
PROBLEM SESSION

MODULES OF CONSTANT JORDAN TYPE AND
VECTOR BUNDLES ON PROJECTIVE SPACE

DAVE BENSON

Throughout these questions, E = (Z/p)r = 〈g1, . . . , gr〉 is an elemen-
tary abelian p-group, k is a field of characteristic p and M is a finitely
generated kE-module. We write Xi for the element gi − 1 ∈ kE.

1. Modules of constant Jordan type

Question 1. Let E = Z/p × Z/p = 〈g1, g2〉 have rank two. Decide
which of the following kE-modules have constant Jordan type.

a) g1 7→
(

1 0
1 1

)
, g2 7→

(
1 0
λ 1

)
(λ ∈ k).

b) g1 7→

1 0 0
1 1 0
0 0 1

 g2 7→

1 0 0
0 1 0
1 0 1


c) g1 7→

1 0 0
0 1 0
1 0 1

 g2 7→

1 0 0
0 1 0
0 1 1



d) g1 7→


1 0 0 0
1 1 0 0
0 0 1 0
0 0 1 1

 g2 7→


1 0 0 0
0 1 0 0
1 0 1 0
0 1 0 1


[Hint: the answer depends on the characteristic of k]

e) (p ≥ 3) The module with diagram

•

• • • •

• •
(Begin by writing down the matrices for this module)
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f) The radical of the module in e).

Question 2. Which of the modules in question 1 have the constant
image property?

Questions 3–7 are designed to show that there are a lot of modules
of constant Jordan type for Z/p×Z/p for p ≥ 3 and for (Z/p)3 for any
prime.

Informally, an algebra A has wild representation type if we can define,
for each pair of n× n matrices X and Y , a representation of A in such
a way that X and Y can be recovered up to simultaneous conjugation.

Question 3. Show that for r ≥ 3, kE has wild representation type,
by considering the matrices(

I 0
I I

) (
I 0
X I

) (
I 0
Y I

)
.

Question 4. By considering the matrices(
I 0
0 0

) (
X I
I Y

)
,

show that classification of pairs of square matrices with no common
eigenvectors, up to simultaneous conjugation, is of wild representation
type.

Question 5. Consider the quiver

Q = •
β //

δ
// •

α //

γ
// •

with relation αβ = γδ. Use the diagram

V

(
I
0
0

)
//(

0
I
0

) // V ⊕ V ⊕ V
( I 0 0
0 I 0 )

//

(X I 0
Y 0 I )

// V ⊕ V

to show that this quiver has wild representation type.

Question 6. Show that in question 5 if X and Y have no common
eigenvectors then for all λ and µ in k, not both zero, λβ+µδ is injective,
λα + µγ is surjective, and their composite is injective.

Use this to construct a wild set of modules of constant Jordan type
for Z/p× Z/p when p ≥ 3.
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Question 7. Show that the quiver

• ((// 66 •
is of wild representation type by considering the matrices(

I 0 0 0
0 I 0 0

) (
0 I 0 0
0 0 I 0

) (
X 0 I Y
0 0 0 I

)
as maps from V ⊕4 to V ⊕2. Use this to construct a wild set of modules
of constant Jordan type for (Z/p)3 for any prime p.

Question 8. Let Mn be the module with diagram

u1• u2• u3• . . .
un−1•

v1 • • • • . . . • • vn

•
w1

•
w2

•
w3

. . . •
wn−1

More explicitly, Mn has basis elements u1, . . . , un−1, v1, . . . , vn and
w1, . . . , wn−1 with

X1(ui) = vi X2(ui) = vi+1 X1(vi+1) = X2(vi) = wi (1 ≤ i ≤ n− 1)

and all other basis elements sent to zero by X1 and X2. Show that Mn

has constant Jordan type if and only if n is divisible by p, with Jordan
type [3]n−2[2]2.

Question 9. Find the generic kernel of the module Mn given in ques-
tion 8.
[Hint: use the fact that the generic kernel is the largest submodule with
the constant image property.]

Question 10. Show that if M has constant Jordan type then so does
Ω(M), the kernel of the projective cover of M . Is it also true that if
M has the constant image property then so does Ω(M)?

Question 11. If M has the constant image property, show that the
image of each Xj

α (0 6= α ∈ Ar(k)) is equal to Radj(M). Deduce that
Radp(M) = 0. What is the smallest value of n such that Radn(kE) = 0?

Question 12. Let E = 〈g〉 be cyclic of order p > 2. If M is the
indecomposable kE-module on which g acts with a Jordan block of
length two, find the structure of M ⊗M , Λ2(M) and S2(M).

Question 13. Let E = 〈g〉 be cyclic of order p, and write Ji for the
indecomposable kE-module on which g acts with a Jordan block of
length i.
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(1) Show that J2 ⊗ Ji is isomorphic to Ji+1 ⊕ Ji−1 if 1 ≤ i ≤ p− 1
and to Jp ⊕ Jp if i = p.

(2) Find J3 ⊗ J3 using the first part of the question and the asso-
ciativity of tensor product. Treat the cases p = 3 and p ≥ 5
separately.

(3) If p ≥ 5 find S2(J3) and Λ2(J3).

Question 14. Let E have rank two, and let M be a kE-module of
constant Jordan type. Let K(M) be the generic kernel of M . Show
that the following quantities for the subquotient J−1K(M)/J2K(M)
are independent of 0 6= α ∈ A2(k):

• The number of Jordan blocks of length one of Xα.
• The total number of Jordan blocks of Xα.
• The dimension of J−1K(M)/J2K(M).

Prove that J−1K(M)/J2K(M) has constant Jordan type.

Question 15. Let E = Z/p × Z/p. If M has constant Jordan type
with no Jordan blocks of length one, it is known that the total number
of Jordan blocks is divisible by p. Apply this to Ω(M) to deduce that
if M has constant Jordan type with no Jordan blocks of length p − 1
then the number of Jordan blocks of length p is divisible by p.

2. The stable module category

In preparation for working with vector bundles and modules of con-
stant Jordan type, we begin with a set of exercises to get you used to
the stable module category stmod(kE). Since the construction of the
stable module category works just as well for any finite group G, we
shall work in this context.

The stable module category stmod(kG) has the same objects as the
module category mod(kG), but the morphisms are given by

HomkG(M,N) = HomkG(M,N)/PHomkG(M,N)

where PHomkG(M,N) is the linear subspace consisting of homomor-
phisms that factor through some projective (= injective) kG-module.

Question 16. (1) Show that the linear map kG→ Homk(kG, k) given
by g 7→ (h 7→ δg,h) is a kG-module isomorphism. Deduce that kG
is an injective kG-module, and hence every projective kG-module is
injective.

(2) If M is a kG-module, show that the kG-module M↓1↑G = kG⊗k
M (where g ∈ G acts via g(h ⊗ m) = gh ⊗ m) is free, and hence
projective.
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(3) Show that the map M →M↓1↑G given by

m 7→
∑
g∈G

g ⊗ g−1m

is an injective kG-module homomorphism. Thus every module em-
beds in a projective module. Deduce that every injective kG-module
is projective.

Question 17. Let 0 → A → B → C → 0 be a short exact sequence
of kG-modules. Let P → C be a projective module surjecting onto
C with kernel Ω(C). Lift to a homomorphism P → B to obtain a
diagram

0 // Ω(C) //

��

P //

��

C // 0

0 // A // B // C // 0

to show that there is a short exact sequence

0→ Ω(C)→ P ⊕ A→ B → 0

in mod(kG).
Dually, embed A in an injective module I with cokernel Ω−1(A) to

obtain a diagram

0 // A // B //

��

C //

��

0

0 // A // I // Ω−1(A) // 0

and hence a short exact sequence

0→ B → I ⊕ C → Ω−1(A)→ 0

in mod(kG).

Question 18. We make stmod(kG) into a triangulated category in
which the translation is the functor Ω−1. The triangles are the triples
of modules and homomorphisms

A→ B → C → Ω−1(A)

which are isomorphic to triples coming from short exact sequences

0→ A→ B → C → 0

using the process described in Question 17 for obtaining the third map
C → Ω−1(A).
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If you have the stamina, check the axioms for a triangulated category.
The third isomorphism theorem in mod(kG) will be required in order
to verify the octahedral axiom for stmod(kG).

3. Vector bundles on projective space

Question 19. Consider the Euler sequence defining the tangent bundle

0→ O → O(1)⊕r → T → 0

where the first map in this sequence is given by the column vector
(Y1, . . . , Yr)

t, and tensor with O(−1) to get

0→ O(−1)→ O⊕r → T (−1)→ 0.

If p = 2, realise the first map in this sequence with a map

Ω(k)→ k⊕r

and complete to a triangle in stmod(kE). Show that this gives a short
exact sequence in mod(kE)

0→ Ω(k)→ kE ⊕ k⊕r →MT → 0.

Write down matrices for the action of E on the r + 1 dimensional
module MT .

Question 20. The null correlation bundle FN on Pr−1 (r even) is the
homology in the middle place of the complex

0→ O(−1)→ O⊕r → O(1)→ 0

where the first map is given by the column vector (Y1, . . . , Yr)
t and the

second map is given by (Yr,−Yr−1, . . . , Y2,−Y1). If p = 2, construct a
kE-module MN of dimension r + 2 with F1(M) ∼= FN . Write down
matrices for the action of E on MN .

Compare your construction with the following diagram in stmod(kE):

Ω(k)

""
kr

!!

// Ω−1(k)

MT

;;

MN

<<
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Question 21. For p odd and r even, give a construction in stmod(kE)
of a module M of stable constant Jordan type [1]r−2 with F1(M) ∼=
F ∗(FN), the Frobenius pullback of the null correlation bundle on Pr−1.

Question 22. This question gives a simplified version of Tango’s con-
struction of rank r−2 vector bundles on Pr−1 (not to be confused with
the Tango bundle of rank 2 on P5 in characteristic two).

Let V be a vector space of dimension r over k, and let V ×V → Λ2(V )
be the map sending (x, y) to x∧y. Show that the image is a subvariety
of dimension 2r − 3. Deduce that there is a linear subspace W of
Λ2(V ) of codimension 2r− 3 whose intersection with the image is just
the origin. In other words, W contains no non-zero element of the form
x ∧ y.

Now look at the beginning of the Koszul complex on Pr−1, suitably
twisted:

0→ O(−2)→ O(−1)⊕r → O(r
2) → E → 0.

Thinking of O(r
2) as Λ2(V ) ⊗k O, there is a trivial subsheaf W ⊗k O

that injects into E via the last map in the sequence. Define FW to be
the cokernel of W ⊗kO → E . Show that FW is a vector bundle of rank
r − 2.

Question 23. For p = 2, construct a kE-module M with J3(M) = 0
and with radical layers of dimensions 1, r, 2r − 3 such that F1(M) is
the vector bundle constructed in Question 22.

4. Chern classes

Throughout this section, let R = k[Y1, . . . , Yr], let M be a finitely
generated graded R-module and let F be the resulting coherent sheaf
on Pr−1.

Question 24. Prove that the Poincaré series pM(t) takes the form

pM(t) =
f(t)

(1− t)r

where f(t) is a Laurent polynomial.
[Hint: Consider the kernel and cokernel of multiplication by Yr on M
and use induction on r.]

Question 25. Show that

Ch(F) = rank(F) + c1h+ 1
2
(c21 − 2c2)h

2 + · · ·

and find the next term in this expansion.
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Question 26. Show directly from the definition that

c(F(1), h) = (1 + h)rankFc

(
F , h

1 + h

)
.

Question 27. Show that the Chern polynomial of the null correlation
bundle constructed in Question 20 is 1/(1− h2).

Question 28. Show that the Chern polynomial of the vector bundles
of Tango constructed in Question 22 is (1− 2h)/(1− h)r.

Question 29. Use congruences on Chern numbers to prove that if
r ≥ 3 and M has stable constant Jordan type [2] [1] with p ≥ 5 then
r = 3 and p ≡ 1 (mod 3). Find the possibilities for c1(F1(M)) and
c1(F2(M)).

5. Hirzebruch–Riemann–Roch Theorem

Question 30. Prove that sn(F) =
∑

j ajj
n =

∑
j α

n
j . [Hint: take logs

of both sides of the equation defining c(F , h) and differentiate]

Question 31. Use Schwartzenberger’s conditions to show:

(i) For a coherent sheaf on P3 we have c1c2 + c3 ≡ 0 (mod 2).
(ii) For a rank two vector bundle on P4 we have

c2(c2 + 1− 3c1 − 2c21) ≡ 0 (mod 12).

Question 32. Let p = 2 and let M be a module of constant Jordan
type [2]n. Use the formula c(F2(M))c(F2(M)(1)) = 1 to prove that
n = −2c1(F2(M)). What can you deduce about c2(F2(M))?

Question 33. Let p = 2 and r = 4 (i.e., E ∼= (Z/2)4) and let M be a
module of constant Jordan type [2]n. Prove that

F2(M) = 1− n

2
h+

n2

8
h2 − n3 − 4n

48
h3 ∈ Z[h]/(h4).

Without Hirzebruch–Riemann–Roch deduce that n is divisible by four.
Using part (i) of the previous question, show that the Hirzebruch–
Riemann–Roch theorem implies that n is divisible by eight.
[This also follows from Dade’s lemma!]

Question 34. Use Poincaré series directly, instead of going through
the Hirzebruch–Riemann–Roch theorem, to show that if M is a module
of constant Jordan type [2]n then 2r−1|n.

Question 35. Use the Hirzebruch–Riemann–Roch theorem to prove
that if M is a module of constant Jordan type [2]n[1]2 for (Z/2)4 then
n is not congruent to 1, 3 or 5 modulo 8.
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Question 36. We define a nilvariety of rank r and constant Jordan
type [a1] . . . [at] to be a linear space of square matrices all non-zero
elements of which have the same Jordan canonical form, with Jordan
blocks of sizes a1, . . . , at. The matrices do not necessarily commute, so
they do not necessarily define a representation of (Z/p)r. Show that
the matrices 0 1 0

0 0 1
0 0 0

 0 0 0
1 0 0
0 −1 0


span a nilvariety of rank two and constant Jordan type [3] in any char-
acteristic.

Question 37. Show that a nilvariety of rank r and constant Jordan
type [2]n is the same as a representation of an exterior algebra on r
generators.

Question 38. Show, using Poincaré series, that a rank r nilvariety
of constant Jordan type [3]n necessarily satisfies 3b

r−1
2
c|n. Use tensor

products of the example from Question 36 to show that in characteristic
three this is best possible.

Question 39 (Causa, Re, Teodorescu). Show that if there is a nilva-
riety of rank r and constant Jordan type [m] then r ≤ 2, and if r = 2
then m is odd.
[Hint: If r ≥ 3 then the line bundles O(n) do not extend each other:
for all n, n′ ∈ Z we have Ext1OPr−1

(O(n),O(n′)) = 0.]


