1. Modules of constant Jordan type

We begin with a little background on modular representation theory to put these lectures in context. Let G be a finite group and k be a field. A representation of G is a group homomorphism $G \to GL(n, k)$ for some n, or equivalently a finitely generated kG-module, where kG is the group algebra. A representation is reducible if after a change of basis the matrices have the form \(\begin{pmatrix} * & 0 \\ 0 & * \end{pmatrix} \), and decomposable if after a change of basis the matrices have the form \(\begin{pmatrix} * & 0 \\ 0 & * \end{pmatrix} \).

- Suppose that k has characteristic 0 or characteristic not dividing $|G|$. Then every reducible representation is decomposable; i.e., every invariant subspace has an invariant complement.
- In particular, it follows that every representation is a direct sum of irreducible representations (Maschke’s theorem).
- On the other hand, if k has characteristic p dividing $|G|$ then there exist reducible representations that are indecomposable.

Examples: An extreme case is where G is a finite p-group in characteristic p. In this case there is only one irreducible representation, called the trivial module, where every group element is represented by the 1×1 matrix (1). However, there are usually many indecomposable representations. If G is cyclic then Jordan canonical form describes the modules. If G is non-cyclic then there are infinitely many indecomposable representations.
For example, if $G = \langle g_1, g_2 \rangle \cong \mathbb{Z}/p \times \mathbb{Z}/p$ then for each $\lambda \in k$ we have a representation of the form $g_1 \mapsto \begin{pmatrix} 1 & 0 \\ 1 & \lambda \end{pmatrix}$, $g_2 \mapsto \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$. These are all indecomposable and non-isomorphic.

Representation type: The *trichotomy theorem* (Drozd) states that for finite dimensional algebras (and in particular for the group algebras of finite groups) there are three cases:

- Finite representation type: There are finitely many isomorphism classes of indecomposable representations.
- Tame representation type: The finitely generated indecomposable representations fall into one parameter families and discrete sets in a classifiable way.
- Wild representation type: Classifying the finitely generated indecomposable modules would lead to a normal form for pairs of non-commuting matrices under simultaneous conjugation.

For finite groups, finite representation type happens if and only if the Sylow p-subgroups are cyclic. The remaining cases are wild, except for a few tame cases in characteristic two (dihedral, semidihedral, generalised quaternion Sylow 2-subgroups).

So how do we make progress? There are several possible approaches:

- Make general statements about modules that can be proved without obtaining a classification.
- Obtain broader categorical classification theorems.
- Restrict the type of module under consideration and study those.

There are many fruitful examples of each of these approaches. I shall concentrate on one particular class of modules, namely those of constant Jordan type. Many questions in modular representation theory reduce to the study of *elementary abelian* p-*groups*, i.e., groups isomorphic to $(\mathbb{Z}/p)^r$. The number r is called the *rank*.

Notation: Let k be an algebraically closed field of characteristic p and let $E = \langle g_1, \ldots, g_r \rangle \cong (\mathbb{Z}/p)^r$ be an elementary abelian p-group. We define $X_i = g_i - 1 \in kE$, so that $X_i^p = 0$. Then we can write the group algebra kE as $k[X_1, \ldots, X_r]/(X_1^p, \ldots, X_r^p)$. If $\alpha = (\lambda_1, \ldots, \lambda_r) \in \mathbb{A}^r(k)$, set

$$X_\alpha = \lambda_1 X_1 + \cdots + \lambda_r X_r,$$

so $X_\alpha^p = 0$. These form coset representatives for $J^2(kE)$ in $J(kE)$.

If M is a finitely generated kE-module, the action of X_α on M breaks up into Jordan blocks of length between 1 and p with eigenvalue 0. Write $[p]^{a_p} \cdots [1]^{a_1}$ for the Jordan type.
Warning 1. If $x, y \in J(kE)$, $x - y \in J^2(kE)$, it can happen that x and y have different Jordan type on M.

Example 2. Let $p = 2$ and $r = 3$, and let M be the four dimensional kE-module given by

$$
\begin{align*}
g_1 \mapsto \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}, \\
g_2 \mapsto \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}, \\
g_3 \mapsto \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}.
\end{align*}
$$

Then X_3 has Jordan type $[2][1]^2$ while $X_3 + X_1X_2$ has Jordan type $[1]^4$. Note that $X_3 \equiv X_3 + X_1X_2 \pmod{J^2(kE)}$.

Definition 3. Nilpotent Jordan types are partially ordered: $X \geq Y$ if and only if for all $s > 0$ we have $\text{rank}(X^s) \geq \text{rank}(Y^s)$.

This corresponds to the dominance order on partitions. For example, $[4] > [3][1] > [2]^2 > [2][1]^2 > [1]^4$.

Definition 4. We say x has maximal Jordan type on M if it is maximal with respect to this partial order.

Theorem 5 (FPS 2007). (1) If $x, y \in J(kE)$ and $x - y \in J^2(kE)$ then x has maximal Jordan type if and only if y does.

(2) The points of J/J^2 of maximal Jordan type form a dense open subset.

(3) This is the same as the Jordan type at a generic point of $A^r(k)$.

So we talk of the generic Jordan type of M.

Definition 6 (CFP 2008). We say that a kE-module M has constant Jordan type $[p]^a \cdots [1]^b$ if every element of $J \setminus J^2$ has this as its Jordan canonical form on M. The stable Jordan type is $[p - 1]^a \cdots [1]^b$.

Example 7. $E = (\mathbb{Z}/2)^4$, let M be the module

$$
\begin{pmatrix}
aX_1 + bX_2 + cX_3 + dX_4 \mapsto \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
a & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
b & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
c & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
d & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & d & c & b & a & 0
\end{pmatrix}.
$$

Example 8. Let $E = (\mathbb{Z}/p)^2$, $p \geq 3$, and let M_n ($n \geq 2$) be the module
Then M_n has constant Jordan type if and only if n is divisible by p. The Jordan type is $[3]^{n-2}[2]^2$.

Question 9. Suppose that $r \geq 2$. What stable constant Jordan types can occur?

Lemma 10 (Dade’s Lemma, 1978). If M has constant Jordan type $[p]^n$ then M is a free = projective = injective kE-module. In particular $p^{r-1}|n$.

Theorem 11 (CFP). Every summand of a module of constant Jordan type has constant Jordan type.

Tensor products and duals: We make $M \otimes_k N$ into a kE-module via $g(m \otimes n) = gm \otimes gn$ We make $M^* = \text{Hom}_k(M, k)$ into a kE-module via $g(f)(m) = f(g^{-1}(m))$.

Theorem 12 (CFP). If M and N have constant Jordan type then so do M^* and $M \otimes_k N$.

Warning 13. In general $(M \otimes_k N)\downarrow_{X_a} \not\cong M\downarrow_{X_a} \otimes_k N\downarrow_{X_a}$.

Endotrivial modules: What modules have stable constant Jordan type [1] or $[p−1]$? If M has stable constant Jordan type [1] or $[p−1]$ then $M \otimes_k M^*$ has stable constant Jordan type [1]. Then $k \rightarrow M \otimes_k M^* \rightarrow k$ has non-zero composite since $p \mid \dim M$. So $M \otimes_k M^* = k \oplus$ a module of constant Jordan type $[p]^n$. So by Dade’s lemma this is $= k \oplus$ (free). So M is endotrivial. Dade (1978) classified these for kE, and $M \cong \Omega^n k$ ($n \in \mathbb{Z}$). These modules do indeed have stable constant Jordan type [1] if n is even, $[p−1]$ if n is odd.

Single stable Jordan block: CFP conjectured that there is no module of constant Jordan type [2] if $p \geq 5$ and $r \geq 2$. More generally we have the following.

Theorem 14 (B, MSRI 2008). If $r \geq 2$ and $2 \leq a \leq p−2$ then there is no module of stable constant Jordan type $[a]$.

Proof. We have $\dim M = np + a$ and so

$$\dim \Lambda^{a+1} M = \frac{(np + a)\ldots(np)}{(a + 1) \ldots 1}.$$
It follows that $\Lambda^{a+1}M$ is free by Dade’s lemma, so $p|n$. Similarly we have
\[
\dim S^{p-a+1}M = \frac{(np + a) \ldots (np + p)}{(p - a + 1) \ldots 1}
\]
Dade’s lemma: $S^{p-a+1}M$ is also free so $p|(n+1)$, a contradiction. □

For the last line of this proof, the freeness of $S^{p-a+1}M$ we need the following lemma.

Lemma 15 (Almkvist & Fossum 1978). As modules for $k[t]/(t^p)$, $S^i[a]$ is free provided $i < p$, $a + i > p$.

Proof. True if $a = p$. Downward induct on a using
\[
0 \to S^i[a] \to S^{i+1}[a] \to S^{i+1}[a - 1] \to 0
\]

Here are some conjectures about modules of constant Jordan type.

Conjecture 16 (Rickard, MSRI 2008). Suppose $r \geq 2$ and M is a kE-module of constant Jordan type. If there are no Jordan blocks of length i then the total number of Jordan blocks of length $> i$ is divisible by p.

This implies the previous theorem, since there are no Jordan blocks of length $a - 1$ or $a + 1$. That theorem is also implied by the following conjecture.

Conjecture 17 (S, in CFP). Let $r \geq 2$. If $2 \leq i \leq p - 1$ and M has constant Jordan type with blocks of length i, then it also has blocks of length either $i - 1$ or $i + 1$.

Conjecture 18 (CFP). Let $r \geq 2$, $p \geq 5$. If there’s a module of stable constant Jordan type $[2][1]^j$ then $j \geq r - 1$.

Definition 19 (CF, CFS). A module M has the constant image property if for all $0 \neq \alpha \in \mathbb{A}^r(k)$ we have $X_{\alpha}M = \text{Rad}(M)$. Equivalently, for all $X \in J(kE) \setminus J^2(kE)$ we have $X.M = \text{Rad}(M)$.

Lemma 20. If M has the constant image property then for all $1 \leq j \leq p$ we have $X_\alpha^j.M = \text{Rad}^p(M)$. In particular, $\text{Rad}^p(M) = 0$.

Theorem 21. If M has the constant image property then it has constant Jordan type.

Definition 22 (CFS). Let $E = \mathbb{Z}/p \times \mathbb{Z}/p$. The generic kernel of M is
\[
\mathfrak{K}(M) = \cap_{S \subseteq P^1} \sum_{\alpha \in S} \text{Ker}(X_{\alpha}, M).
\]
Properties:

- \(\mathcal{R}(\mathcal{R}(M)) = \mathcal{R}(M) \)
- \(\mathcal{R}(M) \) has the constant image property, hence constant Jordan type.
- If \(N \subseteq M \) has the constant image property then \(N \subseteq \mathcal{R}(M) \).
- \(\ker(X_\alpha, M) \subseteq \mathcal{R}(M) \) if and only if \(X_\alpha \) has maximal rank on \(M \).
- So if \(M \) has constant Jordan type then for all \(\alpha \neq 0 \) we have \(\ker(X_\alpha, M) \subseteq \mathcal{R}(M) \).

Theorem 23. If \(M \) has constant Jordan type then \(J^{-1}\mathcal{R}(M)/J^2\mathcal{R}(M) \) also has constant Jordan type with the same number of Jordan blocks of length one.

Theorem 24 (B 2011, special case of Rickard’s conjecture). Let \(E = \mathbb{Z}/p \times \mathbb{Z}/p \) and \(M \) have constant Jordan type with no Jordan blocks of length 1. Then the total number of Jordan blocks is divisible by \(p \).

Idea of Proof. Show that \(\mathcal{R}(M)/J^2\mathcal{R}(M) \) is a sum of modules of the form \(\cdots \otimes \mathcal{R}(M) \). Then the fact that for all \(\alpha \neq 0 \) the map \(X_\alpha \) from \(J^{-1}\mathcal{R}(M)/\mathcal{R}(M) \) to \(\mathcal{R}(M)/J(\mathcal{R}(M)) \) is injective is used in order to show that the lengths of the tops of these summands are all divisible by \(p \).

Corollary 25. If \(M \) has constant Jordan type with no Jordan blocks of length \(p - 1 \) then the number of Jordan blocks of length \(p \) is divisible by \(p \).

Proof. Apply the theorem to \(\Omega(M) \).

Corollary 26. If \(M \) has constant Jordan type with no Jordan blocks of length 1 or \(p - 1 \) then the number of Jordan blocks of length between 2 and \(p - 2 \) is divisible by \(p \).

2. Vector Bundles on Projective Space

Definition 27. Let \(\mathbb{P}^{r-1} = \text{Proj} \ k[Y_1, \ldots, Y_r] \) where \(Y_1, \ldots, Y_r \) have degree one. A vector bundle on \(\mathbb{P}^{r-1} \) is a locally free sheaf of \(\mathcal{O} \)-modules, where \(\mathcal{O} \) is the structure sheaf on \(\mathbb{P}^{r-1} \).

Theorem 28 (Exercise II.5.9 of Hartshorne). There is an equivalence of categories between coherent sheaves on \(\mathbb{P}^{r-1} \) and finitely generated graded modules over \(k[Y_1, \ldots, Y_r] \) modulo finite length modules.

Twists: For a graded module \(M \) we define \(M(j)_i = M_{i+j} \). For sheaves, \(\mathcal{O}(1) \) is the twisting sheaf generated by global sections \(Y_1, \ldots, Y_r \). Then the twists of a sheaf are given by \(\mathcal{F}(j) = \mathcal{F} \otimes_{\mathcal{O}} \mathcal{O}(1)^{\otimes j} \).
Remark 29. The only line bundles on \mathbb{P}^{r-1} are $\mathcal{O}(n)$ for $n \in \mathbb{Z}$.

If $r = 2$ then every vector bundle on \mathbb{P}^1 is a sum of line bundles (Grothendieck).

If $r \geq 3$, it is easy to construct indecomposable vector bundles on \mathbb{P}^{r-1} of every rank at least $r - 1$. Bundles of rank $r - 2$ are slightly more difficult to construct, but examples include the null correlation bundle and instanton bundles (r even), some bundles of Tango (all r) and others.

The only known indecomposable vector bundles with rank bigger than 1 and less than $r - 2$ are:

- \mathbb{P}^4: the Horrocks–Mumford bundle \mathcal{F}_{HM} of rank 2 with 15,000 symmetries,
- \mathbb{P}^5: Horrocks’ Parent bundle of rank 3,
- \mathbb{P}^5 in characteristic 2: the Tango bundle of rank 2,
- ... a few more of rank 2 on \mathbb{P}^4 and rank 3 on \mathbb{P}^5 in char p,
- ... and bundles obtained from these in obvious ways.

Vector Bundles from Modules of constant Jordan type: Let $\mathbb{P}^{r-1} = \text{Proj} k[Y_1, \ldots, Y_r]$ where Y_i are functions on \mathbb{A}^r defined by $Y_i(X_j) = \delta_{ij}$. Given a kE-module M, set $\tilde{M} = M \otimes_k \mathcal{O}$, a trivial bundle whose rank is equal to the dimension of M.

Definition 30 (FP, TAMS 2011). We define $\theta: \tilde{M}(j) \rightarrow \tilde{M}(j+1)$ via

$$\theta(m \otimes f) = \sum_i X_i m \otimes Y_i f.$$
Intuitive idea: At $\bar{\alpha} = (\lambda_1 : \cdots : \lambda_r) \in \mathbb{P}^{r-1}$ the action of θ is via
\[m \otimes 1 \mapsto \sum_i X_i m \otimes \lambda_i = \sum_i \lambda_i X_i m \otimes 1 = X_\alpha m \otimes 1.\]
i.e., the action of θ on the copy of M at $\bar{\alpha} \in \mathbb{P}^{r-1}$ is via X_α. Notice that the twist is necessary in order to make this well defined on projective space.

Definition 31 (BP, MSRI 2008). We define $F_i(M) = \frac{\text{Ker} \theta \cap \text{Im} \theta^{i-1}}{\text{Ker} \theta \cap \text{Im} \theta^i}$ as subquotient of \tilde{M}.

Now $\text{Ker} \theta$ picks out the bottoms of all Jordan blocks. $\text{Ker} \theta \cap \text{Im} \theta^i$ picks out the bottoms of the Jordan blocks of length at least $i + 1$. So F_i picks out the bottoms of the Jordan blocks of length i. Thus $F_i(M)$ is a vector bundle iff the number of Jordan blocks of length i is independent of $\bar{\alpha} \in \mathbb{P}^{r-1}$.

Proposition 32. $F_i(M)$ is a vector bundle for $1 \leq i \leq p$ if and only if M has constant Jordan type.

More generally, define
\[F_{i,j}(M) = \frac{\text{Ker} \theta^{j+1} \cap \text{Im} \theta^{i-j-1}}{\text{Ker} \theta^{j+1} \cap \text{Im} \theta^{i-j} + (\text{Ker} \theta^j \cap \text{Im} \theta^{i-j-1})}.\]
This captures the $(j + 1)$st layer from the bottom of the Jordan blocks of length i. In particular $F_{i,0}(M) = F_i(M)$. The map θ induces an isomorphism $F_{i,j}(M) \to F_{i,j-1}(M)(1)$. Therefore we have
\[F_{i,j}(M) \cong F_i(M)(j).\]

Observation: \tilde{M} has a filtration with filtered quotients $F_{i,j}(M)$ ($0 \leq j < i \leq p$):
Interpretation of θ: Think of a homomorphism from \tilde{M} to $\tilde{M}(1)$ as an $n \times n$ matrix of elements of $\text{Hom}(\mathcal{O}, \mathcal{O}(1))$. Now $\text{Hom}(\mathcal{O}, \mathcal{O}(1))$ is a vector space with basis Y_1, \ldots, Y_r. So we can think of θ as being a matrix of linear forms,\[\sum Y_i \phi_M(X_i) \in \text{Mat}_n(k[Y_1, \ldots, Y_r]) \]
where $\phi_M: kE \to \text{Mat}_n(k)$ gives the representation of E on M.

Example 33. Let $E = (\mathbb{Z}/p)^2 = \langle g_1, g_2 \rangle$, $kE = k[X_1, X_2]/(X_1^p, X_2^p)$, and let M be given by $g_1 \mapsto \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $g_2 \mapsto \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$.

Then\[\theta = Y_1 \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + Y_2 \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ Y_1 & 0 & 0 \\ Y_2 & 0 & 0 \end{pmatrix}. \]

The operator θ has kernel of rank two and image of rank one; $\mathcal{F}_1(M)$ and $\mathcal{F}_2(M)$ are both rank one bundles.

Example 34. More generally $M = kE/J^2(kE)$ has constant Jordan type $[2][1]^{r-1}$.

$\theta: \tilde{M} \to \tilde{M}(1)$ has $\text{Soc}(M)$ in its kernel, and its image is $\mathcal{F}_2(M)(1) \subseteq \tilde{M}(1)$. So $\mathcal{O} \cong M/\text{Soc}(M) \xrightarrow{\theta} \mathcal{F}_2(M)(1)$ gives $\mathcal{F}_2(M) \cong \mathcal{O}(-1)$. On the other hand, $\mathcal{F}_1(M)$ is $\text{Soc}(M)/\mathcal{F}_2(M)$ so\[0 \to \mathcal{O}(-1) \to \mathcal{O}^{\oplus r} \to \mathcal{F}_1(M) \to 0. \]

The left hand map has coordinates Y_1, \ldots, Y_r so this is a twisted version of the Euler sequence defining the tangent bundle\[0 \to \mathcal{O} \to \mathcal{O}(1)^{\oplus r} \to \mathcal{T} \to 0. \]

Thus we have\[\mathcal{F}_1(M) \cong \mathcal{T}(-1), \quad \mathcal{F}_2(M) \cong \mathcal{O}(-1). \]

Example 35. The module $M = \text{Soc}^2(kE)$ also has constant Jordan type $[2][1]^{r-1}$. But this time $\mathcal{F}_1(M) \cong \Omega(1)$, $\mathcal{F}_2(M) \cong \mathcal{O}$ where Ω is the cotangent bundle.
Example 36 (B, MSRI 2008). If $p \geq 7$, $r = 5$, there exists a kE-module M such that $\mathcal{F}_2(M) \cong \mathcal{F}_{HM}(-2)$. We have $\dim M = 30p^2$, and M has stable constant Jordan type $[p-1][30][2][1][26]$.

Example 37. The following is an example with $E = (\mathbb{Z}/2)^6$, where $\mathcal{F}_1(M)$ is the rank two Tango bundle on \mathbb{P}^5.

\[
\begin{array}{cccccccc}
& & & & & f & e & d & c \\
& a & b & c & d & e & f & & \\
& a & b & c & d & e & f & & \\
& & d & f & a & c & & & \\
& e & a & a & & & & & \\
& d & b & & & & & & \\
& f & b & c & & & & & \\
& f & d & & & & & & \\
& & & & & & & & \\
\end{array}
\]

Properties of \mathcal{F}_i:

- $\mathcal{F}_{p-i}(\Omega M) \cong \mathcal{F}_i(M)(-p + i)$ \quad (1 \leq i \leq p - 1)
- $\mathcal{F}_i(M^*) \cong \mathcal{F}_i(M)^\vee(-i + 1)$ \quad (1 \leq i \leq p)
- $\mathcal{F}_1(M \otimes_k N) \cong \bigoplus_{i=1}^{p-1} \mathcal{F}_i(M) \otimes \mathcal{F}_i(N)(i - 1)$

The sequence $0 \to \Omega M \to P_M \to M \to 0$ induces

$0 \to \mathcal{F}_p(\Omega M) \to \mathcal{F}_p(P_M) \to \mathcal{F}_p(M) \to 0$.

This is not exact, but has homology only in the middle, where it is

$\bigoplus_{i=1}^{p-1} \mathcal{F}_i(M)(-p + i)$.
Theorem 38 (Realisation Theorem (BP, MSRI 2008)). Given a vector bundle \mathcal{F} of rank s on \mathbb{P}^{r-1}, there exists a kE-module M of stable constant Jordan type $[1]^s$ such that

- if $p = 2$ then $\mathcal{F}_1(M) \cong \mathcal{F}$
- if p is odd then $\mathcal{F}_1(M) \cong F^*(\mathcal{F})$

where $F: \mathbb{P}^{r-1} \to \mathbb{P}^{r-1}$ is the Frobenius map.

Let us outline the proof of the realisation theorem. We begin with $p = 2$. Given \mathcal{F}, Hilbert’s syzygy theorem gives a resolution

$$0 \to \sum_{j=1}^{m_r} \mathcal{O}(a_{r,j}) \to \cdots \to \sum_{j=1}^{m_1} \mathcal{O}(a_{1,j}) \to \sum_{j=1}^{m_0} \mathcal{O}(a_{0,j}) \to \mathcal{F} \to 0.$$

If $a > b$ then $\text{Hom}(\mathcal{O}(a), \mathcal{O}(b)) = 0$, while if $a \leq b$ it is the space of degree $b - a$ polynomials in Y_1, \ldots, Y_r. Now mimic this with representations of kE. We have

$$H^*(E, k) = k[y_1, \ldots, y_r].$$

We have $\mathcal{F}_1(\Omega^{-a}(k)) \cong \mathcal{O}(a)$ and provided $a \leq b$

$$\text{Hom}_{kE}(\Omega^{-a}(k), \Omega^{-b}(k)) \cong H^{b-a}(E, k)$$

is the space of degree $b - a$ polynomials in y_1, \ldots, y_r.

Lemma 39. Representatives $\hat{y}_i: \Omega^{n+1}(k) \to \Omega^n(k)$ of $y_i \in H^1(E, k)$ can be found so that $\hat{y}_i\hat{y}_j = \hat{y}_j\hat{y}_i: \Omega^{n+2}(k) \to \Omega^n(k)$.

Define a k-algebra homomorphism

$$\rho: H^*(E, k) = k[y_1, \ldots, y_r] \to k[Y_1, \ldots, Y_r]$$

by $\rho(y_i) = Y_i$. Then representing an element $\zeta \in H^*(E, k)$ by a cocycle $\hat{\zeta}: \Omega^{n+1}(k) \to \Omega^n(k)$ the following diagram commutes:

$$
\begin{array}{ccc}
\mathcal{O}(-n-j) & \xrightarrow{\rho(\zeta)} & \mathcal{O}(-j) \\
\downarrow \cong & & \downarrow \cong \\
\mathcal{F}_1(\Omega^{n+1}(k)) & \xrightarrow{\mathcal{F}_1(\hat{\zeta})} & \mathcal{F}_1(\Omega^n(k))
\end{array}
$$

Now take a resolution of \mathcal{F}

$$0 \to \sum_{j=1}^{m_r} \mathcal{O}(a_{r,j}) \to \cdots \to \sum_{j=1}^{m_1} \mathcal{O}(a_{1,j}) \to \sum_{j=1}^{m_0} \mathcal{O}(a_{0,j}) \to \mathcal{F} \to 0.$$

Apply ρ^{-1} to the entries in the maps in this complex to get

$$0 \to \sum_{j=1}^{m_r} \Omega^{-a_{r,j}}(k) \to \cdots \to \sum_{j=1}^{m_1} \Omega^{-a_{1,j}}(k) \to \sum_{j=1}^{m_0} \Omega^{-a_{0,j}}(k) \to 0.$$
Rickard has a “totalisation” functor $D^b(kE) \to \text{stmod}(kE)$. Applying this to the above complex gives a module M with $\mathcal{F}_1(M) \cong \mathcal{F}$.

When p is odd, the best we can do is to get a module of type $[p]a[1]^b$ with $\mathcal{F}_1(M) \cong F^*(\mathcal{F})$. We’ll see using Chern classes why this is best possible. We have

$$H^i(E, k) \cong \Lambda(y_1, \ldots, y_r) \otimes k[x_1, \ldots, x_r]$$

with $\deg(y_i) = 1$, $\deg(x_i) = 2$.

Lemma 40. Representatives $\hat{x}_i: \Omega^{n+2}(k) \to \Omega^n(k)$ of $x_i \in H^2(E, k)$ can be found so that $\hat{x}_i \hat{x}_j = \hat{x}_j \hat{x}_i: \Omega^{n+4}(k) \to \Omega^n(k)$.

We have $\mathcal{F}_1(\Omega^{-2a}(k)) \cong \mathcal{O}(pa)$. Define a k-algebra homomorphism $\rho: k[x_1, \ldots, x_r] \to k[Y_1, \ldots, Y_r]$ by $\rho(x_i) = Y_i^p$. Then representing an element $\zeta \in k[x_1, \ldots, x_r]$ by $\hat{\zeta}: \Omega^j(k)$ the following diagram commutes:

$$\mathcal{O}(-p(n+j)) \xrightarrow{\rho(\zeta)} \mathcal{O}(-pj) \xrightarrow{\cong} \mathcal{F}_1(\Omega^{2(n+j)}(k)) \xrightarrow{\mathcal{F}_1(\hat{\zeta})} \mathcal{F}_1(\Omega^{2j}(k)) \cong \mathcal{F}.$$

Now take a resolution of \mathcal{F}

$$0 \to \sum_{j=1}^{m_r} \mathcal{O}(a_{r,j}) \to \cdots \to \sum_{j=1}^{m_1} \mathcal{O}(a_{1,j}) \to \sum_{j=1}^{m_0} \mathcal{O}(a_{0,j}) \to \mathcal{F} \to 0.$$

Each map is a matrix of polynomials in Y_1, \ldots, Y_r. Replace each Y_i by Y_i^p to get a complex

$$0 \to \sum_{j=1}^{m_r} \mathcal{O}(pa_{r,j}) \to \cdots \to \sum_{j=1}^{m_1} \mathcal{O}(pa_{1,j}) \to \sum_{j=1}^{m_0} \mathcal{O}(pa_{0,j}) \to F^*(\mathcal{F}) \to 0.$$

This is a resolution of $F^*(\mathcal{F})$, where $F: \mathbb{P}^{r-1} \to \mathbb{P}^{r-1}$ is the Frobenius map induced by

$$k[Y_1, \ldots, Y_r] \to k[Y_1, \ldots, Y_r]$$

$$Y_i \mapsto Y_i^p$$

The entries in the maps are now in the image of ρ. Apply ρ^{-1} to the entries to get a complex

$$0 \to \sum_{j=1}^{m_r} \Omega^{-2a_{r,j}}(k) \to \cdots \to \sum_{j=1}^{m_1} \Omega^{-2a_{1,j}}(k) \to \sum_{j=1}^{m_0} \Omega^{-2a_{0,j}}(k) \to 0.$$
Again apply Rickard’s totalisation functor $\mathcal{D}^b(kE) \to \text{stmod}(kE)$ to the above complex to get a module M with $\mathcal{F}_1(M) \cong F^*(\mathcal{F})$.

3. Chern Classes

The Chow group $A^*(\mathbb{P}^{r-1})$ is isomorphic to $\mathbb{Z}[h]/(h^r)$. Given a vector bundle \mathcal{F} on \mathbb{P}^{r-1}, there is a Chern polynomial

$$c(\mathcal{F}) = 1 + c_1(\mathcal{F})h + \cdots + c_{r-1}(\mathcal{F})h^{r-1} \in A^*(\mathbb{P}^{r-1})$$

whose coefficients $c_i(\mathcal{F})$ are the Chern numbers of \mathcal{F}. We’ll construct the Chern polynomial in this lecture without reference to the general definition of Chow group. Recall

Theorem 41 (Exercise II.5.9 of Hartshorne). There is an equivalence of categories between coherent sheaves on $\mathbb{P}^{r-1} = \text{Proj } k[Y_1, \ldots, Y_r]$ and finitely generated graded modules over $k[Y_1, \ldots, Y_r]$ modulo finite length modules.

Definition 42. If $M = \bigoplus_{j \in \mathbb{Z}} M_j$ is a finitely generated graded module over $R = k[Y_1, \ldots, Y_r]$ then the Poincaré series (or Hilbert series) of M is

$$p_M(t) = \sum_{j \in \mathbb{Z}} t^j \dim_k M_j.$$

Lemma 43 (Hilbert, Serre). The Poincaré series of a finitely generated R-module takes the form $p_M(t) = \frac{f(t)}{(1 - t)^r}$ where $f(t)$ is a Laurent polynomial.

If M is a finite length module then $p_M(t)$ is a Laurent polynomial. i.e., $f(t)$ is divisible by $(1 - t)^r$.

Definition 44. We define the rank of M to be the positive integer $f(1)$. This is equal to the dimension of the ungraded vector space

$$k(Y_1, \ldots, Y_r) \otimes_{k[Y_1, \ldots, Y_r]} M$$

over the field $k(Y_1, \ldots, Y_r)$.

Lemma 45. If $0 \to M_1 \to M_2 \to M_3 \to 0$ is a short exact sequence of graded R-modules then $p_{M_2}(t) = p_{M_1}(t) + p_{M_3}(t)$.

If M corresponds to a vector bundle \mathcal{F} on \mathbb{P}^{r-1} then the rank is the dimension of the vector space at each point.

Definition 46. We define the Chow ring of R to be the truncated polynomial ring $A^*(R) = \mathbb{Z}[h]/(h^r)$.

Definition 47. If \(p_M(t) = \frac{\sum_j a_j t^j}{(1 - t)^r} \) then we define the Chern polynomial of \(M \) to be

\[
c(M) = \prod_j (1 + jh)^{a_j} \in A^*(R) = \mathbb{Z}[h]/(h^r).
\]

Some \(a_j \) may be negative, but \((1 + jh)\) is invertible in \(A^*(R) \).

The Chern numbers of \(M \) are the coefficients

\[
c(M) = 1 + c_1(M)h + \cdots + c_{r-1}(M)h^{r-1}
\]

and by convention \(c_0(M) = 1 \).

The Chern character of \(M \) is defined to be

\[
\text{Ch}(M) = \sum_j a_je^{jh} \in A^*_R = \mathbb{Q} \otimes \mathbb{Z} A^*(R) = \mathbb{Q}[h]/(h^r).
\]

\[
\text{Ch}(M) = \text{rank} (M) + c_1 h + \frac{1}{2}(c_1^2 - 2c_2)h^2 + \cdots
\]

Lemma 48. If \(0 \to M_1 \to M_2 \to M_3 \to 0 \) is a short exact sequence then

(i) \(c(M_2) = c(M_1)c(M_3) \) — i.e., \(c_j(M_2) = \sum_{i=0}^j c_i(M_1)c_{j-i}(M_3) \)

(ii) \(\text{Ch}(M_2) = \text{Ch}(M_1) + \text{Ch}(M_3) \).

Lemma 49. If \(M \) and \(M' \) are equivalent modulo finite length modules then \(c(M) = c(M') \) and \(\text{Ch}(M) = \text{Ch}(M') \).

Proof. For \(\text{Ch}(M) \), easy: \(\text{Ch}(k[n]) = \sum_j (-1)^j \binom{r}{j} e^{(j+n)h} = e^{nh}(1 - e^h)^r \)

and \(1 - e^h \) is divisible by \(h \).

For \(c(M) \), need \(c(k[n]) = 1 \). This follows from:

\[
c(k[n]) = \prod_{j=0}^r (1 + (j+n)h)^{(-1)^j \binom{r}{j}} \equiv 1 \pmod{h^r}.
\]

Definition 50. If a coherent sheaf \(\mathcal{F} \) on \(\mathbb{P}^{r-1} \) corresponds to a finitely generated graded \(k[Y_1, \ldots, Y_r] \)-module \(M \) then we define \(c(\mathcal{F}) = c(M) \) and \(\text{Ch}(\mathcal{F}) = \text{Ch}(M) \).

Exercise: Show that \(c(\mathcal{F}(1), h) = (1 + h)^{\text{rank} \mathcal{F}} c(\mathcal{F}, \frac{h}{1+h}) \).

Fact: For a vector bundle \(c_i(\mathcal{F}) = 0 \) for \(i > \text{rank} \mathcal{F} \).

Next we discuss congruences on Chern classes.

Lemma 51. For a vector bundle \(\mathcal{F} \) of rank \(s \) in \(\mathbb{Z}[h]/(h^r) \) we have

\[
c(\mathcal{F})c(\mathcal{F}(1)) \cdots c(\mathcal{F}(p-1)) \equiv 1 - sh^{p-1} \pmod{p, h^{2p-2}}.
\]
Proof. Recall that if \(p_M(t) = \sum_j a_j t^j / (1-t)^r \) then \(c(F) = \prod_j (1+jh)^{a_j} \).

\[
c(F) \ldots c(F(p-1)) = \prod_j ((1+jh) \ldots (1+(j+p-1)h))^{a_j}.
\]

Since \(x(x+y)(x+2y) \ldots (x+(p-1)y) \equiv x^p - xy^{p-1} \pmod{p} \), this

\[
eq \prod_j ((1+jh)^p - (1+jh)h^{p-1})^{a_j} \quad \pmod{p}
\]

\[
eq \prod_j (1 - h^{p-1} + (j^p - j)h)^{a_j} \quad \pmod{p}
\]

\[
\equiv 1 - \sum_j a_j h^{p-1} \quad \pmod{p, h^{2p-2}}.
\]

\[\square\]

\textbf{Theorem 52 (BP).} Suppose \(r \geq 2 \), and let \(M \) be a \(kE \)-module of stable constant Jordan type \([1]^s\). Then \(p|c_i(F_1(M)) \) for \(1 \leq i \leq p-2 \).

\textit{Proof.} \(\tilde{M} \) has a filtration with filtered quotients

\[
\mathcal{F}_1(M), \mathcal{F}_p(M), \mathcal{F}_p(M)(1), \ldots, \mathcal{F}_p(M)(p-1).
\]

Therefore \(c(F_1(M))c(F_p(M))c(F_p(M)(1)) \ldots c(F_p(M)(p-1)) = 1 \). By the lemma, it follows that \(c(F_1(M)) \equiv 1 + sh^{p-1} \pmod{p, h^{2p-2}}. \)

\[\square\]

If \(p = 2 \) this gives no information, but for \(p \) odd it gives a genuine restriction on the vector bundles that can occur this way. In particular, it throws light on the realisation theorem.

\textbf{Remark 53.} If \(F \) is the Frobenius map then \(c(F^*(\mathcal{F}), h) = c(\mathcal{F}, ph) \). So the condition is satisfied by \(F^*(\mathcal{F}) \).

\textbf{Example 54.} The rank two Horrocks–Mumford bundle \(\mathcal{F}_{HM} \) on \(\mathbb{P}^4 \) has \(c_1(\mathcal{F}_{HM}(i)) = 2i + 5 \) and \(c_2(\mathcal{F}_{HM}(i)) = i^2 + 5i + 10 \). So no twist of \(\mathcal{F}_{HM} \) can occur as \(\mathcal{F}_1(M) \) for a module of stable constant Jordan type \([1]^2\). But by the realisation theorem there is a module \(M \) of stable constant Jordan type \([1]^2\) with \(\mathcal{F}_1(M) \cong F^*(\mathcal{F}_{HM}) \).

A similar analysis of Chern classes shows that for large rank and large primes, the only small stable constant Jordan type is \([1]^t\):

\textbf{Theorem 55 (B, 2010).} If a module has stable constant Jordan type \([a_1][a_2] \ldots [a_t] \) with \(a = \sum a_i \leq \min(r-1, p-2) \) then \(a_1 = \cdots = a_t = 1 \).
Proof. We have
\[p^{-2} \prod_{j=1}^{p-2} c(\mathcal{F}_j(M))c(\mathcal{F}_j(M)(1)) \equiv 1 \pmod{(p, h^{p-1})}. \]
This is a polynomial of degree \(a \leq p - 2 \). Also \(a \leq r - 1 \) so this can be read as an equality in \(\mathbb{F}_p[h] \). The only units in this ring are the constants. So for \(j \geq 2 \) both \(c(\mathcal{F}_j(M)) \) and \(c(\mathcal{F}_j(M)(1)) \) have to be 1 mod \(p \). But \(c_1(\mathcal{F}_j(M)(1)) = c_1(\mathcal{F}_j(M)) + \text{ rank } \mathcal{F}_j(M) \) so \(p | \text{ rank } \mathcal{F}_j(M) \), a contradiction. \(\square \)

This proves a weak form of the conjecture of CFP. Recall:

Conjecture 56. Let \(r \geq 2, \ p \geq 5 \). If \(M \) has stable constant Jordan type \([2][1]\) then \(j \geq r - 1 \).

Corollary 57. If \(M \) has stable constant Jordan type \([2][1]\) and \(p \geq j + 4 \) then \(j \geq r - 2 \).

The smallest case where there’s a discrepancy between the conjecture and the corollary is type \([2][1]\) for \(r = 3, \ p \geq 5 \). In this case it can be proved that \(p \equiv 1 \pmod{3} \).

Chern roots: The Chern polynomial \(c(\mathcal{F}) \in \mathbb{Z}[h]/(h^r) \) has a unique lift to \(\mathbb{Z}[h] \) of degree \(\leq r - 1 \), also denoted \(c(\mathcal{F}) \). Factorise it in \(\mathbb{C}[h] \):
\[c(\mathcal{F}) = \prod_j (1 + \alpha_j h). \]
The algebraic integers \(\alpha_j \) are the Chern roots of \(\mathcal{F} \).
\[c_1 = \sum_i \alpha_i \quad c_2 = \sum_{i<j} \alpha_i \alpha_j \quad \ldots \]

The number of Chern roots for a coherent sheaf is not well defined, but for a vector bundle it can be taken as the rank.

Definition 58 (Power sums). \(s(\mathcal{F}, h) \in \mathbb{Z}[h]/(h^r) \) is defined by
\[-s(\mathcal{F}, -h) = \frac{hc(\mathcal{F}, h)}{c(\mathcal{F}, h)} \quad s(\mathcal{F}, h) = s_1(\mathcal{F})h + s_2(\mathcal{F})h^2 + \ldots \]
We have \(s_1 = c_1, \ s_2 = c_1^2 - 2c_2, \ldots \)

Calculation: \(s_n(\mathcal{F}) = \sum_j a_j j^n = \sum_j \alpha_j^n \).

Theorem 59. If \(0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0 \) then \(s_n(\mathcal{F}_2) = s_n(\mathcal{F}_1) + s_n(\mathcal{F}_3) \).

Proof. This follows from \(s_n(\mathcal{F}) = \sum_j a_j j^n \). \(\square \)

Theorem 60. If \(f(x) \) is any polynomial of degree at most \(r - 1 \) with \(f(0) = 0 \) then
\[\sum_j f(\alpha_j) = \sum_j a_j f(j). \]
Proof. True for \(f(x) = x^n \) for \(1 \leq n \leq r - 1 \) by previous frame. \(\square \)

Consequence (Schwarzenberger’s conditions): If \(n \in \mathbb{Z} \Rightarrow f(n) \in \mathbb{Z} \) then \(\sum_j f(\alpha_j) \in \mathbb{Z} \).

Examples of such polynomials are binomials \(f(n) = \binom{n}{i} \).

For example, on \(\mathbb{P}^3 \) we have \(c_1c_2 + c_3 \equiv 0 \mod 2 \).

For a rank two bundle on \(\mathbb{P}^4 \) we have \(c_2(c_2+1-3c_1-2c_1^2) \equiv 0 \mod 12 \).

Theorem 61. \(\text{Ch}(\mathcal{F}) = \text{rank } \mathcal{F} + \sum_j (e^{\alpha_j h} - 1) \).

Remark 62. If we assume that the number of Chern roots is the rank of \(\mathcal{F} \) this reads as \(\text{Ch}(\mathcal{F}) = \sum_j e^{\alpha_j h} \).

Proof. We have
\[
\text{Ch}(\mathcal{F}) = \sum_j a_j e^{jh} = \text{rank } \mathcal{F} + \sum_j a_j (e^{jh} - 1)
= \text{rank } \mathcal{F} + \sum_j \sum_{n=1}^{r-1} \frac{a_j n! h^n}{n!}.
\]

Apply Theorem 60:
\[
\text{Ch}(\mathcal{F}) = \text{rank } \mathcal{F} + \sum_j \sum_{n=1}^{r-1} \frac{\alpha_j n! h^n}{n!} = \text{rank } \mathcal{F} + \sum_j (e^{\alpha_j h} - 1). \quad \square
\]

Cohomology of sheaves: The global section functor \(\mathcal{F} \mapsto \Gamma(\mathcal{F}) = \Gamma(\mathbb{P}^{r-1}, \mathcal{F}) \) is left exact but not right exact. So it has right derived functors \(H^i(\mathcal{F}) = H^i(\mathbb{P}^{r-1}, \mathcal{F}) \). e.g. \(H^0(\mathcal{F}) = \Gamma(\mathcal{F}) \). These vanish for \(i \geq r \). A short exact sequence \(0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0 \) gives
\[
0 \to H^0(\mathcal{F}_1) \to H^0(\mathcal{F}_2) \to H^0(\mathcal{F}_3) \to H^1(\mathcal{F}_0) \to \cdots \to H^{r-1}(\mathcal{F}_3) \to 0.
\]

Definition 63. The *Euler characteristic* of \(\mathcal{F} \) is
\[
\chi(\mathcal{F}) = \sum_{i=0}^{r-1} (-1)^i \dim H^i(\mathcal{F}).
\]

Lemma 64. If \(0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0 \) then \(\chi(\mathcal{F}_2) = \chi(\mathcal{F}_1) + \chi(\mathcal{F}_3) \).

Theorem 65 (Schwarzenberger). If \(\mathcal{F} \) is a coherent sheaf on \(\mathbb{P}^{r-1} \) then
\[
\chi(\mathcal{F}) = \text{rank } \mathcal{F} + \sum_j \left(\binom{\alpha_j + r - 1}{r - 1} - 1 \right).
\]
Proof. Both sides are additive over short exact sequences. Every coherent sheaf has a finite resolution by sums of line bundles. So it suffices to prove the theorem for \(F = \mathcal{O}(j) \). Serre calculated \(H^i(\mathcal{O}(j)) \): its dimension is \(\binom{r-j}{r-1} \) if \(i = 0 \); \(j \geq 0 \), \(\binom{r-j}{r-j} \) if \(i = r-1 \), \(j \leq -r \), zero otherwise. So it is true by direct calculation for \(\mathcal{O}(j) \). □

Theorem 66 (Hirzebruch-Riemann-Roch). *The Euler characteristic \(\chi(\mathcal{F}) \) is the coefficient of \(h^{r-1} \) in \(\left(\frac{h}{1-e^{-h}} \right)^r \text{Ch}(\mathcal{F}) \).*

Remark 67. The expression \(\left(\frac{h}{1-e^{-h}} \right)^r \) is the Todd class of the tangent bundle of \(\mathbb{P}^{r-1} \).

Remark 68. For simplicity let’s assume that the number of Chern roots is rank \(\mathcal{F} \) so that \(\text{Ch}(\mathcal{F}) = \sum_j e^{\alpha_j h} \).

Proof. Cauchy’s integral formula: coefficient of \(h^{r-1} \) is

\[
\frac{1}{2\pi i} \oint \left(\frac{h}{1-e^{-h}} \right)^r \frac{\text{Ch}(\mathcal{F})}{h^r} \, dh = \sum_j \frac{1}{2\pi i} \oint \frac{e^{\alpha_j h}}{(1-e^{-h})^r} \, dh
\]

Substitute \(z = 1 - e^{-h} \), \(dh = dz/(1-z) \), \(e^{\alpha_j h} = 1/(1-z)^{\alpha_j} \)

\[
= \sum_j \frac{1}{2\pi i} \oint \frac{dz}{z^r (1-z)^{\alpha_j+1}}
\]

\[
= \sum_j \frac{1}{2\pi i} \oint z^{-r} (1 + (\alpha_j + 1)z + \frac{\alpha_j + 2}{2} z^2 + \ldots) dz
\]

\[
= \sum_j \left(\frac{\alpha_j + r - 1}{r - 1} \right) = \chi(\mathcal{F}). \quad \square
\]

The following theorem is a typical example of an application of the Hirzebruch–Riemann–Roch theorem to modules of constant Jordan type for \(p = 2 \).

Theorem 69 (B, 2010). *Let \(k \) have char 2. If \(M \) has constant Jordan type \([2]^n[1]^m \) with \(m \leq r-3 \) then one of the following occurs:

(i) \(n \) is congruent to one of \(0, -1, \ldots, -m \) modulo \(2^{r-1} \), or

(ii) \(r \leq 6 \), or

(iii) there is a new vector bundle of low rank on projective space of dimension at least six.*

Let’s see why this is. Suppose \(M \) has constant Jordan type \([2]^n[1]^m \).

The sheaf \(\tilde{M} \) has a filtration with quotients \(\mathcal{F}_2(M), \mathcal{F}_2(M)(1) \) and
So if $\mathcal{F}_1(M)$ is a sum of line bundles $\mathcal{O}(a_1), \ldots, \mathcal{O}(a_m)$ then

$$(1 + e^h)\text{Ch}(\mathcal{F}_2(M)) + e^{a_1h} + \cdots + e^{a_mh} = \text{Ch}(\widetilde{M}) = 2n + m.$$

So by the Hirzebruch–Riemann–Roch theorem $\chi(\mathcal{F}_2(M))$ is the coefficient of h^{r-1} in

$$\left(\frac{h}{1 - e^{-h}}\right)^r \left(\frac{2n + m - e^{a_1h} - \cdots - e^{a_mh}}{1 + e^h}\right).$$

Calculation: This differs by an integer from

$$\frac{2n + m - \sum_{i=1}^m (-1)^{a_i}}{2^r}.$$

So n is congruent mod 2^{r-1} to minus the number of odd a_i.

Example 70. The Tango example of type $[2]^{14}[1]^2$ and rank 6 shows why we need (ii).

Possible Jordan types for $(\mathbb{Z}/2)^3$: $[2]^n[1]^m$

![Diagram](image1.png)

Possible Jordan types for $(\mathbb{Z}/2)^4$: $[2]^n[1]^m$

![Diagram](image2.png)

Nilvarieties of constant Jordan type

Definition 71. A *nilvariety* of constant Jordan type t and rank r consists of nilpotent matrices A_1, \ldots, A_r such that for all $0 \neq \alpha = (\lambda_1, \ldots, \lambda_r) \in \mathbb{A}^r(k)$ the Jordan canonical form of $\lambda_1 A_1 + \cdots + \lambda_r A_r$ is t.

Example 72. The matrices

$$A_1 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \quad \text{and} \quad A_2 = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix}$$
span a nilvariety, but do not commute. For all values of Y_1 and Y_2, not both zero, the matrix $Y_1A_1 + Y_2A_2$ has a single Jordan block with eigenvalue zero.

Theorem 73. Let $p \geq 3$ and let M be a rank r nilvariety of constant Jordan type $[p]^n$. Then

$$p\lfloor \frac{r-1}{p-1}\rfloor n$$

where $\lfloor \frac{r-1}{p-1}\rfloor$ denotes the largest integer less than or equal to $\frac{r-1}{p-1}$.

Proof. Hirzebruch–Riemann–Roch. □

This is sharp for $p = 3$ in characteristic 3, because of tensor products of copies of the previous example.

What happens for $p \geq 5$?

Nilvarieties with a single Jordan block

Theorem 74 (Causa, Re and Teodorescu). Let M be a nilvariety of rank r and constant Jordan type $[m]$. Then $r \leq 2$, and if $r = 2$ then m is odd.

Proof. Suppose that M is a nilvariety of constant Jordan type $[m]$. Then $F_m(M)$ is a line bundle, so we have $F_m(M) \cong O(a)$ for some integer a. The bundle $\tilde{M} \cong O^{\oplus m}$ has a filtration with filtered quotients $O(a), O(a+1), \ldots, O(a+m-1)$ and so

$$0 = c_1(\tilde{M}) = a + (a+1) + \cdots + (a+m-1) = ma + m(m-1)/2.$$

Thus $a = -(m-1)/2$ and so m is odd. If $r \geq 3$ then for all i and j we have $\text{Ext}^1(O(i), O(j)) \cong H^1(\mathbb{P}^{r-1}, O(j-i)) = 0$ so the filtration splits, giving $O^{\oplus m} \cong O(a) \oplus O(a+1) \oplus \cdots \oplus O(a+m-1)$, which contradicts the Krull–Schmidt Theorem for vector bundles. □
Summary Sheet

- $k = \overline{k}$ is a field of characteristic p.
- $E = \langle g_1, \ldots, g_r \rangle \cong (\mathbb{Z}/p)^r$
- $X_i = g_i - 1 \in kE$, $X_i^p = 0$.
- $kE = k[X_1, \ldots, X_r]/(X_i^p, \ldots, X_r^p)$
- If $\alpha = (\lambda_1, \ldots, \lambda_r) \in \mathbb{A}^r(k)$ then $X_\alpha = \lambda_1 X_1 + \cdots + \lambda_r X_r \in kE$.
- Generic kernel: $\mathcal{K}(M) = \bigcap_{S \subseteq \mathbb{P}^1} \bigcap_{\text{cofinite} \Delta \in S} \text{Ker}(X_\alpha, M)$
- $\mathbb{P}^{r-1} = \text{Proj} k[Y_1, \ldots, Y_r]$, $Y_i(X_j) = \delta_{ij}$
- $\tilde{M} = M \otimes_k \mathcal{O}$
- $\theta: \tilde{M}(j) \to \tilde{M}(j+1)$
- $\theta(m \otimes f) = \sum_i X_i m \otimes Y_i f$
- $\mathcal{F}_i(M) = \frac{\text{Ker}\theta \cap \text{Im}\theta^{i-1}}{\text{Ker}\theta \cap \text{Im}\theta^{i}}$ as subquotient of \tilde{M}.
- $\mathcal{F}_{i,j}(M) = \frac{(\text{Im}\theta^{j+1} \cap \text{Im}\theta^{i-j}) + (\text{Im}\theta^j \cap \text{Im}\theta^{i-j-1})}{\text{Im}\theta^{j+1} \cap \text{Im}\theta^{i-j}}$.
- $\mathcal{F}_{i,j}(M) \cong \mathcal{F}_{i}(M)(j)$.
- Euler sequence: $0 \to 0 \to O(1)^{\oplus r} \to \mathcal{F} \to 0$.
- Chow group $A^r(\mathbb{P}^{r-1}) \cong \mathbb{Z}[h]/(h^r)$.
- Chern polynomial: if $p_M(t) = \sum_j a_j t^j \in (1-t)^r$ then
 \[c(M) = 1 + c_1(M) h + \cdots + c_{r-1}(M) h^{r-1} = \prod_j (1 + jh)^{a_j} \in \mathbb{Z}[h]/(h^r). \]
- Chern character: $\text{Ch}(M) = \sum_j a_j e^{jh} \in \mathbb{Q}[h]/(h^r)$.
- Twists: $c(\mathcal{F}(1), h) = (1 + h)^{\text{rank} \mathcal{F}} c(\mathcal{F}, \frac{h}{1+h})$.
- $c(\mathcal{F}) c(\mathcal{F}(p-1)) \equiv 1 - (\text{rank} \mathcal{F}) h^{p-1} \pmod {p, h^{2p-2}}$.
- Power sums: $-s(\mathcal{F}, -h) = \frac{h}{c(\mathcal{F}, h)} c(\mathcal{F}, h)$
- $s_n(\mathcal{F}) = \sum_j a_j j^n = \sum_j a_j^n$ for $1 \leq n < r$.
- Schwarzeneberger: $\sum_j \binom{\alpha_j + s}{m} \in \mathbb{Z}$.
- Euler characteristic: $\chi(\mathcal{F}) = \sum_i(-1)^i \dim H^i(\mathbb{P}^{r-1}, \mathcal{F})$.
- Hirzebruch–Riemann–Roch: $\chi(\mathcal{F}) = \sum_j \binom{\alpha_j + r - 1}{r - 1}$
 is the coefficient of h^{r-1} in $\left(\frac{h}{1-e^{-h}}\right)^r \text{Ch}(\mathcal{F})$.