology Main Theorem B

Let p>3 and q>5. Let $\lambda=\widetilde{\alpha}$ be the highest root. Assume $p\nmid n+1$ in type A_n , and $p\nmid n-1$ in type B_n . Then $L(\lambda)=H^0(\lambda)=\mathfrak{g}$, and

$$\mathsf{H}^2(G(\mathbb{F}_q),\mathfrak{g})=k.$$

Also have $H^2(SL_3(\mathbb{F}_5), L(\omega_1)) = H^2(SL_3(\mathbb{F}_5), L(\omega_2)) = k$.

Different strategy in these cases for analyzing the long exact sequence:

$$ightarrow \ \operatorname{\mathsf{Ext}}^1_G(k,L(\lambda)) \ \stackrel{\mathsf{res}}{ o} \ \operatorname{\mathsf{Ext}}^1_{G(\mathbb{F}_q)}(k,L(\lambda)) \
ightarrow \ \operatorname{\mathsf{Ext}}^1_G(k,L(\lambda)\otimes \mathsf{N})$$

$$ightarrow \operatorname{Ext}_G^2(k,L(\lambda)) \stackrel{\mathsf{res}}{ o} \operatorname{Ext}_{G(\mathbb{F}_q)}^2(k,L(\lambda))
ightarrow \operatorname{Ext}_G^2(k,L(\lambda)\otimes N)$$

$$\rightarrow \operatorname{Ext}_G^3(k, L(\lambda)) \rightarrow \cdots$$

Our original commutative diagram:

$$\mathsf{H}^{1}(G, L(\lambda)) \xrightarrow{\sim} \mathsf{H}^{1}(B, L(\lambda))$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathsf{H}^{1}(G(\mathbb{F}_{q}), L(\lambda)) \hookrightarrow \mathsf{H}^{1}(B(\mathbb{F}_{q}), L(\lambda)).$$

Our original commutative diagram:

$$\mathsf{H}^{1}(G,L(\lambda)) \xrightarrow{\sim} \mathsf{H}^{1}(B,L(\lambda))$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathsf{H}^{1}(G(\mathbb{F}_{q}),L(\lambda)) \hookrightarrow \mathsf{H}^{1}(B(\mathbb{F}_{q}),L(\lambda)).$$

New diagram:

$$\mathsf{H}^1(G,L(\lambda)) \xrightarrow{\sim} \mathsf{H}^1(B,L(\lambda))$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathsf{H}^1(G(\mathbb{F}_q),L(\lambda)) \xrightarrow{\sim} \mathsf{H}^1(U(\mathbb{F}_q),L(\lambda))^{T(\mathbb{F}_q)} \qquad \mathsf{H}^1(U_1,L(\lambda))^{T(\mathbb{F}_q)}$$

Lemma

Suppose p > 2 and $\lambda \in X_1(T)$. Then $H^1(B, L(\lambda)) \hookrightarrow H^1(U_1, L(\lambda))^{T(\mathbb{F}_q)}$.

Proof

LHS spectral sequence for B/B_1 combined with $\operatorname{Ext}_B^1(k, L(\lambda))$.

Recall:

- $U(\mathbb{F}_q)$ is filtered by its lower central series.
- $kU(\mathbb{F}_q)$ is filtered by the powers of its augmentation ideal.

Theorem (Lazard)

gr $U(\mathbb{F}_q)$ is naturally a p-restricted Lie algebra over \mathbb{F}_p .

Theorem (Quillen)

There exists a natural isomorphism gr $kU(\mathbb{F}_q)\cong u(\operatorname{gr} U(\mathbb{F}_q)\otimes_{\mathbb{F}_p} k)$.

Lin, Nakano (1999), Friedlander (2010)

There exists a natural isomorphism gr $kU(\mathbb{F}_q) \cong u(\mathfrak{u}^{\oplus r})$.

If M is a rational B-module, then there exists a (weight) filtration on M such that $\operatorname{gr} M$ is naturally a $u(\mathfrak{u}^{\oplus r})$ -module. The restriction of $\operatorname{gr} M$ to the first (or any) factor $\mathfrak{u} \subset \mathfrak{u}^{\oplus r}$ identifies with $M|_{\mathfrak{u}}$ (equivalently, with $M|_{U_1}$).

Consequence: There exists a May spectral sequence

$$E_1^{i,j} = \mathsf{H}^{i+j}(u(\mathfrak{u}^{\oplus r}), \operatorname{gr} M)_{(i)} \Rightarrow \mathsf{H}^{i+j}(U(\mathbb{F}_q), M).$$

Upshot: There exist vector space maps

$$\mathsf{H}^1(U(\mathbb{F}_q),M)\longrightarrow \mathsf{H}^1(u(\mathfrak{u}^{\oplus r}),\operatorname{gr} M)^{T(\mathbb{F}_q)}\stackrel{\mathsf{res}}{\longrightarrow} \mathsf{H}^1(U_1,M)^{T(\mathbb{F}_q)}.$$

Apply results of Parshall and Scott on filtered algebras, and spectral sequence and weight arguments, to conclude that the new diagram commutes and that the bottom row consists of injections:

$$H^{1}(G, L(\lambda)) \xrightarrow{\sim} H^{1}(U, L(\lambda))^{T}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$H^{1}(G(\mathbb{F}_{q}), L(\lambda)) \hookrightarrow H^{1}(U(\mathbb{F}_{q}), L(\lambda))^{T(\mathbb{F}_{q})} \hookrightarrow H^{1}(U_{1}, L(\lambda))^{T(\mathbb{F}_{q})}$$

Apply results of Parshall and Scott on filtered algebras, and spectral sequence and weight arguments, to conclude that the new diagram commutes and that the bottom row consists of injections:

$$\mathsf{H}^{1}(G,L(\lambda)) \xrightarrow{\sim} \mathsf{H}^{1}(U,L(\lambda))^{T}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathsf{H}^{1}(G(\mathbb{F}_{q}),L(\lambda)) \hookrightarrow \mathsf{H}^{1}(U(\mathbb{F}_{q}),L(\lambda))^{T(\mathbb{F}_{q})} \hookrightarrow \mathsf{H}^{1}(U_{1},L(\lambda))^{T(\mathbb{F}_{q})}$$

Theorem

Suppose
$$p > 2$$
, $q > 3$, and $\lambda \in X_1(T)$. Then

$$\dim \mathsf{H}^1(\mathit{U}_1,\mathit{L}(\lambda))^{\mathit{T}(\mathbb{F}_q)} = \dim \mathsf{H}^1(\mathit{U}_1,\mathit{L}(\lambda))^{\mathit{T}} = \dim \mathsf{H}^1(\mathit{G},\mathit{L}(\lambda)).$$

Hence,
$$H^1(G, L(\lambda)) \cong H^1(G(\mathbb{F}_q), L(\lambda))$$
.

Open Question about cohomology for Sp_{2n}

For $p \leq n$, what is $H^2(G, L(\omega_j))$, and hence $H^2(G(\mathbb{F}_q), L(\omega_j))$, for j even?

Open Question about cohomology for Sp_{2n}

For $p \leq n$, what is $H^2(G, L(\omega_j))$, and hence $H^2(G(\mathbb{F}_q), L(\omega_j))$, for j even?

Values of *n* and *j* for which $H^2(Sp_{2n}, L(\omega_j))$ is 1-dimensional, p = 3.

n	j	n	<i>j</i>	n	j	n	j
6	6	15	6, 8	24	6, 8, 18	33	6, 8, 18
7	6	16	6, 10	25	6, 10, 18	34	6, 10, 18
8		17		26		35	
9	6	18	6, 14	27	6, 14	36	6, 14
10	6	19	6, 16	28	6, 16	37	6, 16
11		20	18	29	18	38	18
12	6	21	6, 18	30	6, 18	39	6, 18, 20
13	6	22	6, 18	31	6, 18	40	6, 18, 22
14		23	18	32	18		

Values of n and j for which $H^2(Sp_{2n}, L(\omega_j))$ is 1-dimensional, p = 5.

n	j	n	j	n	j	n	j	n	<i>j</i>
10	10	20	10	30	10	40	10, 22	50	10, 42
11	10	21	10	31	10	41	10, 24	51	10, 44
12	10	22	10	32	10	42	10, 26	52	10, 46
13	10	23	10	33	10	43	10, 28	53	10, 48
14		24		34		44		54	50
15	10	25	10	35	10, 12	45	10, 32		
16	10	26	10	36	10, 14	46	10, 34		
17	10	27	10	37	10, 16	47	10, 36		
18	10	28	10	38	10, 18	48	10, 38		
19		29		39		49			

- Are these cohomology groups always at most one-dimensional?
- Can the non-vanishing be described *p*-adically in terms of *n* and *j*?

The End Fish ladder at Ballard Locks

