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Integer Programming

Recall that we defined integer programming problems in our discussion of the Divisibility As-
sumption in Section 3.1. Simply stated, an integer programming problem (IP) is an LP in which
some or all of the variables are required to be non-negative integers.†

In this chapter (as for LPs in Chapter 3), we find that many real-life situations may be formu-
lated as IPs. Unfortunately, we will also see that IPs are usually much harder to solve than LPs.

In Section 9.1, we begin with necessary definitions and some introductory comments about
IPs. In Section 9.2, we explain how to formulate integer programming models. We also dis-
cuss how to solve IPs on the computer with LINDO, LINGO, and Excel Solver. In Sections
9.3–9.8, we discuss other methods used to solve IPs.

9.1 Introduction to Integer Programming
An IP in which all variables are required to be integers is called a pure integer pro-
gramming problem. For example,

max z � 3x1 � 2x2

s.t. x1 � x2 � 6 (1)

x1, x2 � 0, x1, x2 integer

is a pure integer programming problem.
An IP in which only some of the variables are required to be integers is called a mixed

integer programming problem. For example,

max z � 3x1 � 2x2

s.t. x1 � x2 � 6

x1, x2 � 0, x1 integer

is a mixed integer programming problem (x2 is not required to be an integer).
An integer programming problem in which all the variables must equal 0 or 1 is called

a 0–1 IP. In Section 9.2, we see that 0–1 IPs occur in surprisingly many situations.‡ The
following is an example of a 0–1 IP:

max z � x1 � x2

s.t. x1 � 2x2 � 2
(2)

2x1 � x2 � 1

x1, x2 � 0 or 1

Solution procedures especially designed for 0–1 IPs are discussed in Section 9.7.

†A nonlinear integer programming problem is an optimization problem in which either the objective function
or the left-hand side of some of the constraints are nonlinear functions and some or all of the variables must
be integers. Such problems may be solved with LINGO or Excel Solver.
‡Actually, any pure IP can be reformulated as an equivalent 0–1 IP (Section 9.7).



The concept of LP relaxation of an integer programming problem plays a key role in
the solution of IPs.

D E F I N I T I O N ■ The LP obtained by omitting all integer or 0–1 constraints on variables is called
the LP relaxation of the IP. ■

For example, the LP relaxation of (1) is

max z � 3x1 � 2x2

s.t. x1 � x2 � 6 (1�)

x1, x2 � 0

and the LP relaxation of (2) is

max z � x1 � x2

s.t. x1 � 2x2 � 2
(2�)

s.t. 2x1 � x2 � 1

x1, x2 � 0

Any IP may be viewed as the LP relaxation plus additional constraints (the constraints
that state which variables must be integers or be 0 or 1). Hence, the LP relaxation is a
less constrained, or more relaxed, version of the IP. This means that the feasible region for
any IP must be contained in the feasible region for the corresponding LP relaxation. For
any IP that is a max problem, this implies that

Optimal z-value for LP relaxation � optimal z-value for IP (3)

This result plays a key role when we discuss the solution of IPs.
To shed more light on the properties of integer programming problems, we consider

the following simple IP:

max z � 21x1 � 11x2

s.t. 7x1 � 4x2 � 13 (4)

x1, x2 � 0; x1, x2 integer

From Figure 1, we see that the feasible region for this problem consists of the following
set of points: S � {(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1)}. Unlike the feasible region
for any LP, the one for (4) is not a convex set. By simply computing and comparing the
z-values for each of the six points in the feasible region, we find the optimal solution to
(4) is z � 33, x1 � 0, x2 � 3.

If the feasible region for a pure IP’s LP relaxation is bounded, as in (4), then the feasi-
ble region for the IP will consist of a finite number of points. In theory, such an IP could
be solved (as described in the previous paragraph) by enumerating the z-values for each
feasible point and determining the feasible point having the largest z-value. The problem
with this approach is that most actual IPs have feasible regions consisting of billions of
feasible points. In such cases, a complete enumeration of all feasible points would require
a large amount of computer time. As we explain in Section 9.3, IPs often are solved by
cleverly enumerating all the points in the IP’s feasible region.

Further study of (4) sheds light on other interesting properties of IPs. Suppose that a
naive analyst suggests the following approach for solving an IP: First solve the LP relax-
ation; then round off (to the nearest integer) each variable that is required to be an inte-
ger and that assumes a fractional value in the optimal solution to the LP relaxation.

Applying this approach to (4), we first find the optimal solution to the LP relaxation:
x1 � �

1
7
3
�, x2 � 0. Rounding this solution yields the solution x1 � 2, x2 � 0 as a possible
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optimal solution to (4). But x1 � 2, x2 � 0 is infeasible for (4), so it cannot possibly be
the optimal solution to (4). Even if we round x1 downward (yielding the candidate solu-
tion x1 � 1, x2 � 0), we do not obtain the optimal solution (x1 � 0, x2 � 3 is the opti-
mal solution).

For some IPs, it can even turn out that every roundoff of the optimal solution to the
LP relaxation is infeasible. To see this, consider the following IP:

max z � 4x1 � x2

s.t. 2x1 � x2 � 5

s.t. 2x1 � 3x2 � 5

x1, x2 � 0; x1, x2 integer

The optimal solution to the LP relaxation for this IP is z � 10, x1 � �
5
2

�, x2 � 0. Round-
ing off this solution, we obtain either the candidate x1 � 2, x2 � 0 or the candidate x1 �
3, x2 � 0. Neither candidate is a feasible solution to the IP.

Recall from Chapter 4 that the simplex algorithm allowed us to solve LPs by going
from one basic feasible solution to a better one. Also recall that in most cases, the sim-
plex algorithm examines only a small fraction of all basic feasible solutions before the
optimal solution is obtained. This property of the simplex algorithm enables us to solve
relatively large LPs by expending a surprisingly small amount of computational effort.
Analogously, one would hope that an IP could be solved via an algorithm that proceeded
from one feasible integer solution to a better feasible integer solution. Unfortunately, no
such algorithm is known.

In summary, even though the feasible region for an IP is a subset of the feasible region
for the IP’s LP relaxation, the IP is usually much more difficult to solve than the IP’s LP
relaxation.

9.2 Formulating Integer Programming Problems
In this section, we show how practical solutions can be formulated as IPs. After com-
pleting this section, the reader should have a good grasp of the art of developing integer
programming formulations. We begin with some simple problems and gradually build to
more complicated formulations. Our first example is a capital budgeting problem remi-
niscent of the Star Oil problem of Section 3.6.
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Stockco is considering four investments. Investment 1 will yield a net present value (NPV)
of $16,000; investment 2, an NPV of $22,000; investment 3, an NPV of $12,000; and in-
vestment 4, an NPV of $8,000. Each investment requires a certain cash outflow at the pres-
ent time: investment 1, $5,000; investment 2, $7,000; investment 3, $4,000; and investment
4, $3,000. Currently, $14,000 is available for investment. Formulate an IP whose solution
will tell Stockco how to maximize the NPV obtained from investments 1–4.

Solution As in LP formulations, we begin by defining a variable for each decision that Stockco
must make. This leads us to define a 0–1 variable:

xj( j �1, 2, 3, 4) � �
For example, x2 � 1 if investment 2 is made, and x2 � 0 if investment 2 is not made.

The NPV obtained by Stockco (in thousands of dollars) is

Total NPV obtained by Stockco � 16x1 � 22x2 � 12x3 � 8x4 (5)

To see this, note that if xj � 1, then (5) includes the NPV of investment j, and if xj � 0,
(5) does not include the NPV of investment j. This means that whatever combination of
investments is undertaken, (5) gives the NPV of that combination of projects. For exam-
ple, if Stockco invests in investments 1 and 4, then an NPV of 16,000 � 8,000 � $24,000
is obtained. This combination of investments corresponds to x1 � x4 � 1, x2 � x3 � 0,
so (5) indicates that the NPV for this investment combination is 16(1) � 22(0) �
12(0) � 8(1) � $24 (thousand). This reasoning implies that Stockco’s objective function is

max z � 16x1 � 22x2 � 12x3 � 8x4 (6)

Stockco faces the constraint that at most $14,000 can be invested. By the same reasoning
used to develop (5), we can show that

Total amount invested (in thousands of dollars) � 5x1 � 7x2 � 4x3 � 3x4 (7)

For example, if x1 � 0, x2 � x3 � x4 � 1, then Stockco makes investments 2, 3, and 4.
In this case, Stockco must invest 7 � 4 � 3 � $14 (thousand). Equation (7) yields a to-
tal amount invested of 5(0) � 7(1) � 4(1) � 3(1) � $14 (thousand). Because at most
$14,000 can be invested, x1, x2, x3, and x4 must satisfy

5x1 � 7x2 � 4x3 � 3x4 � 14 (8)

Combining (6) and (8) with the constraints xj � 0 or 1 ( j � 1, 2, 3, 4) yields the fol-
lowing 0–1 IP:

max z � 16x1 � 22x2 � 12x3 � 8x4

s.t. 5x1 � 7x2 � 4x3 � 3x4 � 14 (9)

xj � 0 or 1 ( j � 1, 2, 3, 4)

R E M A R K S 1 In Section 9.5, we show that the optimal solution to (9) is x1 � 0, x2 � x3 � x4 � 1, z �
$42,000. Hence, Stockco should make investments 2, 3, and 4, but not 1. Investment 1 yields a
higher NPV per dollar invested than any of the others (investment 1 yields $3.20 per dollar invested,
investment 2, $3.14; investment 3, $3; and investment 4, $2.67), so it may seem surprising that in-
vestment 1 is not undertaken. To see why the optimal solution to (9) does not involve making the
“best” investment, note that any investment combination that includes investment 1 cannot use more
than $12,000. This means that using investment 1 forces Stockco to forgo investing $2,000. On the
other hand, the optimal investment combination uses all $14,000 of the investment budget. This en-

if investment j is made

otherwise

1

0
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ables the optimal combination to obtain a higher NPV than any combination that includes invest-
ment 1. If, as in Chapter 3, fractional investments were allowed, the optimal solution to (9) would
be x1 � x2 � 1, x3 � 0.50, x4 � 0, z � $44,000, and investment 1 would be used. This simple ex-
ample shows that the choice of modeling a capital budgeting problem as a linear programming or
as an integer programming problem can significantly affect the optimal solution to the problem.
2 Any IP, such as (9), that has only one constraint is referred to as a knapsack problem. Suppose
that Josie Camper is going on an overnight hike. There are four items Josie is considering taking
along on the trip. The weight of each item and the benefit Josie feels she would obtain from each
item are listed in Table 1.

Suppose Josie’s knapsack can hold up to 14 lb of items. For j � 1, 2, 3, 4, define

xj � �
Then Josie can maximize the total benefit by solving (9).

In the following example, we show how the Stockco formulation can be modified to
handle additional constraints.

Modify the Stockco formulation to account for each of the following requirements:

1 Stockco can invest in at most two investments.

2 If Stockco invests in investment 2, they must also invest in investment 1.

3 If Stockco invests in investment 2, they cannot invest in investment 4.

Solution 1 Simply add the constraint

x1 � x2 � x3 � x4 � 2 (10)

to (9). Because any choice of three or four investments will have x1 � x2 � x3 � x4 �
3, (10) excludes from consideration all investment combinations involving three or more
investments. Thus, (10) eliminates from consideration exactly those combinations of in-
vestments that do not satisfy the first requirement.

2 In terms of x1 and x2, this requirement states that if x2 � 1, then x1 must also equal
1. If we add the constraint

x2 � x1 or x2 � x1 � 0 (11)

to (9), then we will have taken care of the second requirement. To show that (11) is equiv-
alent to requirement 2, we consider two possibilities: either x2 � 1 or x2 � 0.

Case 1 x2 � 1. If x2 � 1, then the (11) implies that x1 � 1. Because x1 must equal 0 or
1, this implies that x1 � 1, as required by 2.

1 if Josie takes item j on the hike
0 otherwise
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TA B L E  1
Weights and Benefits for
Items in Josie’s Knapsack

Weight
Item (Pounds) Benefit

1 5 16
2 7 22
3 4 12
4 3 18

Capital Budgeting (Continued)E X A M P L E  2



Case 2 x2 � 0. In this case, (11) reduces to x1 � 0, which allows x1 � 0 or x1 � 1. In
short, if x2 � 0, (11) does not restrict the value of x1. This is also consistent with re-
quirement 2.

In summary, for any value of x2, (11) is equivalent to requirement 2.

3 Simply add the constraint

x2 � x4 � 1 (12)

to (9). We now show that for the two cases x2 � 1 and x2 � 0, (12) is equivalent to the
third requirement.

Case 1 x2 � 1. In this case, we are investing in investment 2, and requirement 3 implies
that Stockco cannot invest in investment 4 (that is, x4 must equal 0). Note that if x2 � 1,
then (12) does imply 1 � x4 � 1, or x4 � 0. Thus, if x2 � 1, then (12) is consistent with
requirement 3.

Case 2 x2 � 0. In this case, requirement 3 does not restrict the value of x4. Note that if
x2 � 0, then (12) reduces to x4 � 1, which also leaves x4 free to equal 0 or 1.

Fixed-Charge Problems

Example 3 illustrates an important trick that can be used to formulate many location and
production problems as IPs.

Gandhi Cloth Company is capable of manufacturing three types of clothing: shirts, shorts,
and pants. The manufacture of each type of clothing requires that Gandhi have the ap-
propriate type of machinery available. The machinery needed to manufacture each type
of clothing must be rented at the following rates: shirt machinery, $200 per week; shorts
machinery, $150 per week; pants machinery, $100 per week. The manufacture of each
type of clothing also requires the amounts of cloth and labor shown in Table 2. Each week,
150 hours of labor and 160 sq yd of cloth are available. The variable unit cost and sell-
ing price for each type of clothing are shown in Table 3. Formulate an IP whose solution
will maximize Gandhi’s weekly profits.

Solution As in LP formulations, we define a decision variable for each decision that Gandhi must
make. Clearly, Gandhi must decide how many of each type of clothing should be manu-
factured each week, so we define

x1 � number of shirts produced each week

x2 � number of shorts produced each week

x3 � number of pants produced each week
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Fixed-Charge IPE X A M P L E  3

TA B L E  2
Resource Requirements for Gandhi

Clothing Labor Cloth
Type (Hours) (Square Yards)

Shirt 3 4
Shorts 2 3
Pants 6 4



Note that the cost of renting machinery depends only on the types of clothing produced,
not on the amount of each type of clothing. This enables us to express the cost of renting
machinery by using the following variables:

y1 � �
y2 � �
y3 � �

In short, if xj 	 0, then yj � 1, and if xj � 0, then yj � 0. Thus, Gandhi’s weekly profits �
(weekly sales revenue) � (weekly variable costs) � (weekly costs of renting machinery).

Also,

Weekly cost of renting machinery � 200y1 � 150y2 � 100y3 (13)

To justify (13), note that it picks up the rental costs only for the machines needed to man-
ufacture those products that Gandhi is actually manufacturing. For example, suppose that
shirts and pants are manufactured. Then y1 � y3 � 1 and y2 � 0, and the total weekly
rental cost will be 200 � 100 � $300.

Because the cost of renting, say, shirt machinery does not depend on the number of
shirts produced, the cost of renting each type of machinery is called a fixed charge. A
fixed charge for an activity is a cost that is assessed whenever the activity is undertaken
at a nonzero level. The presence of fixed charges will make the formulation of the Gandhi
problem much more difficult.

We can now express Gandhi’s weekly profits as

Weekly profit � (12x1 � 8x2 � 15x3) � (6x1 � 4x2 � 8x3)

� (200y1 � 150y2 � 100y3)

� 6x1 � 4x2 � 7x3 � 200y1 � 150y2 � 100y3

Thus, Gandhi wants to maximize

z � 6x1 � 4x2 � 7x3 � 200y1 � 150y2 � 100y3

Because its supply of labor and cloth is limited, Gandhi faces the following two constraints:

Constraint 1 At most, 150 hours of labor can be used each week.

Constraint 2 At most, 160 sq yd of cloth can be used each week.

Constraint 1 is expressed by

3x1 � 2x2 � 6x3 � 150 (Labor constraint) (14)

1 if any pants are manufactured

0 otherwise

1 if any shorts are manufactured

0 otherwise

1 if any shirts are manufactured

0 otherwise
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TA B L E  3
Revenue and Cost Information for Gandhi

Clothing Sales Variable
Type Price ($) Cost ($)

Shirt 12 6
Shorts 18 4
Pants 15 8



Constraint 2 is expressed by

4x1 � 3x2 � 4x3 � 160 (Cloth constraint) (15)

Observe that xj 	 0 and xj integer ( j � 1, 2, 3) must hold along with yj � 0 or 1 ( j �
1, 2, 3). Combining (14) and (15) with these restrictions and the objective function yields
the following IP:

max z � 6x1 � 4x2 � 7x3 � 200y1 � 150y2 � 100y3

s.t. 3x1 � 2x2 � 6x3 � 150

s.t. 4x1 � 3x2 � 4x3 � 160 (IP 1)

s.t. 3x1 � x1, x2, x3 � 0; x1, x2, x3 integer

s.t. 3x1 � y1, y2, y3 � 0 or 1

The optimal solution to this problem is found to be x1 � 30, x3 � 10, x2 � y1 � y2 �
y3 � 0. This cannot be the optimal solution to Gandhi’s problem because it indicates that
Gandhi can manufacture shirts and pants without incurring the cost of renting the needed
machinery. The current formulation is incorrect because the variables y1, y2, and y3 are
not present in the constraints. This means that there is nothing to stop us from setting 
y1 � y2 � y3 � 0. Setting yi � 0 is certainly less costly than setting yi � 1, so a minimum-
cost solution to (IP 1) will always set yi � 0. Somehow we must modify (IP 1) so that
whenever xi 	 0, yi � 1 must hold. The following trick will accomplish this goal. Let M1,
M2, and M3 be three large positive numbers, and add the following constraints to (IP 1):

x1 � M1y1 (16)

x2 � M2y2 (17)

x3 � M3y3 (18)

Adding (16)–(18) to IP 1 will ensure that if xi 	 0, then yi � 1. To illustrate, let us show
that (16) ensures that if x1 	 0, then y1 � 1. If x1 	 0, then y1 cannot be 0. For if y1 �
0, then (16) would imply x1 � 0 or x1 � 0. Thus, if x1 	 0, y1 � 1 must hold. If any
shirts are produced (x1 	 0), (16) ensures that y1 � 1, and the objective function will in-
clude the cost of the machinery needed to manufacture shirts. Note that if y1 � 1, then
(16) becomes x1 � M1, which does not unnecessarily restrict the value of x1. If M1 were
not chosen large, however (say, M1 � 10), then (16) would unnecessarily restrict the value
of x1. In general, Mi should be set equal to the maximum value that xi can attain. In the
current problem, at most 40 shirts can be produced (if Gandhi produced more than 40
shirts, the company would run out of cloth), so we can safely choose M1 � 40. The reader
should verify that we can choose M2 � 53 and M3 � 25.

If x1 � 0, (16) becomes 0 � M1y1. This allows either y1 � 0 or y1 � 1. Because y1 �
0 is less costly than y1 � 1, the optimal solution will choose y1 � 0 if x1 � 0. In sum-
mary, we have shown that if (16)–(18) are added to (IP 1), then xi 	 0 will imply yi � 1,
and xi � 0 will imply yi � 0.

The optimal solution to the Gandhi problem is z � $75, x3 � 25, y3 � 1. Thus, Gandhi
should produce 25 pants each week.

The Gandhi problem is an example of a fixed-charge problem. In a fixed-charge prob-
lem, there is a cost associated with performing an activity at a nonzero level that does not
depend on the level of the activity. Thus, in the Gandhi problem, if we make any shirts at
all (no matter how many we make), we must pay the fixed charge of $200 to rent a shirt
machine. Problems in which a decision maker must choose where to locate facilities are
often fixed-charge problems. The decision maker must choose where to locate various fa-
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cilities (such as plants, warehouses, or business offices), and a fixed charge is often asso-
ciated with building or operating a facility. Example 4 is a typical location problem in-
volving the idea of a fixed charge.

J. C. Nickles receives credit card payments from four regions of the country (West, Mid-
west, East, and South). The average daily value of payments mailed by customers from
each region is as follows: the West, $70,000; the Midwest, $50,000; the East, $60,000;
the South, $40,000. Nickles must decide where customers should mail their payments. Be-
cause Nickles can earn 20% annual interest by investing these revenues, it would like to
receive payments as quickly as possible. Nickles is considering setting up operations to
process payments (often referred to as lockboxes) in four different cities: Los Angeles,
Chicago, New York, and Atlanta. The average number of days (from time payment is sent)
until a check clears and Nickles can deposit the money depends on the city to which the
payment is mailed, as shown in Table 4. For example, if a check is mailed from the West
to Atlanta, it would take an average of 8 days before Nickles could earn interest on the
check. The annual cost of running a lockbox in any city is $50,000. Formulate an IP that
Nickles can use to minimize the sum of costs due to lost interest and lockbox operations.
Assume that each region must send all its money to a single city and that there is no limit
on the amount of money that each lockbox can handle.

Solution Nickles must make two types of decisions. First, Nickles must decide where to operate
lockboxes. We define, for j � 1, 2, 3, 4,

yj � �
Thus, y2 � 1 if a lockbox is operated in Chicago, and y3 � 0 if no lockbox is operated
in New York. Second, Nickles must determine where each region of the country should
send payments. We define (for i, j � 1, 2, 3, 4)

xij � �
For example, x12 � 1 if the West sends payments to Chicago, and x23 � 0 if the Midwest
does not send payments to New York.

Nickles wants to minimize (total annual cost) � (annual cost of operating lockboxes) �
(annual lost interest cost). To determine how much interest Nickles loses annually, we
must determine how much revenue would be lost if payments from region i were sent 
to region j. For example, how much in annual interest would Nickles lose if customers
from the West region sent payments to New York? On any given day, 8 days’ worth, or
8(70,000) � $560,000 of West payments will be in the mail and will not be earning in-

1 if region i sends payments to city j

0 otherwise

1 if a lockbox is operated in city j

0 otherwise
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The Lockbox ProblemE X A M P L E  4

TA B L E  4
Average Number of Days from Mailing of Payment Until Payment Clears

To

City 1 City 2 City 3 City 4
From (Los Angeles) (Chicago) (New York) (Atlanta)

Region 1 West 2 6 8 8
Region 2 Midwest 6 2 5 5
Region 3 East 8 5 2 5
Region 4 South 8 5 5 2



terest. Because Nickles can earn 20% annually, each year West funds will result in
0.20(560,000) � $112,000 in lost interest. Similar calculations for the annual cost of lost
interest for each possible assignment of a region to a city yield the results shown in Table
5. The lost interest cost from sending region i’s payments to city j is only incurred if 
xij � 1, so Nickles’s annual lost interest costs (in thousands) are

Annual lost interest costs � 28x11 � 84x12 � 112x13 � 112x14

Annual lost interest costs � � 60x21 � 20x22 � 50x23 � 50x24

Annual lost interest costs � � 96x31 � 60x32 � 24x33 � 60x34

Annual lost interest costs � � 64x41 � 40x42 � 40x43 � 16x44

The cost of operating a lockbox in city i is incurred if and only if yi � 1, so the an-
nual lockbox operating costs (in thousands) are given by

Total annual lockbox operating cost � 50y1 � 50y2 � 50y3 � 50y4

Thus, Nickles’s objective function may be written as

min z � 28x11 � 84x12 � 112x13 � 112x14

min z � � 60x21 � 20x22 � 50x23 � 50x24

min z � � 96x31 � 60x32 � 24x33 � 60x34 (19)

min z � � 64x41 � 40x42 � 40x43 � 16x44

� 50y1 � 50y2 � 50y3 � 50y4

Nickles faces two types of constraints.

Type 1 Constraint Each region must send its payments to a single city.

Type 2 Constraint If a region is assigned to send its payments to a city, that city must have
a lockbox.
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TA B L E  5
Calculation of Annual Lost Interest

Annual Lost
Assignment Interest Cost ($)

West to L.A. 0.20(70,000)2 � 28,000
West to Chicago 0.20(70,000)6 � 84,000
West to N.Y. 0.20(70,000)8 � 112,000
West to Atlanta 0.20(70,000)8 � 112,000
Midwest to L.A. 0.20(50,000)6 � 60,000
Midwest to Chicago 0.20(50,000)2 � 20,000
Midwest to N.Y. 0.20(50,000)5 � 50,000
Midwest to Atlanta 0.20(50,000)5 � 50,000
East to L.A. 0.20(60,000)8 � 96,000
East to Chicago 0.20(60,000)5 � 60,000
East to N.Y. 0.20(60,000)2 � 24,000
East to Atlanta 0.20(60,000)5 � 60,000
South to L.A. 0.20(40,000)8 � 64,000
South to Chicago 0.20(40,000)5 � 40,000
South to N.Y 0.20(40,000)5 � 40,000
South to Atlanta 0.20(40,000)2 � 16,000



The type 1 constraints state that for region i (i � 1, 2, 3, 4) exactly one of xi1, xi2, xi3,
and xi4 must equal 1 and the others must equal 0. This can be accomplished by including
the following four constraints:

x11 � x12 � x13 � x14 � 1 (West region constraint) (20)

x21 � x22 � x23 � x24 � 1 (Midwest region constraint) (21)

x31 � x32 � x33 � x34 � 1 (East region constraint) (22)

x41 � x42 � x43 � x44 � 1 (South region constraint) (23)

The type 2 constraints state that if

xij � 1 (that is, customers in region i send payments to city j) (24)

then yj must equal 1. For example, suppose x12 � 1. Then there must be a lockbox at city
2, so y2 � 1 must hold. This can be ensured by adding 16 constraints of the form

xij � yj (i � 1, 2, 3, 4; j � 1, 2, 3, 4) (25)

If xij � 1, then (25) ensures that yj � 1, as desired. Also, if x1j � x2j � x3j � x4j � 0,
then (25) allows yj � 0 or yj � 1. As in the fixed-charge example, the act of minimizing
costs will result in yj � 0. In summary, the constraints in (25) ensure that Nickles pays
for a lockbox at city i if it uses a lockbox at city i.

Combining (19)–(23) with the 4(4) � 16 constraints in (25) and the 0–1 restrictions
on the variables yields the following formulation:

min z � 28x11 � 84x12 � 112x13 � 112x14 � 60x21 � 20x22 � 50x23 � 50x24

min z �� 96x31 � 60x32 � 24x33 � 60x34 � 64x41 � 40x42 � 40x43 � 16x44

min z �� 50y1 � 50y2 � 50y3 � 50y4

s.t. x11 � x12 � x13 � x14 � 1 (West region constraint)

s.t. x21 � x22 � x23 � x24 � 1 (Midwest region constraint)

s.t. x31 � x32 � x33 � x34 � 1 (East region constraint)

s.t. x41 � x42 � x43 � x44 � 1 (South region constraint)

s.t. x11 � y1, x21 � y1, x31 � y1, x41 � y1, x12 � y2, x22 � y2, x32 � y2, x42 � y2,

s.t. x13 � y3, x23 � y3, x33 � y3, x43 � y3, x14 � y4, x24 � y4, x34 � y4, x44 � y4

All xij and yj � 0 or 1

The optimal solution is z � 242, y1 � 1, y3 � 1, x11 � 1, x23 � 1, x33 � 1, x43 � 1.
Thus, Nickles should have a lockbox operation in Los Angeles and New York. West cus-
tomers should send payments to Los Angeles, and all other customers should send pay-
ments to New York.

There is an alternative way of modeling the Type 2 constraints. Instead of the 16 con-
straints of the form xij � yj, we may include the following four constraints:

x11 � x21 � x31 � x41 � 4y1 (Los Angeles constraint)

x12 � x22 � x32 � x42 � 4y2 (Chicago constraint)

x13 � x23 � x33 � x43 � 4y3 (New York constraint)

x14 � x24 � x34 � x44 � 4y4 (Atlanta constraint)

For the given city, each constraint ensures that if the lockbox is used, then Nickles must
pay for it. For example, consider x14 � x24 � x34 � x44 � 4y4. The lockbox in Atlanta is
used if x14 � 1, x24 � 1, x34 � 1, or x44 � 1. If any of these variables equals 1, then the
Atlanta constraint ensures that y4 � 1, and Nickles must pay for the lockbox. If all these
variables are 0, then the act of minimizing costs will cause y4 � 0, and the cost of the At-
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lanta lockbox will not be incurred. Why does the right-hand side of each constraint equal
4? This ensures that for each city, it is possible to send money from all four regions to
the city. In Section 9.3, we discuss which of the two alternative formulations of the lock-
box problem is easier for a computer to solve. The answer may surprise you!

Set-Covering Problems

The following example is typical of an important class of IPs known as set-covering problems.

There are six cities (cities 1–6) in Kilroy County. The county must determine where to
build fire stations. The county wants to build the minimum number of fire stations needed
to ensure that at least one fire station is within 15 minutes (driving time) of each city. The
times (in minutes) required to drive between the cities in Kilroy County are shown in
Table 6. Formulate an IP that will tell Kilroy how many fire stations should be built and
where they should be located.

Solution For each city, Kilroy must determine whether to build a fire station there. We define the
0–1 variables x1, x2, x3, x4, x5, and x6 by

xi � �
Then the total number of fire stations that are built is given by x1 � x2 � x3 � x4 �
x5 � x6, and Kilroy’s objective function is to minimize

z � x1 � x2 � x3 � x4 � x5 � x6

What are Kilroy’s constraints? Kilroy must ensure that there is a fire station within 15
minutes of each city. Table 7 indicates which locations can reach the city in 15 minutes
or less. To ensure that at least one fire station is within 15 minutes of city 1, we add the
constraint

x1 � x2 � 1 (City 1 constraint)

This constraint ensures that x1 � x2 � 0 is impossible, so at least one fire station will be
built within 15 minutes of city 1. Similarly the constraint

x1 � x2 � x6 � 1 (City 2 constraint)

ensures that at least one fire station will be located within 15 minutes of city 2. In a sim-
ilar fashion, we obtain constraints for cities 3–6. Combining these six constraints with the

1 if a fire station is built in city i

0 otherwise
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Facility-Location Set-Covering ProblemE X A M P L E  5

TA B L E  6
Time Required to Travel between Cities in Kilroy County

To

From City 1 City 2 City 3 City 4 City 5 City 6

City 1 0 10 20 30 30 20
City 2 10 0 25 35 20 10
City 3 20 25 0 15 30 20
City 4 30 35 15 0 15 25
City 5 30 20 30 15 0 14
City 6 20 10 20 25 14 0



objective function (and with the fact that each variable must equal 0 or 1), we obtain the
following 0–1 IP:

min z � x1 � x2 � x3 � x4 � x5 � x6

s.t. x1 � x2 � x3 � x4 � x5 � x5 � 1 (City 1 constraint)

s.t. x1 � x2 � x3 � x4 � x5 � x6 � 1 (City 2 constraint)

s.t. x1 � x2 � x3 � x4 � x5 � x6 � 1 (City 3 constraint)

s.t. x1 � x2 � x3 � x4 � x5 � x6 � 1 (City 4 constraint)

s.t. x1 � x2 � x3 � x4 � x5 � x6 � 1 (City 5 constraint)

s.t. x1 � x2 x2 � x3 � � x5 � x6 � 1 (City 6 constraint)

xi � 0 or 1 (i � 1, 2, 3, 4, 5, 6)

One optimal solution to this IP is z � 2, x2 � x4 � 1, x1 � x3 � x5 � x6 � 0. Thus, Kil-
roy County can build two fire stations: one in city 2 and one in city 4.

As noted, Example 5 represents a class of IPs known as set-covering problems. In a
set-covering problem, each member of a given set (call it set 1) must be “covered” by an
acceptable member of some set (call it set 2). The objective in a set-covering problem is
to minimize the number of elements in set 2 that are required to cover all the elements in
set 1. In Example 5, set 1 is the cities in Kilroy County, and set 2 is the set of fire sta-
tions. The station in city 2 covers cities 1, 2, and 6, and the station in city 4 covers cities
3, 4, and 5. Set-covering problems have many applications in areas such as airline crew
scheduling, political districting, airline scheduling, and truck routing.

Either–Or Constraints

The following situation commonly occurs in mathematical programming problems. We
are given two constraints of the form

f (x1, x2, . . . , xn) � 0 (26)

g(x1, x2, . . . , xn) � 0 (27)

We want to ensure that at least one of (26) and (27) is satisfied, often called either–or
constraints. Adding the two constraints (26�) and (27�) to the formulation will ensure that
at least one of (26) and (27) is satisfied:

f (x1, x2, . . . , xn) � My (26�)

g(x1, x2, . . . , xn) � M(1 � y) (27�)
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TA B L E  7
Cities within 15 Minutes of
Given City

City Within 15 Minutes

1 1, 2
2 1, 2, 6
3 3, 4
4 3, 4, 5
5 4, 5, 6
6 2, 5, 6



In (26�) and (27�), y is a 0–1 variable, and M is a number chosen large enough to en-
sure that f (x1, x2, . . . , xn) � M and g(x1, x2, . . . , xn) � M are satisfied for all values of
x1, x2, . . . , xn that satisfy the other constraints in the problem.

Let us show that the inclusion of constraints (26�) and (27�) is equivalent to at least
one of (26) and (27) being satisfied. Either y � 0 or y � 1. If y � 0, then (26�) and (27�)
become f � 0 and g � M. Thus, if y � 0, then (26) (and possibly (27)) must be satisfied.
Similarly, if y � 1, then (26�) and (27�) become f � M and g � 0. Thus, if y � 1, then
(27) (and possibly (26)) must be satisfied. Therefore, whether y � 0 or y � 1, (26�) and
(27�) ensure that at least one of (26) and (27) is satisfied.

The following example illustrates the use of either–or constraints.

Dorian Auto is considering manufacturing three types of autos: compact, midsize, and
large. The resources required for, and the profits yielded by, each type of car are shown
in Table 8. Currently, 6,000 tons of steel and 60,000 hours of labor are available. For pro-
duction of a type of car to be economically feasible, at least 1,000 cars of that type must
be produced. Formulate an IP to maximize Dorian’s profit.

Solution Because Dorian must determine how many cars of each type should be built, we define

x1 � number of compact cars produced

x2 � number of midsize cars produced

x3 � number of large cars produced

Then contribution to profit (in thousands of dollars) is 2x1 � 3x2 � 4x3, and Dorian’s ob-
jective function is

max z � 2x1 � 3x2 � 4x3

We know that if any cars of a given type are produced, then at least 1,000 cars of that
type must be produced. Thus, for i � 1, 2, 3, we must have xi � 0 or xi � 1,000. Steel
and labor are limited, so Dorian must satisfy the following five constraints:

Constraint 1 x1 � 0 or x1 � 1,000.

Constraint 2 x2 � 0 or x2 � 1,000.

Constraint 3 x3 � 0 or x3 � 1,000.

Constraint 4 The cars produced can use at most 6,000 tons of steel.

Constraint 5 The cars produced can use at most 60,000 hours of labor.

488 C H A P T E R 9 Integer Programming

Either–Or ConstraintE X A M P L E  6

TA B L E  8
Resources and Profits for Three Types of Cars

Car Type

Resource Compact Midsize Large

Steel required 1.5 tons 3 tons 5 tons
Labor required 30 hours 25 hours 40 hours

Profit yielded ($) 2,000 3,000 4,000



From our previous discussion, we see that if we define f (x1, x2, x3) � x1 and g(x1, x2,
x3) � 1,000 � x1, we can replace Constraint 1 by the following pair of constraints:

x1 � M1y1

1,000 � x1 � M1(1 � y1)

y1 � 0 or 1

To ensure that both x1 and 1,000 � x1 will never exceed M1, it suffices to choose M1 large
enough so that M1 exceeds 1,000 and x1 is always less than M1. Building �60

3
,0
0
00

� � 2,000
compacts would use all available labor (and still leave some steel), so at most 2,000 com-
pacts can be built. Thus, we may choose M1 � 2,000. Similarly, Constraint 2 may be re-
placed by the following pair of constraints:

x2 � M2 y2

1,000 � x2 � M2(1 � y2)

y2 � 0 or 1

You should verify that M2 � 2,000 is satisfactory. Similarly, Constraint 3 may be replaced by

x3 � M3y3

1,000 � x3 � M3(1 � y3)

y3 � 0 or 1

Again, you should verify that M3 � 1,200 is satisfactory. Constraint 4 is a straightforward
resource constraint that reduces to

1.5x1 � 3x2 � 5x3 � 6,000 (Steel constraint)

Constraint 5 is a straightforward resource usage constraint that reduces to

30x1 � 25x2 � 40x3 � 60,000 (Labor constraint)

After noting that xi � 0 and that xi must be an integer, we obtain the following IP:

max z � 2x1 � 3x2 � 4x3

s.t. 1,000 � x1 � 2,000y1

s.t. 1,000 � x1 � 2,000(1 � y1)

s.t. 1,000 � x2 � 2,000y2

s.t. 1,000 � x2 � 2,000(1 � y2)

s.t. 1,000 � x3 � 1,200y3

s.t. 1,000 � x3 � 1,200(1 � y3)

1.5x1 � 3x2 � 5x3 � 6,000 (Steel constraint)

30x1 � 25x2 � 40x3 � 60,000 (Labor constraint)

x1, x2, x3 � 0; x1, x2, x3 integer

y1, y2, y3 � 0 or 1

The optimal solution to the IP is z � 6,000, x2 � 2,000, y2 � 1, y1 � y3 � x1 � x3 � 0.
Thus, Dorian should produce 2,000 midsize cars. If Dorian had not been required to man-
ufacture at least 1,000 cars of each type, then the optimal solution would have been to
produce 570 compacts and 1,715 midsize cars.
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If–Then Constraints

In many applications, the following situation occurs: We want to ensure that if a constraint
f (x1, x2, . . . , xn) 	 0 is satisfied, then the constraint g(x1, x2, . . . , xn) � 0 must be satis-
fied, while if f (x1, x2, . . . , xn) 	 0 is not satisfied, then g(x1, x2, . . . , xn) � 0 may or may
not be satisfied. In short, we want to ensure that f (x1, x2, . . . , xn) 	 0 implies g(x1, x2,
. . . , xn) � 0.

To ensure this, we include the following constraints in the formulation:

�g(x1, x2, . . . , xn) � My (28)

f (x1, x2, . . . , xn) � M(1 � y) (29)

y � 0 or 1

As usual, M is a large positive number. (M must be chosen large enough so that f � M
and �g � M hold for all values of x1, x2, . . . , xn that satisfy the other constraints in the
problem.) Observe that if f 	 0, then (29) can be satisfied only if y � 0. Then (28) im-
plies �g � 0, or g � 0, which is the desired result. Thus, if f 	 0, then (28) and (29) en-
sure that g � 0. Also, if f 	 0 is not satisfied, then (29) allows y � 0 or y � 1. By choos-
ing y � 1, (28) is automatically satisfied. Thus, if f 	 0 is not satisfied, then the values
of x1, x2, . . . , xn are unrestricted and g 
 0 or g � 0 are both possible.

To illustrate the use of this idea, suppose we add the following constraint to the Nickles lock-
box problem: If customers in region 1 send their payments to city 1, then no other customers
may send their payments to city 1. Mathematically, this restriction may be expressed by

If x11 � 1, then x21 � x31 � x41 � 0 (30)

Because all xij must equal 0 or 1, (30) may be written as

If x11 	 0, then x21 � x31 � x41 � 0, or �x21 � x31 � x41 � 0 (30�)

If we define f � x11 and g � �x21 � x31 � x41, we can use (28) and (29) to express (30�)
[and therefore (30)] by the following two constraints:

x21 � x31 � x41 � My

x11 � M(1 � y)

y � 0 or 1

Because �g and f can never exceed 3, we can choose M � 3 and add the following con-
straints to the original lockbox formulation:

x21 � x31 � x41 � 3y

x11 � 3(1 � y)

y � 0 or 1

Integer Programming and Piecewise Linear Functions†

The next example shows how 0–1 variables can be used to model optimization problems
involving piecewise linear functions. A piecewise linear function consists of several
straight-line segments. The piecewise linear function in Figure 2 is made of four straight-
line segments. The points where the slope of the piecewise linear function changes (or the
range of definition of the function ends) are called the break points of the function. Thus,
0, 10, 30, 40, and 50 are the break points of the function pictured in Figure 2.
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To illustrate why piecewise linear functions can occur in applications, suppose we
manufacture gasoline from oil. In purchasing oil from our supplier, we receive a quantity
discount. The first 500 gallons of oil purchased cost 25¢ per gallon; the next 500 gallons
cost 20¢ per gallon; and the next 500 gallons cost 15¢ per gallon. At most, 1,500 gallons
of oil can be purchased. Let x be the number of gallons of oil purchased and c(x) be the
cost (in cents) of purchasing x gallons of oil. For x � 0, c(x) � 0. Then for 0 � x � 500,
c(x) � 25x. For 500 � x � 1,000, c(x) � (cost of purchasing first 500 gallons at 25¢ per
gallon) � (cost of purchasing next x � 500 gallons at 20¢ per gallon) � 25(500) �
20(x � 500) � 20x � 2,500. For 1,000 � x � 1,500, c(x) � (cost of purchasing first
1,000 gallons) � (cost of purchasing next x � 1,000 gallons at 15¢ per gallon) �
c(1,000) � 15(x � 1,000) � 7,500 � 15x. Thus, c(x) has break points 0, 500, 1,000, and
1,500 and is graphed in Figure 3.

A piecewise linear function is not a linear function, so one might think that linear pro-
gramming could not be used to solve optimization problems involving these functions. By
using 0–1 variables, however, piecewise linear functions can be represented in linear form.
Suppose that a piecewise linear function f (x) has break points b1, b2, . . . , bn. For some k
(k � 1, 2, . . . , n � 1), bk � x � bk�1. Then, for some number zk (0 � zk � 1), x may
be written as

x � zkbk � (1 � zk)bk�1

Because f (x) is linear for bk � x � bk�1, we may write

f (x) � zk f (bk) � (1 � zk) f (bk�1)
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To illustrate the idea, take x � 800 in our oil example. Then we have b2 � 500 � 800 �
1,000 � b3, and we may write

x � �
2
5

�(500) � �
3
5

�(1,000)

f (x) � f (800) � �
2
5

� f (500) � �
3
5

� f (1,000)

� �
2
5

�(12,500) � �
3
5

�(22,500) � 18,500

We are now ready to describe the method used to express a piecewise linear function
via linear constraints and 0–1 variables:

Step 1 Wherever f(x) occurs in the optimization problem, replace f (x) by z1 f (b1) �
z2 f (b2) � ��� � zn f (bn).

Step 2 Add the following constraints to the problem:

z1 � y1, z2 � y1 � y2, z3 � y2 � y3, . . . , zn�1 � yn�2 � yn�1, zn � yn�1

y1 � y2 � ��� � yn�1 � 1

z1 � z2 � ��� � zn � 1

x � z1b1 � z2b2 � ��� � znbn

yi � 0 or 1 (i � 1, 2, . . . , n � 1); zi � 0 (i � 1, 2, . . . , n)

Euing Gas produces two types of gasoline (gas 1 and gas 2) from two types of oil (oil 1
and oil 2). Each gallon of gas 1 must contain at least 50 percent oil 1, and each gallon of
gas 2 must contain at least 60 percent oil 1. Each gallon of gas 1 can be sold for 12¢, and
each gallon of gas 2 can be sold for 14¢. Currently, 500 gallons of oil 1 and 1,000 gal-
lons of oil 2 are available. As many as 1,500 more gallons of oil 1 can be purchased at
the following prices: first 500 gallons, 25¢ per gallon; next 500 gallons, 20¢ per gallon;
next 500 gallons, 15¢ per gallon. Formulate an IP that will maximize Euing’s profits (rev-
enues � purchasing costs).

Solution Except for the fact that the cost of purchasing additional oil 1 is a piecewise linear func-
tion, this is a straightforward blending problem. With this in mind, we define

x � amount of oil 1 purchased

xij � amount of oil i used to produce gas j (i, j � 1, 2)

Then (in cents)

Total revenue � cost of purchasing oil 1 � 12(x11 � x21) � 14(x12 � x22) � c(x)

As we have seen previously,

c(x) � �
Thus, Euing’s objective function is to maximize

z � 12x11 � 12x21 � 14x12 � 14x22 � c(x)

Euing faces the following constraints:

Constraint 1 Euing can use at most x � 500 gallons of oil 1.

Constraint 2 Euing can use at most 1,000 gallons of oil 2.

Constraint 3 The oil mixed to make gas 1 must be at least 50% oil 1.

(0 � x � 500)

(500 � x � 1,000)

(1,000 � x � 1,500)

25x

20x � 2,500

15x � 7,500
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Constraint 4 The oil mixed to make gas 2 must be at least 60% oil 1.

Constraint 1 yields

x11 � x12 � x � 500

Constraint 2 yields

x21 � x22 � 1,000

Constraint 3 yields

�
x11

x
�
11

x21
� � 0.5 or 0.5x11 � 0.5x21 � 0

Constraint 4 yields

�
x12

x
�
12

x22
� � 0.6 or 0.4x12 � 0.6x22 � 0

Also all variables must be nonnegative. Thus, Euing Gas must solve the following opti-
mization problem:

max z � 12x11 � 12x21 � 14x12 � 14x22 � c(x)

s.t. 0.5x11 � 0.5x11 � 0.4x12 � 0.6x12 � x � 500

s.t. 0.5x11 � 0.5x21 � 0.4x12 � 0.6x22 � 1,000

s.t. 0.5x11 � 0.5x21 � 0.4x12 � 0.6x12 � 0

s.t. 0.5x11 � 0.5x11 � 0.4x12 � 0.6x22 � 0

max z � 12xij � 0, 0 � x � 1,500

Because c(x) is a piecewise linear function, the objective function is not a linear func-
tion of x, and this optimization is not an LP. By using the method described earlier, how-
ever, we can transform this problem into an IP. After recalling that the break points for
c(x) are 0, 500, 1,000, and 1,500, we proceed as follows:

Step 1 Replace c(x) by c(x) � z1c(0) � z2c(500) � z3c(1,000) � z4c(1,500).

Step 2 Add the following constraints:

x � 0z1 � 500z2 � 1,000z3 � 1,500z4

z1 � y1, z2 � y1 � y2, z3 � y2 � y3, z4 � y3

z1 � z2 � z3 � z4 � 1, y1 � y2 � y3 � 1

yi � 0 or 1 (i � 1, 2, 3); zi � 0 (i � 1, 2, 3, 4)

Our new formulation is the following IP:

max z � 12x11 � 12x21 � 14x12 � 14x22 � z1c(0) � z2c(500)

max z � � z3c(1,000) � z4c(1,500)

s.t. 0.5x11 � 0.5x21 � 0.4x12 � 0.6x22 � x � 500

s.t. 0.5x11 � 0.5x21 � 0.4x12 � 0.6x22 � 1,000

s.t. 0.5x11 � 0.5x21 � 0.4x12 � 0.6x22 � 0

s.t. 0.5x11 � 0.5x21 � 0.4x12 � 0.6x22 � 0

x � 0z1 � 500z2 � 1,000z3 � 1,500z4 (31)

z1 � y1 (32)

z2 � y1 � y2 (33)

z3 � y2 � y3 (34)
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z4 � y3 (35)

y1 � y2 � y3 � 1 (36)

z1 � z2 � z3 � z4 � 1 (37)

yi � 0 or 1 (i � 1, 2, 3); zi � 0 (i � 1, 2, 3, 4)

xij � 0

To see why this formulation works, observe that because y1 � y2 � y3 � 1 and yi � 0 or
1, exactly one of the yi’s will equal 1, and the others will equal 0. Now, (32)–(37) imply
that if yi � 1, then zi and zi�1 may be positive, but all the other zi’s must equal 0. For in-
stance, if y2 � 1, then y1� y3 � 0. Then (32)–(35) become z1 � 0, z2 � 1, z3 � 1, and
z4 � 0. These constraints force z1 � z4 � 0 and allow z2 and z3 to be any nonnegative
number less than or equal to 1. We can now show that (31)–(37) correctly represent the
piecewise linear function c(x). Choose any value of x, say x � 800. Note that b2 � 500 �
800 � 1,000 � b3. For x � 800, what values do our constraints assign to y1, y2, and y3?
The value y1 � 1 is impossible, because if y1 � 1, then y2 � y3 � 0. Then (34)–(35) force
z3 � z4 � 0. Then (31) reduces to 800 � x � 500z2, which cannot be satisfied by z2 � 1.
Similarly, y3 � 1 is impossible. If we try y2 � 1 (32) and (35) force z1 � z4 � 0. Then
(33) and (34) imply z2 � 1 and z3 � 1. Now (31) becomes 800 � x � 500z2 � 1,000z3.
Because z2 � z3 � 1, we obtain z2 � �

2
5

� and z3 � �
3
5

�. Now the objective function reduces to

12x11 � 12x21 � 14x21 � 14x22 � �
2c(5

5

00)
� � �

3c(1

5

,000)
�

Because

c(800) � �
2c(5

5

00)
� � �

3c(1

5

,000)
�

our objective function yields the correct value of Euing’s profits!
The optimal solution to Euing’s problem is z � 12,500, x � 1,000, x12 � 1,500, 

x22 � 1,000, y3 � z3 � 1. Thus, Euing should purchase 1,000 gallons of oil 1 and pro-
duce 2,500 gallons of gas 2.

In general, constraints of the form (31)–(37) ensure that if bi � x � bi�1, then yi � 1
and only zi and zi�1 can be positive. Because c(x) is linear for bi � x � bi�1, the objec-
tive function will assign the correct value to c(x).

If a piecewise linear function f (x) involved in a formulation has the property that the
slope of f (x) becomes less favorable to the decision maker as x increases, then the tedious
IP formulation we have just described is unnecessary.

Dorian Auto has a $20,000 advertising budget. Dorian can purchase full-page ads in two
magazines: Inside Jocks (IJ) and Family Square (FS). An exposure occurs when a person
reads a Dorian Auto ad for the first time. The number of exposures generated by each 
ad in IJ is as follows: ads 1–6, 10,000 exposures; ads 7–10, 3,000 exposures; ads 
11–15, 2,500 exposures; ads 16�, 0 exposures. For example, 8 ads in IJ would generate
6(10,000) � 2(3,000) � 66,000 exposures. The number of exposures generated by each
ad in FS is as follows: ads 1–4, 8,000 exposures; ads 5–12, 6,000 exposures; ads 13–15,
2,000 exposures; ads 16�, 0 exposures. Thus, 13 ads in FS would generate 4(8,000) �
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8(6,000) � 1(2,000) � 82,000 exposures. Each full-page ad in either magazine costs
$1,000. Assume there is no overlap in the readership of the two magazines. Formulate an
IP to maximize the number of exposures that Dorian can obtain with limited advertising
funds.

Solution If we define

x1 � number of IJ ads yielding 10,000 exposures

x2 � number of IJ ads yielding 3,000 exposures

x3 � number of IJ ads yielding 2,500 exposures

y1 � number of FS ads yielding 8,000 exposures

y2 � number of FS ads yielding 6,000 exposures

y3 � number of FS ads yielding 2,000 exposures

then the total number of exposures (in thousands) is given by

10x1 � 3x2 � 2.5x3 � 8y1 � 6y2 � 2y3

Thus, Dorian wants to maximize

z � 10x1 � 3x2 � 2.5x3 � 8y1 � 6y2 � 2y3

Because the total amount spent (in thousands) is just the toal number of ads placed in
both magazines, Dorian’s budget constraint may be written as

x1 � x2 � x3 � y1 � y2 � y3 � 20

The statement of the problem implies that x1 � 6, x2 � 4, x3 � 5, y1 � 4, y2 � 8, and
y3 � 3 all must hold. Adding the sign restrictions on each variable and noting that each
variable must be an integer, we obtain the following IP:

max z � 10x1 � 3x2 � 2.5x3 � 8y1 � 6y2 � 2y3

s.t. x1 � x2 � x3 � y1 � y2 � y3 � 20

s.t. x1 � x2 � x3 � y1 � y2 � y3 � 6

s.t. x1 � x2 � x3 � y1 � y2 � y3 � 4

s.t. x1 � x2 � x3 � y1 � y2 � y3 � 5

s.t. x1 � x2 � x3 � y1 � y2 � y3 � 4

s.t. x1 � x2 � x3 � y1 � y2 � y3 � 8

s.t. x1 � x2 � x3 � y1 � y2 � y3 � 3

s.t. xi, yi integer (i � 1, 2, 3)

s.t. xi, yi � 0 (i � 1, 2, 3)

Observe that the statement of the problem implies that x2 cannot be positive unless x1 as-
sumes its maximum value of 6. Similarly, x3 cannot be positive unless x2 assumes its max-
imum value of 4. Because x1 ads generate more exposures than x2 ads, however, the act
of maximizing ensures that x2 will be positive only if x1 has been made as large as pos-
sible. Similarly, because x3 ads generate fewer exposures than x2 ads, x3 will be positive
only if x2 assumes its maximum value. (Also, y2 will be positive only if y1 � 4, and y3

will be positive only if y2 � 8.)
The optimal solution to Dorian’s IP is z � 146,000, x1 � 6, x2 � 2, y1 � 4, y2 � 8, 

x3 � 0, y3 � 0. Thus, Dorian will place x1 � x2 � 8 ads in IJ and y1 � y2 � 12 ads in FS.
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In Example 8, additional advertising in a magazine yielded diminishing returns. This
ensured that xi ( yi) would be positive only if xi�1 (yi�1) assumed its maximum value. If
additional advertising generated increasing returns, then this formulation would not yield
the correct solution. For example, suppose that the number of exposures generated by
each IJ ad was as follows: ads 1–6, 2,500 exposures; ads 7–10, 3,000 exposures; ads
11–15, 10,000 exposures. Suppose also that the number of exposures generated by each
FS is as follows: ads 1–4, 2,000 exposures; ads 5–12, 6,000 exposures; ads 13–15, 8,000
exposures.

If we define

x1 � number of IJ ads generating 2,500 exposures

x2 � number of IJ ads generating 3,000 exposures

x3 � number of IJ ads generating 10,000 exposures

y1 � number of FS ads generating 2,000 exposures

y2 � number of FS ads generating 6,000 exposures

y3 � number of FS ads generating 8,000 exposures

the reasoning used in the previous example would lead to the following formulation:

max z � 2.5x1 � 3x2 � 10x3 � 2y1 � 6y2 � 8y3

s.t. x1 � x2 � x3 � y1 � y2 � y3 � 20

s.t. x1 � x2 � x3 � y1 � y2 � y3 � 6

s.t. x1 � x2 � x3 � y1 � y2 � y3 � 4

s.t. x1 � x2 � x3 � y1 � y2 � y3 � 5

s.t. x1 � x2 � x3 � y1 � y2 � y3 � 4

s.t. x1 � x2 � x3 � y1 � y2 � y3 � 8

s.t. x1 � x2 � x3 � y1 � y2 � y3 � 3

s.t. xi, yi integer (i � 1, 2, 3)

s.t. xi, yi � 0 (i � 1, 2, 3)

The optimal solution to this IP is x3 � 5, y3 � 3, y2 � 8, x2 � 4, x1 � 0, y1 � 0,
which cannot be correct. According to this solution, x1 � x2 � x3 � 9 ads should be
placed in IJ. If 9 ads were placed in IJ, however, then it must be that x1 � 6 and x2 � 3.
Therefore, we see that the type of formulation used in the Dorian Auto example is cor-
rect only if the piecewise linear objective function has a less favorable slope for larger
values of x. In our second example, the effectiveness of an ad increased as the number of
ads in a magazine increased, and the act of maximizing will not ensure that xi can be pos-
itive only if xi�1 assumes its maximum value. In this case, the approach used in the Eu-
ing Gas example would yield a correct formulation (see Problem 8).

Solving IPs with LINDO

LINDO can be used to solve pure or mixed IPs. In addition to the optimal solution, the
LINDO output for an IP gives shadow prices and reduced costs. Unfortunately, the
shadow prices and reduced costs refer to subproblems generated during the branch-and-
bound solution—not to the IP. Unlike linear programming, there is no well-developed the-
ory of sensitivity analysis for integer programming. The reader interested in a discussion
of sensitivity analysis for IPs should consult Williams (1985).
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To use LINDO to solve an IP, begin by entering the problem as if it were an LP. After
typing in the END statement (to designate the end of the LP constraints), type for each
0–1 variable x the following statement:

INTE x

Thus, for an IP in which x and y are 0–1 variables, the following statements would be
typed after the END statement:

INTE x

INTE y

A variable (say, w) that can assume any non-negative integer value is indicated by the GIN
statement. Thus, if w may assume the values 0, 1, 2, . . . , we would type the following
statement after the END statement:

GIN w

To tell LINDO that the first n variables appearing in the formulation must be 0–1 vari-
ables, use the command INT n.

To tell LINDO that the first n variables appearing in the formulation may assume any
non-negative integer value, use the command GIN n.

To illustrate how to use LINDO to solve IPs, we show how to solve Example 3 with
LINDO. We typed the following input (file Gandhi):

MAX      6 X1 + 4 X2 + 7 X3 - 200 Y1 - 150 Y2 - 100 Y3
SUBJECT TO

2)   3 X1 + 2 X2 + 6 X3 <= 150
3)   4 X1 + 3 X2 + 4 X3 <= 160
4)   X1 - 40 Y1 <= 0
5)   X2 - 53 Y2 <= 0
6)   X3 - 25 Y3 <= 0

END
GIN       X1
GIN       X2
GIN       X3
INTE    Y1
INTE    Y2
INTE    Y3

Thus we see that X1, X2, and X3 can be any nonnegative integer, while Y1, Y2, and Y3
must equal 0 or 1. By the way, we could have typed GIN 3 to ensure that X1, X2, and X3
must be nonnegative integers. The optimal solution found by LINDO is given in Figure 4.

Solving IPs with LINGO

LINGO can also be used to solve IPs. To indicate that a variable must equal 0 or 1 use
the @BIN operator (see the following example). To indicate that a variable must equal a
non-negative integer, use the @GIN operator. We illustrate how LINGO is used to solve
IPs with Example 4 (the Lockbox Problem). The following LINGO program (file Lock.lng)
can be used to solve Example 4 (or any reasonably sized lockbox program).

MODEL:
1]SETS:
2]REGIONS/W,MW,E,S/:DEMAND;
3]CITIES/LA,CHIC,NY,ATL/:Y;
4]LINKS(REGIONS,CITIES):DAYS,COST,ASSIGN;
5]ENDSETS
6]MIN=@SUM(CITIES:50000*Y)+@SUM(LINKS:COST*ASSIGN);
7]@FOR(LINKS(I,J):ASSIGN(I,J) < Y(J));
8]@FOR(REGIONS(I):
9]@SUM(CITIES(J):ASSIGN(I,J))=1);

10]@FOR(CITIES(I):@BIN(Y(I)););
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11]@FOR(LINKS(I,J):@BIN(ASSIGN(I,J)););
12]@FOR(LINKS(I,J):COST(I,J)=.20*DEMAND(I)*DAYS(I,J));
13]DATA:
14]DAYS=2,6,8,8,
15]6,2,5,5,
16]8,5,2,5,
17]8,5,5,2;
18]DEMAND=70000,50000,60000,40000;
19]ENDDATA

END

In line 2, we define the four regions of the country and associate a daily demand for
cash payments from each region. Line 3 specifies the four cities where a lockbox may be
built. With each city I, we associate a 0–1 variable (Y(I)) that equals 1 if a lockbox is
built in the city or 0 otherwise. In line 4, we create a “link” (LINK(I,J)) between each re-
gion of the country and each potential lockbox site. Associated with each link are the fol-
lowing quantities:

1 The average number of days (DAYS) it takes a check to clear when mailed from re-
gion I to city J. This information is given in the DATA section.

2 The annual lost interest cost for funds sent from region i (COST) incurred if region I
sends its money to city J.

3 A 0–1 variable ASSIGN(I,J) which equals 1 if region I sends its money to city J and
0 otherwise.

In line 6, we compute the total cost by summing 50000*Y(I) over all cities. This com-
putes the total annual cost of running lockboxes. Then we sum COST*ASSIGN over all
links. This picks up the total annual lost interest cost. The line 7 constraints ensure that
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  MAX     6 X1 + 4 X2 + 7 X3 - 200 Y1 - 150 Y2 - 100 Y3
  SUBJECT TO
         2)   3 X1 + 2 X2 + 6 X3 <=   150
         3)   4 X1 + 3 X2 + 4 X3 <=   160
         4)   X1 - 40 Y1 <=   0
         5)   X2 - 53 Y2 <=   0
         6)   X3 - 25 Y3 <=   0
  END
  GIN        X1
  GIN        X2
  GIN        X3
  INTE       Y1
  INTE       Y2
  INTE       Y3

        OBJECTIVE FUNCTION VALUE

        1)     75.000000

  VARIABLE        VALUE          REDUCED COST
        X1          .000000         -6.000000
        X2          .000000         -4.000000
        X3        25.000000         -7.000000
        Y1          .000000        200.000000
        Y2          .000000        150.000000
        Y3         1.000000        100.000000

       ROW   SLACK OR SURPLUS     DUAL PRICES
        2)          .000000           .000000
        3)        60.000000           .000000
        4)          .000000           .000000
        5)          .000000           .000000
        6)          .000000           .000000

NO. ITERATIONS=      11
BRANCHES=     1 DETERM.=  1.000E    0F I G U R E  4



(for all combinations of I and J) if region I sends its money to city J, then Y(J) � 1. This
forces us to pay for lockboxes we use. Lines 8–9 ensure that each region of the country
sends its money to some city. Line 10 ensures that each Y(I) equals 0 or 1. Line 11 en-
sures that each ASSIGN(I,J) equals 0 or 1 (actually we do not need this statement; see
Problem 44). We compute the lost annual interest cost if region I sends its money to city
J in line 12. This duplicates the calculations in Table 5. Note that an * is needed to en-
sure that multiplications are performed.

In lines 14–17, we input the average number of days required for a check to clear when
it is sent from region I to city J. In line 18, we input the daily demand for each region.

Note that to obtain the objective function and constraints we selected the Model win-
dow and then chose LINDO, Generate, Display Model. See Figure 8.

Using the Excel Solver to Solve IP Problems

It is easy to use the Excel Solver to solve integer programming problems. The file
Gandhi.xls contains a spreadsheet solution to Example 3. See Figure 7 for the optimal so-
lution. In our spreadsheet, the changing cells J4:J6 (the number of each product produced)
must be integers. To tell the Solver that these changing cells must be integers, just select
Add Constraint and point to the cells J4:J6. Then select int from the drop-down arrow in
the middle.

The changing cells K4:K6 are the binary fixed charge variables. To tell the Solver that
these changing cells must be binary, select Add Constraint and point to cells K4:K6. Then
select bin from the drop-down arrow. See Figure 6.

From Figure 7, we find that the optimal solution (as found with LINDO) is to make
25 pairs of pants.

9 . 2 Formulating Integer Programming Problems 499

F I G U R E  5

F I G U R E  6

Gandhi.xls



500 C H A P T E R 9 Integer Programming

MIN     50000 Y(ATL + 50000 Y(NY + 50000 Y(CHIC + 50000 Y(LA + 16000 ASSIGNSA
     + 40000 ASSIGNSN + 40000 ASSIGNSC + 64000 ASSIGNSL + 60000 ASSIGNEA
     + 24000 ASSIGNEN + 60000 ASSIGNEC + 96000 ASSIGNEL + 50000 ASSIGNMW
     + 50000 ASSIGNMW + 20000 ASSIGNMW + 60000 ASSIGNMW + 112000 ASSIGNWA
     + 112000 ASSIGNWN + 84000 ASSIGNWC + 28000 ASSIGNWL
SUBJECT TO
2)- Y(LA + ASSIGNWL <=   0
3)- Y(CHIC + ASSIGNWC <=   0
4)- Y(NY + ASSIGNWN <=   0
5)- Y(ATL + ASSIGNWA <=   0
6)- Y(LA + ASSIGNMW <=   0
7)- Y(CHIC + ASSIGNMW <=   0
8)- Y(NY + ASSIGNMW <=   0
9)- Y(ATL + ASSIGNMW <=   0
10)- Y(LA + ASSIGNEL <=   0
11)- Y(CHIC + ASSIGNEC <=   0
12)- Y(NY + ASSIGNEN <=   0
13)- Y(ATL + ASSIGNEA <=   0
14)- Y(LA + ASSIGNSL <=   0
15)- Y(CHIC + ASSIGNSC <=   0
16)- Y(NY + ASSIGNSN <=   0
17)- Y(ATL + ASSIGNSA <=   0
18)  ASSIGNWA + ASSIGNWN + ASSIGNWC + ASSIGNWL =    1
19)  ASSIGNMW + ASSIGNMW + ASSIGNMW + ASSIGNMW =    1
20)  ASSIGNEA + ASSIGNEN + ASSIGNEC + ASSIGNEL =    1
21)  ASSIGNSA + ASSIGNSN + ASSIGNSC + ASSIGNSL =    1
END
INTE    20

[ERROR CODE: 96]
WARNING: SEVERAL LINGO NAMES MAY HAVE BEEN TRANSFORMED INTO A
SINGLE LINDO NAME.

LP OPTIMUM FOUND AT STEP     14
OBJECTIVE VALUE =   242000.000
ENUMERATION COMPLETE. BRANCHES=     0 PIVOTS=    14F I G U R E  8

1
2

3
4
5
6

7

8

9
10
11

12
13
14
15

A B C D E F G H I J K
Gandhi

Labor
hours
used

Cloth
yards
used Unit price Unit cost Unit profit

Fixed
Cost

Number
Made

Binary
variable

Shirt 3 4 $ 12.00 $ 6.00 $ 6.00 $ 200.00 0 0
Shorts 2 3 $ 8.00 $ 4.00 $ 4.00 $ 150.00 0 0
Pants 6 4 15.00$ $ 8.00 $ 7.00 $ 100.00 25 1

Resource
Constraints

Used Available
Fixed
charge $ 100.00

Labor 150 <= 150
Variable
cost $ 200.00

Cloth 100 <= 160 Revenue $ 375.00
Profit $ 75.00

Fixed
Charge
Constraints

Number
Made

Logical
Upper
Bound

Max
possible to
make

Shirts 0 <= 0 40
Shorts 0 <= 0 53.33333
Pants 25 <= 25 25
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LAST INTEGER SOLUTION IS THE BEST FOUND
RE-INSTALLING BEST SOLUTION...

                     VARIABLE         VALUE          REDUCED COST
                   DEMAND( W)        70000.00           0.0000000E+00
                  DEMAND( MW)        50000.00           0.0000000E+00
                   DEMAND( E)        60000.00           0.0000000E+00
                   DEMAND( S)        40000.00           0.0000000E+00
                       Y( LA)        1.000000            50000.00
                     Y( CHIC)        0.0000000E+00       50000.00
                       Y( NY)        1.000000            50000.00
                      Y( ATL)        0.0000000E+00       50000.00
                 DAYS( W, LA)        2.000000           0.0000000E+00
               DAYS( W, CHIC)        6.000000           0.0000000E+00
                 DAYS( W, NY)        8.000000           0.0000000E+00
                DAYS( W, ATL)        8.000000           0.0000000E+00
                DAYS( MW, LA)        6.000000           0.0000000E+00
              DAYS( MW, CHIC)        2.000000           0.0000000E+00
                DAYS( MW, NY)        5.000000           0.0000000E+00
               DAYS( MW, ATL)        5.000000           0.0000000E+00
                 DAYS( E, LA)        8.000000           0.0000000E+00
               DAYS( E, CHIC)        5.000000           0.0000000E+00
                 DAYS( E, NY)        2.000000           0.0000000E+00
                DAYS( E, ATL)        5.000000           0.0000000E+00
                 DAYS( S, LA)        8.000000           0.0000000E+00
               DAYS( S, CHIC)        5.000000           0.0000000E+00
                 DAYS( S, NY)        5.000000           0.0000000E+00
                DAYS( S, ATL)        2.000000           0.0000000E+00
                 COST( W, LA)        28000.00           0.0000000E+00
               COST( W, CHIC)        84000.00           0.0000000E+00
                 COST( W, NY)        112000.0           0.0000000E+00
                COST( W, ATL)        112000.0           0.0000000E+00
                COST( MW, LA)        60000.00           0.0000000E+00
              COST( MW, CHIC)        20000.00           0.0000000E+00
                COST( MW, NY)        50000.00           0.0000000E+00
               COST( MW, ATL)        50000.00           0.0000000E+00
                 COST( E, LA)        96000.00           0.0000000E+00
               COST( E, CHIC)        60000.00           0.0000000E+00
                 COST( E, NY)        24000.00           0.0000000E+00
                COST( E, ATL)        60000.00           0.0000000E+00
                 COST( S, LA)        64000.00           0.0000000E+00
               COST( S, CHIC)        40000.00           0.0000000E+00
                 COST( S, NY)        40000.00           0.0000000E+00
                COST( S, ATL)        16000.00           0.0000000E+00
               ASSIGN( W, LA)        1.000000            28000.00
             ASSIGN( W, CHIC)       0.0000000E+00        84000.00
               ASSIGN( W, NY)       0.0000000E+00        112000.0
              ASSIGN( W, ATL)       0.0000000E+00        112000.0
              ASSIGN( MW, LA)       0.0000000E+00        60000.00
            ASSIGN( MW, CHIC)       0.0000000E+00        20000.00
              ASSIGN( MW, NY)        1.000000            50000.00
             ASSIGN( MW, ATL)       0.0000000E+00        50000.00
               ASSIGN( E, LA)       0.0000000E+00        96000.00
             ASSIGN( E, CHIC)       0.0000000E+00        60000.00
               ASSIGN( E, NY)        1.000000            24000.00
              ASSIGN( E, ATL)       0.0000000E+00        60000.00
               ASSIGN( S, LA)       0.0000000E+00        64000.00
             ASSIGN( S, CHIC)       0.0000000E+00        40000.00
               ASSIGN( S, NY)        1.000000            40000.00
              ASSIGN( S, ATL)       0.0000000E+00        16000.00
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1 Coach Night is trying to choose the starting lineup for
the basketball team. The team consists of seven players who
have been rated (on a scale of 1 � poor to 3 � excellent)
according to their ball-handling, shooting, rebounding, and
defensive abilities. The positions that each player is allowed
to play and the player’s abilities are listed in Table 9.

The five-player starting lineup must satisfy the following
restrictions:

1 At least 4 members must be able to play guard, at
least 2 members must be able to play forward, and at
least 1 member must be able to play center.
2 The average ball-handling, shooting, and rebound-
ing level of the starting lineup must be at least 2.
3 If player 3 starts, then player 6 cannot start.
4 If player 1 starts, then players 4 and 5 must both
start.
5 Either player 2 or player 3 must start.

Given these constraints, Coach Night wants to maximize
the total defensive ability of the starting team. Formulate an
IP that will help him choose his starting team.

2 Because of excessive pollution on the Momiss River, the
state of Momiss is going to build pollution control stations.
Three sites (1, 2, and 3) are under consideration. Momiss is
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ROW    SLACK OR SURPLUS      DUAL PRICE
   1        242000.0           -1.000000
   2       0.0000000E+00       0.0000000E+00
   3       0.0000000E+00       0.0000000E+00
   4        1.000000           0.0000000E+00
   5       0.0000000E+00       0.0000000E+00
   6        1.000000           0.0000000E+00
   7       0.0000000E+00       0.0000000E+00
   8       0.0000000E+00       0.0000000E+00
   9       0.0000000E+00       0.0000000E+00
  10        1.000000           0.0000000E+00
  11       0.0000000E+00       0.0000000E+00
  12       0.0000000E+00       0.0000000E+00
  13       0.0000000E+00       0.0000000E+00
  14        1.000000           0.0000000E+00
  15       0.0000000E+00       0.0000000E+00
  16       0.0000000E+00       0.0000000E+00
  17       0.0000000E+00       0.0000000E+00
  18       0.0000000E+00       0.0000000E+00
  19       0.0000000E+00       0.0000000E+00
  20       0.0000000E+00       0.0000000E+00
  21       0.0000000E+00       0.0000000E+00
  22       0.0000000E+00       -1.000000
  23       0.0000000E+00       0.0000000E+00
  24       0.0000000E+00       0.0000000E+00
  25       0.0000000E+00       0.0000000E+00
  26       0.0000000E+00       0.0000000E+00
  27       0.0000000E+00       0.0000000E+00
  28       0.0000000E+00       -1.000000
  29       0.0000000E+00       0.0000000E+00
  30       0.0000000E+00       0.0000000E+00
  31       0.0000000E+00       0.0000000E+00
  32       0.0000000E+00       -1.000000
  33       0.0000000E+00       0.0000000E+00
  34       0.0000000E+00       0.0000000E+00
  35       0.0000000E+00       0.0000000E+00
  36       0.0000000E+00       -1.000000
  37       0.0000000E+00       0.0000000E+00
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P R O B L E M S
Group A

interested in controlling the pollution levels of two pollutants
(1 and 2). The state legislature requires that at least 80,000
tons of pollutant 1 and at least 50,000 tons of pollutant 2 be
removed from the river. The relevant data for this problem
are shown in Table 10. Formulate an IP to minimize the cost
of meeting the state legislature’s goals.

3 A manufacturer can sell product 1 at a profit of $2/unit
and product 2 at a profit of $5/unit. Three units of raw
material are needed to manufacture 1 unit of product 1, and

TA B L E  9

Ball-
Player Position Handling Shooting Rebounding Defense

1 G 3 3 1 3
2 C 2 1 3 2
3 G-F 2 3 2 2
4 F-C 1 3 3 1
5 G-F 3 3 3 3
6 F-C 3 1 2 3
7 G-F 3 2 2 1



6 units of raw material are needed to manufacture 1 unit of
product 2. A total of 120 units of raw material are available.
If any of product 1 is produced, a setup cost of $10 is
incurred, and if any of product 2 is produced, a setup cost
of $20 is incurred. Formulate an IP to maximize profits.

4 Suppose we add the following restriction to Example 1
(Stockco): If investments 2 and 3 are chosen, then investment
4 must be chosen. What constraints would be added to the
formulation given in the text?

5 How would the following restrictions modify the
formulation of Example 6 (Dorian car sizes)? (Do each part
separately.)

a If midsize cars are produced, then compacts must
also be produced.
b Either compacts or large cars must be manufactured.

6 To graduate from Basketweavers University with a major
in operations research, a student must complete at least two
math courses, at least two OR courses, and at least two
computer courses. Some courses can be used to fulfill more
than one requirement: Calculus can fulfill the math
requirement; operations research, math and OR requirements;
data structures, computer and math requirements; business
statistics, math and OR requirements; computer simulation,
OR and computer requirements; introduction to computer
programming, computer requirement; and forecasting, OR
and math requirements.

Some courses are prerequisites for others: Calculus is a
prerequisite for business statistics; introduction to computer
programming is a prerequisite for computer simulation and
for data structures; and business statistics is a prerequisite
for forecasting. Formulate an IP that minimizes the number
of courses needed to satisfy the major requirements.

7 In Example 7 (Euing Gas), suppose that x � 300. What
would be the values of y1, y2, y3, z1, z2, z3, and z4? How
about if x � 1,200?

8 Formulate an IP to solve the Dorian Auto problem for
the advertising data that exhibit increasing returns as more
ads are placed in a magazine (pages 495–496).

9 How can integer programming be used to ensure that the
variable x can assume only the values 1, 2, 3, and 4?

10 If x and y are integers, how could you ensure that x �
y � 3, 2x � 5y � 12, or both are satisfied by x and y?

11 If x and y are both integers, how would you ensure that
whenever x � 2, then y � 3?

12 A company is considering opening warehouses in four
cities: New York, Los Angeles, Chicago, and Atlanta. Each
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warehouse can ship 100 units per week. The weekly fixed cost
of keeping each warehouse open is $400 for New York, $500
for Los Angeles, $300 for Chicago, and $150 for Atlanta.
Region 1 of the country requires 80 units per week, region 2
requires 70 units per week, and region 3 requires 40 units per
week. The costs (including production and shipping costs) of
sending one unit from a plant to a region are shown in Table
11. We want to meet weekly demands at minimum cost, subject
to the preceding information and the following restrictions:

1 If the New York warehouse is opened, then the Los
Angeles warehouse must be opened.
2 At most two warehouses can be opened.
3 Either the Atlanta or the Los Angeles warehouse
must be opened.

Formulate an IP that can be used to minimize the weekly
costs of meeting demand.

13 Glueco produces three types of glue on two different
production lines. Each line can be utilized by up to seven
workers at a time. Workers are paid $500 per week on
production line 1, and $900 per week on production line 2.
A week of production costs $1,000 to set up production line
1 and $2,000 to set up production line 2. During a week on
a production line, each worker produces the number of units
of glue shown in Table 12. Each week, at least 120 units of
glue 1, at least 150 units of glue 2, and at least 200 units of
glue 3 must be produced. Formulate an IP to minimize the
total cost of meeting weekly demands.

14† The manager of State University’s DED computer
wants to be able to access five different files. These files are
scattered on 10 disks as shown in Table 13. The amount of
storage required by each disk is as follows: disk 1, 3K; disk
2, 5K; disk 3, 1K; disk 4, 2K; disk 5, 1K; disk 6, 4K; disk
7, 3K; disk 8, 1K; disk 9, 2K; disk 10, 2K.

a Formulate an IP that determines a set of disks re-
quiring the minimum amount of storage such that each

TA B L E  11

To ($)

From Region 1 Region 2 Region 3

New York 20 40 50
Los Angeles 48 15 26
Chicago 26 35 18
Atlanta 24 50 35

TA B L E  12

Glue

Production Line 1 2 3

1 20 30 40
2 50 35 45

†Based on Day (1965).

TA B L E  10

Cost of Cost of
Amount Removed per

Building Treating
Ton of Water

Site Station ($) 1 Ton Water ($) Pollutant 1 Pollutant 2

1 100,000 20 0.40 0.30
2 60,000 30 0.25 0.20
3 40,000 40 0.20 0.25



file is on at least one of the disks. For a given disk, we
must either store the entire disk or store none of the
disk; we cannot store part of a disk.
b Modify your formulation so that if disk 3 or disk 5
is used, then disk 2 must also be used.

15 Fruit Computer produces two types of computers: Pear
computers and Apricot computers. Relevant data are given
in Table 14. A total of 3,000 chips and 1,200 hours of labor
are available. Formulate an IP to help Fruit maximize profits.

16 The Lotus Point Condo Project will contain both homes
and apartments. The site can accommodate up to 10,000
dwelling units. The project must contain a recreation project:
either a swimming–tennis complex or a sailboat marina, but
not both. If a marina is built, then the number of homes in
the project must be at least triple the number of apartments
in the project. A marina will cost $1.2 million, and a
swimming–tennis complex will cost $2.8 million. The
developers believe that each apartment will yield revenues
with an NPV of $48,000, and each home will yield revenues
with an NPV of $46,000. Each home (or apartment) costs
$40,000 to build. Formulate an IP to help Lotus Point
maximize profits.

17 A product can be produced on four different machines.
Each machine has a fixed setup cost, variable production
costs per-unit-processed, and a production capacity given in
Table 15. A total of 2,000 units of the product must be
produced. Formulate an IP whose solution will tell us how
to minimize total costs.
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18 Use LINDO, LINGO, or Excel Solver to find the
optimal solution to the following IP:

Bookco Publishers is considering publishing five
textbooks. The maximum number of copies of each textbook
that can be sold, the variable cost of producing each
textbook, the sales price of each textbook, and the fixed cost
of a production run for each book are given in Table 16.
Thus, for example, producing 2,000 copies of book 1 brings
in a revenue of 2,000(50) � $100,000 but costs 80,000 �
25(2,000) � $130,000. Bookco can produce at most 10,000
books if it wants to maximize profit.

19 Comquat owns four production plants at which personal
computers are produced. Comquat can sell up to 20,000
computers per year at a price of $3,500 per computer. For
each plant the production capacity, the production cost per
computer, and the fixed cost of operating a plant for a year
are given in Table 17. Determine how Comquat can
maximize its yearly profit from computer production.

20 WSP Publishing sells textbooks to college students.
WSP has two sales reps available to assign to the A–G state
area. The number of college students (in thousands) in each
state is given in Figure 9. Each sales rep must be assigned
to two adjacent states. For example, a sales rep could be
assigned to A and B, but not A and D. WSP’s goal is to

TA B L E  14

Equipment Selling
Computer Labor Chips Costs ($) Price ($)

Pear 1 hour 2 5,000 400
Apricot 2 hours 5 7,000 900

TA B L E  15

Variable Cost
Machine Fixed Cost ($) per Unit (S) Capacity

1 1,000 20 900
2 920 24 1,000
3 800 16 1,200
4 700 28 1,600

TA B L E  16

Book

1 2 3 4 5

Maximum Demand 5,000 4,000 3,000 4,000 3,000
Variable Cost ($) 25 20 15 18 22
Sales Price ($) 50 40 38 32 40
Fixed Cost ($ Thousands) 80 50 60 30 40

TA B L E  17

Production Plant Fixed Cost Cost per
Plant Capacity ($ Million) Computer ($)

1 10,000 9 1,000
2 8,000 5 1,700
3 9,000 3 2,300
4 6,000 1 2,900

B 29

A 43

C 42

D 21 G 71

F 18

E 56

F I G U R E  9

TA B L E  13

Disk

File 1 2 3 4 5 6 7 8 9 10

1 x x x x x x
2 x x
3 x x x x
4 x x x
5 x x x x x x x



maximize the number of total students in the states assigned
to the sales reps. Formulate an IP whose solution will tell
you where to assign the sales reps. Then use LINDO to
solve your IP.

21 Eastinghouse sells air conditioners. The annual demand
for air conditioners in each region of the country is as
follows: East, 100,000; South, 150,000; Midwest, 110,000;
West, 90,000. Eastinghouse is considering building the air
conditioners in four different cities: New York, Atlanta,
Chicago, and Los Angeles. The cost of producing an air
conditioner in a city and shipping it to a region of the
country is given in Table 18. Any factory can produce as
many as 150,000 air conditioners per year. The annual fixed
cost of operating a factory in each city is given in Table 19.
At least 50,000 units of the Midwest demand for air
conditioners must come from New York, or at least 50,000
units of the Midwest demand must come from Atlanta.
Formulate an IP whose solution will tell Eastinghouse how
to minimize the annual cost of meeting demand for air
conditioners.

22 Consider the following puzzle. You are to pick out 4
three-letter “words” from the following list:

DBA DEG ADI FFD GHI BCD FDF BAI
For each word, you earn a score equal to the position that
the word’s third letter appears in the alphabet. For example,
DBA earns a score of 1, DEG earns a score of 7, and so on.
Your goal is to choose the four words that maximize your
total score, subject to the following constraint: The sum of
the positions in the alphabet for the first letter of each word
chosen must be at least as large as the sum of the positions
in the alphabet for the second letter of each word chosen.
Formulate an IP to solve this problem.

23 At a machine tool plant, five jobs must be completed
each day. The time it takes to do each job depends on the
machine used to do the job. If a machine is used at all, there
is a setup time required. The relevant times are given in
Table 20. The company’s goal is to minimize the sum of the
setup and machine operation times needed to complete all
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jobs. Formulate and solve (with LINDO, LINGO, or Excel
Solver) an IP whose solution will do this.

Group B

24† Breadco Bakeries is a new bakery chain that sells
bread to customers throughout the state of Indiana. Breadco
is considering building bakeries in three locations:
Evansville, Indianapolis, and South Bend. Each bakery can
bake as many as 900,000 loaves of bread each year. The cost
of building a bakery at each site is $5 million in Evansville,
$4 million in Indianapolis, and $4.5 million in South Bend.
To simplify the problem, we assume that Breadco has only
three customers, whose demands each year are 700,000
loaves (customer 1); 400,000 loaves (customer 2); and
300,000 loaves (customer 3). The total cost of baking and
shipping a loaf of bread to a customer is given in Table 21.

Assume that future shipping and production costs 
are discounted at a rate of 11�

1
9

�% per year. Assume that 
once built, a bakery lasts forever. Formulate an IP to
minimize Breadco’s total cost of meeting demand (present
and future). (Hint: You will need the fact that for x 
 1, 
a � ax � ax2 � ax3 � ��� � a/(1 � x).) How would you
modify the formulation if either Evansville or South Bend
must produce at least 800,000 loaves per year?

25‡ Speaker’s Clearinghouse must disburse sweepstakes
checks to winners in four different regions of the country:
Southeast (SE), Northeast (NE), Far West (FW), and
Midwest (MW). The average daily amount of the checks
written to winners in each region of the country is as follows:
SE, $40,000; NE, $60,000; FW, $30,000; MW, $50,000.
Speaker’s must issue the checks the day they find out a
customer has won. They can delay winners from quickly
cashing their checks by giving a winner a check drawn on
an out-of-the-way bank (this will cause the check to clear

TA B L E  19

City Annual Fixed Cost ($ Million)

New York 6.0
Atlanta 5.5
Chicago 5.8
Los Angeles 6.2

TA B L E  20

Job Machine Setup
Machine 1 2 3 4 5 Time (Minutes)

1 42 70 93 X X 30
2 X 85 45 X X 40
3 58 X X 37 X 50
4 58 X 55 X 38 60
5 X 60 X 54 X 20

TA B L E  18

Price by Region ($)

City East South Midwest West

New York 206 225 230 290
Atlanta 225 206 221 270
Chicago 230 221 208 262
Los Angeles 290 270 262 215

†Based on Efroymson and Ray (1966).
‡Based on Shanker and Zoltners (1972).

TA B L E  21

To

From Customer 1 Customer 2 Customer 3

Evansville 16¢ 34¢ 26¢
Indianapolis 40¢ 30¢ 35¢
South Bend 45¢ 45¢ 23¢



slowly). Four bank sites are under consideration: Frosbite
Falls, Montana (FF), Redville, South Carolina (R), Painted
Forest, Arizona (PF), and Beanville, Maine (B). The annual
cost of maintaining an account at each bank is as follows:
FF, $50,000; R, $40,000; PF, $30,000; B, $20,000. Each
bank has a requirement that the average daily amount of
checks written cannot exceed $90,000. The average number
of days it takes a check to clear is given in Table 22. Assuming
that money invested by Speaker’s earns 15% per year, where
should the company have bank accounts, and from which
bank should a given customer’s check be written?

26† Governor Blue of the state of Berry is attempting to
get the state legislature to gerrymander Berry’s
congressional districts. The state consists of 10 cities, and
the numbers of registered Republicans and Democrats (in
thousands) in each city are shown in Table 23. Berry has
five congressional representatives. To form congressional
districts, cities must be grouped according to the following
restrictions:

1 All voters in a city must be in the same district.
2 Each district must contain between 150,000 and
250,000 voters (there are no independent voters).

Governor Blue is a Democrat. Assume that each voter always
votes a straight party ticket. Formulate an IP to help
Governor Blue maximize the number of Democrats who
will win congressional seats.

27‡ The Father Domino Company sells copying machines.
A major factor in making a sale is Domino’s quick service.
Domino sells copiers in six cities: Boston, New York,
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Philadelphia, Washington, Providence, and Atlantic City.
The annual sales of copiers projected depend on whether a
service representative is within 150 miles of a city (see
Table 24).

Each copier costs $500 to produce and sells for $1,000.
The annual cost per service representative is $80,000.
Domino must determine in which of its markets to base a
service representative. Only Boston, New York,
Philadelphia, and Washington are under consideration as
bases for service representative. The distance (in miles)
between the cities is shown in Table 25. Formulate an IP
that will help Domino maximize annual profits.

28§ Thailand inducts naval draftees at three drafting
centers. Then the draftees must each be sent to one of three
naval bases for training. The cost of transporting a draftee
from a drafting center to a base is given in Table 26. Each
year, 1,000 men are inducted at center 1; 600 at center 2;
and 700 at center 3. Base 1 can train 1,000 men a year, base
2, 800 men; and base 3, 700 men. After the inductees are
trained, they are sent to Thailand’s main naval base (B).
They may be transported on either a small ship or a large
ship. It costs $5,000 plus $2 per mile to use a small ship. A
small ship can transport up to 200 men to the main base and
may visit up to two bases on its way to the main base. Seven
small and five large ships are available. It costs $10,000 plus
$3 per mile to use a large ship. A large ship may visit up to

TA B L E  22

Region FF R PF B

SE 7 2 6 5
NE 8 4 5 3
FW 4 8 2 11
MW 5 4 7 5

TA B L E  23

City Republicans Democrats

1 80 34
2 60 44
3 40 44
4 20 24
5 40 114
6 40 64
7 70 14
8 50 44
9 70 54

10 70 64

†Based on Garfinkel and Nemhauser (1970).
‡Based on Gelb and Khumawala (1984).

TA B L E  24

Representative Sales
Within 150
Miles? Boston N.Y. Phila. Wash. Prov. Atl. City

Yes 700 1,000 900 800 400 450
No 500 1,750 700 450 200 300

TA B L E  25

Boston N.Y. Phila. Wash.

Boston 0 222 310 441
New York 222 0 89 241
Philadelphia 310 89 0 146
Washington 441 241 146 0
Providence 47 186 255 376
Atlantic City 350 123 82 178

TA B L E  26

To ($)

From Base 1 Base 2 Base 3

Center 1 200 200 300
Center 2 300 400 220
Center 3 300 400 250

§Based on Choypeng, Puakpong, and Rosenthal (1986).



three bases on its way to the main base and may transport
up to 500 men. The possible “tours” for each type of ship
are given in Table 27.

Assume that the assignment of draftees to training bases
is done using the transportation method. Then formulate an
IP that will minimize the total cost incurred in sending the
men from the training bases to the main base. (Hint: Let 
yij � number of men sent by tour i from base j to main base
(B) on a small ship, xij � number of men sent by tour i from
base j to B on a large ship, Si � number of times tour i is
used by a small ship, and Li � number of times tour i is
used by a large ship.)

29 You have been assigned to arrange the songs on the
cassette version of Madonna’s latest album. A cassette tape
has two sides (1 and 2). The songs on each side of the cassette
must total between 14 and 16 minutes in length. The length
and type of each song are given in Table 28. The assignment
of songs to the tape must satisfy the following conditions:

1 Each side must have exactly two ballads.
2 Side 1 must have at least three hit songs.
3 Either song 5 or song 6 must be on side 1.
4 If songs 2 and 4 are on side 1, then song 5 must be
on side 2.

Explain how you could use an integer programming
formulation to determine whether there is an arrangement
of songs satisfying these restrictions.

30 Cousin Bruzie of radio station WABC schedules radio
commercials in 60-second blocks. This hour, the station has
sold commercial time for commercials of 15, 16, 20, 25, 30,
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35, 40, and 50 seconds. Formulate an integer programming
model that can be used to determine the minimum number
of 60-second blocks of commercials that must be scheduled
to fit in all the current hour’s commercials. (Hint: Certainly
no more than eight blocks of time are needed. Let yi � 1 if
block i is used and yi � 0 otherwise).

31† A Sunco oil delivery truck contains five compartments,
holding up to 2,700, 2,800, 1,100, 1,800, and 3,400 gallons
of fuel, respectively. The company must deliver three types
of fuel (super, regular, and unleaded) to a customer. The
demands, penalty per gallon short, and the maximum allowed
shortage are given in Table 29. Each compartment of the
truck can carry only one type of gasoline. Formulate an IP
whose solution will tell Sunco how to load the truck in a way
that minimizes shortage costs.

32‡ Simon’s Mall has 10,000 sq ft of space to rent and
wants to determine the types of stores that should occupy the
mall. The minimum number and maximum number of each
type of store (along with the square footage of each type) is
given in Table 30. The annual profit made by each type of
store will, of course, depend on how many stores of that type
are in the mall. This dependence is given in Table 31 (all
profits are in units of $10,000). Thus, if there are two
department stores in the mall, each department store earns
$210,000 profit per year. Each store pays 5% of its annual
profit as rent to Simon’s. Formulate an IP whose solution will
tell Simon’s how to maximize rental income from the mall.

33§ Boris Milkem’s financial firm owns six assets. The
expected sales price (in millions of dollars) for each asset is
given in Table 32. If asset 1 is sold in year 2, the firm
receives $20 million. To maintain a regular cash flow,
Milkem must sell at least $20 million of assets during year
1, at least $30 million worth during year 2, and at least $35
million worth during year 3. Set up an IP that Milkem can

TA B L E  27

Tour Locations Miles
Number Visited Traveled

1 B–1–B 370
2 B–1–2–B 515
3 B–2–3–B 665
4 B–2–B 460
5 B–3–B 600
6 B–1–3–B 640
7 B–1–2–3–B 720

TA B L E  28

Length
Song Type (in minutes)

1 Ballad 4
2 Hit 5
3 Ballad 3
4 Hit 2
5 Ballad 4
6 Hit 3
7 5
8 Ballad and hit 4

TA B L E  29

Cost per Maximum Allowed
Type of Gasoline Demand Gallon Short ($) Shortage

Super 2,900 10 500
Regular 4,000 18 500
Unleaded 4,900 16 500

TA B L E  30

Store Type Square Footage Minimum Maximum

Jewelry 500 1 3
Shoe 600 1 3
Department 1,500 1 3
Book 700 0 3
Clothing 900 1 3

†Based on Brown (1987).
‡Based on Bean et al. (1988).
§Based on Bean, Noon, and Salton (1987).



use to determine how to maximize total revenue from assets
sold during the next three years. In implementing this model,
how could the idea of a rolling planning horizon be used?

34† The Smalltown Fire Department currently has seven
conventional ladder companies and seven alarm boxes. The
two closest ladder companies to each alarm box are given
in Table 33. The city fathers want to maximize the number
of conventional ladder companies that can be replaced with
tower ladder companies. Unfortunately, political consid-
erations dictate that a conventional company can be replaced
only if, after replacement, at least one of the two closest
companies to each alarm box is still a conventional company.

a Formulate an IP that can be used to maximize the
number of conventional companies that can be replaced
by tower companies.
b Suppose yk � 1 if conventional company k is re-
placed. Show that if we let zk � 1 � yk, the answer in
part (a) is equivalent to a set-covering problem.

35‡ A power plant has three boilers. If a given boiler is
operated, it can be used to produce a quantity of steam (in
tons) between the minimum and maximum given in Table
34. The cost of producing a ton of steam on each boiler is
also given. Steam from the boilers is used to produce power
on three turbines. If operated, each turbine can process an
amount of steam (in tons) between the minimum and
maximum given in Table 35. The cost of processing a ton
of steam and the power produced by each turbine is also
given. Formulate an IP that can be used to minimize the cost
of producing 8,000 kwh of power.
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36§ An Ohio company, Clevcinn, consists of three
subsidiaries. Each has the respective average payroll,
unemployment reserve fund, and estimated payroll given in
Table 36. (All figures are in millions of dollars.) Any
employer in the state of Ohio whose reserve/average payroll
ratio is less than 1 must pay 20% of its estimated payroll in
unemployment insurance premiums or 10% if the ratio is at
least 1. Clevcinn can aggregate its subsidiaries and label
them as separate employers. For instance, if subsidiaries 2
and 3 are aggregated, they must pay 20% of their combined
payroll in unemployment insurance premiums. Formulate
an IP that can be used to determine which subsidiaries
should be aggregated.

37 The Indiana University Business School has two rooms
that each seat 50 students, one room that seats 100 students,
and one room that seats 150 students. Classes are held five
hours a day. The four types of requests for rooms are listed
in Table 37. The business school must decide how many
requests of each type should be assigned to each type of
room. Penalties for each type of assignment are given in
Table 38. An X means that a request must be satisfied by a
room of adequate size. Formulate an IP whose solution will
tell the business school how to assign classes to rooms in a
way that minimizes total penalties.

TA B L E  31

Number of Stores

Type of Store 1 2 3

Jewelry 9 8 7
Shoe 10 9 5
Department 27 21 20
Book 16 9 7
Clothing 17 13 10

TA B L E  32

Sold In

Asset Year 1 Year 2 Year 3

1 15 20 24
2 16 18 21
3 22 30 36
4 10 20 30
5 17 19 22
6 19 25 29

†Based on Walker (1974).
‡Based on Cavalieri, Roversi, and Ruggeri (1971).

TA B L E  33

Two Closest
Alarm Box Ladder Companies

1 2, 3
2 3, 4
3 1, 5
4 2, 6
5 3, 6
6 4, 7
7 5, 7

TA B L E  34

Boiler Number Minimum Steam Maximum Steam Cost/Ton ($)

1 500 1,000 10
2 300 1,900 18
3 400 1,800 16

TA B L E  35

Turbine Kwh per Ton Processing Cost
Number Minimum Maximum of Steam per Ton ($)

1 300 600 4 2
2 500 800 5 3
3 600 900 6 4

§Based on Salkin (1979).



38 A company sells seven types of boxes, ranging in
volume from 17 to 33 cubic feet. The demand and size of
each box are given in Table 39. The variable cost (in dollars)
of producing each box is equal to the box’s volume. A fixed
cost of $1,000 is incurred to produce any of a particular
box. If the company desires, demand for a box may be
satisfied by a box of larger size. Formulate and solve (with
LINDO, LINGO, or Excel Solver) an IP whose solution will
minimize the cost of meeting the demand for boxes.

39 Huntco produces tomato sauce at five different plants.
The capacity (in tons) of each plant is given in Table 40. The
tomato sauce is stored at one of three warehouses. The per-
ton cost (in hundreds of dollars) of producing tomato sauce
at each plant and shipping it to each warehouse is given in
Table 41. Huntco has four customers. The cost of shipping
a ton of sauce from each warehouse to each customer is as
given in Table 42. Each customer must be delivered the
amount (in tons) of sauce given in Table 43.
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a Formulate a balanced transportation problem whose
solution will tell us how to minimize the cost of meet-
ing the customer demands.
b Modify this problem if these are annual demands
and there is a fixed annual cost of operating each plant
and warehouse. These costs (in thousands) are given in
Table 44.

40 To satisfy telecommunication needs for the next 20
years, Telstar Corporation estimates that the number of
circuits required between the United States and Germany,
France, Switzerland, and the United Kingdom will be as
given in Table 45.

Two types of circuits may be created: cable and satellite.
Two types of cable circuits (TA7 and TA8) are available.
The fixed cost of building each type of cable and the circuit
capacity of each type are as given in Table 46.

TA7 and TA8 cable go underseas from the United States
to the English Channel. Thus, it costs an additional amount
to extend these circuits to other European countries. The
annual variable cost per circuit is given in Table 47.

TA B L E  36

Subsidiary Average Payroll Reserve Estimated Payroll

1 300 400 350
2 600 510 400
3 800 600 500

TA B L E  37

Size Room Hours Number of
Type Requested (Seats) Requested Requests

1 150 2, 3, 4 3
2 150 1, 2, 3 1
3 100 5 1
4 150 1, 2 2

TA B L E  38

Sizes Used to

Size
Satisfy Request

Requested 50 100 150 Penalty

50 0 2 4 100* (Hours requested)
100 X 0 1 100* (Hours requested)
150 X X 0 100* (Hours requested)

TA B L E  39

Box

1 2 3 4 5 6 7

Size 433 330 326 324 319 318 317
Demand 400 300 500 700 200 400 200

TA B L E  40

Plant

1 2 3 4 5

Tons 300 200 300 200 400

TA B L E  41

To

From Warehouse 1 Warehouse 2 Warehouse 3

Plant 1 8 10 12
Plant 2 7 5 7
Plant 3 8 6 5
Plant 4 5 6 7
Plant 5 7 6 5

TA B L E  42

To

From Customer 1 Customer 2 Customer 3 Customer 4

Warehouse 1 40 80 90 50
Warehouse 2 70 70 60 80
Warehouse 3 80 30 50 60

TA B L E  43

Customer

1 2 3 4

Demand 200 300 150 250



To create and use a satellite circuit, Telstar must launch
a satellite, and each country using the satellite must have an
earth station(s) to receive the signal. It costs $3 billion to
launch a satellite. Each launched satellite can handle up to
140,000 circuits. All earth stations have a maximum capacity
of 190 circuits and cost $6,000 per year to operate. Formulate
an integer programming model to help determine how to
supply the needed circuits and minimize total cost incurred
during the next 20 years.

Then use LINDO (or LINGO) to find a near optimal
solution. LINDO after 300 pivots did not think it had an
optimal solution! By the way, do not require that the number
of cable or satellite circuits in a country be integers, or your
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TA B L E  44†

Fixed Annual Cost
Facility (in Thousands) $

Plant 1 35
Plant 2 45
Plant 3 40
Plant 4 42
Plant 5 40
Warehouse 1 30
Warehouse 2 40
Warehouse 3 30

†Based on Geoffrion and Graves (1974).

model will never get solved! For some variables, however,
the integer requirement is vital!†

41 A large drug company must determine how many sales
representatives to assign to each of four sales districts. The
cost of having n representatives in a district is ($88,000 �
$80,000n) per year. If a rep is based in a given district, the
time it takes to complete a call on a doctor is given in Table
48 (times are in hours).

Each sales rep can work up to 160 hours per month.
Each month the number of calls given in Table 49 must be
made in each district. A fractional number of representatives
in a district is not permissible. Determine how many
representatives should be assigned to each district.

42‡ In this assignment, we will use integer programming
and the concept of bond duration to show how Wall Street
firms can select an optimal bond portfolio. The duration of
a bond (or any stream of payments) is defined as follows: Let
C(t) be the payment of the bond at time t (t � 1, 2, . . . , n).
Let r � market interest rate. If the time-weighted average of
the bond’s payments is given by:

�
t�n

t�1

tC(t)/(1 � r)t

and the market price P of the bond is given by:

�
t�n

t�1

C(t)/(1 � r)t

then the duration of the bond D is given by:

D � (1/P) �
n

t�1

Thus, the duration of a bond measures the “average” time
(in years) at which a randomly chosen $1 of NPV is received.
Suppose an insurance company needs to make payments of
$20,000 every six months for the next 10 years. If the market

tC(t)
�

TA B L E  45

Country Required Circuits

France 20,000
Germany 60,000
Switzerland 16,000
United Kingdom 60,000

TA B L E  46

Fixed Operating Cost
Cable Type ($ Billion) Capacity

TA7 1.6 38,500
TA8 2.3 37,800

TA B L E  47

Country Variable Cost per Circuit ($)

France 0
Germany 310
Switzerland 290
United Kingdom 0

†Based on Calloway, Cummins, and Freeland (1990).
‡Based on Strong (1989).

TA B L E  48

Actual Sales Call District

Rep’s Base District 1 2 3 4

1 1 4 5 7
2 4 1 3 5
3 5 3 1 2
4 7 5 2 1

TA B L E  49

District Number of Calls

1 50
2 80
3 100
4 60



rate of interest is 10% per year, then this stream of payments
has an NPV of $251,780 and a duration of 4.47 years. If we
want to minimize the sensitivity of our bond portfolio to
interest risk and still meet our payment obligations, then it
has been shown that we should invest $251,780 at the
beginning of year 1 in a bond portfolio having a duration
equal to the duration of the payment stream.

Suppose the only cost of owning a bond portfolio is the
transaction cost associated with the cost of purchasing the
bonds. Let’s suppose six bonds are available. The payment
streams for these six bonds are given in Table 50. The
transaction cost of purchasing any units of bond i equals
$500 � $5 per bond purchased. Thus, purchasing one unit
of bond 1 costs $505 and purchasing 10 units of bond 1
costs $550. Assume that a fractional number of bond i unit
purchases is permissible, but in the interests of diver-
sification at most 100 units of any bond can be purchased.
Treasury bonds may also be purchased (with no transaction
cost). A treasury bond costs $980 and has a duration of .25
year (90 days).

After computing the price and duration for each bond,
use integer programming to determine the immunized bond
portfolio that incurs the smallest transaction costs. You may
assume the duration of your portfolio is a weighted average
of the durations of the bonds included in the portfolio,
where the weight associated with each bond is equal to the
money invested in that bond.

43 Ford has four automobile plants. Each is capable of
producing the Taurus, Lincoln, or Escort, but it can only
produce one of these cars. The fixed cost of operating each
plant for a year and the variable cost of producing a car of
each type at each plant are given in Table 51.

Ford faces the following restrictions:
a Each plant can produce only one type of car.
b The total production of each type of car must be at
a single plant; that is, for example, if any Tauruses are
made at plant 1, then all Tauruses must be made there.
c If plants 3 and 4 are used, then plant 1 must also be
used.
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Each year, Ford must produce 500,000 of each type of
car. Formulate an IP whose solution will tell Ford how to
minimize the annual cost of producing cars.

44 Venture capital firm JD is trying to determine in which
of 10 projects it should invest. It knows how much money
is available for investment each of the next N years, the
NPV of each project, and the cash required by each project
during each of the next N years (see Table 52).

a Write a LINGO program to determine the projects
in which JD should invest.
b Use your LINGO program to determine which of the
10 projects should be selected. Each project requires
cash investment during the next three years. During year
1, $80 million is available for investment. During year 2,
$60 million is available for investment. During year 3,
$70 million is available for investment. (All figures are
in millions of dollars.)

45 Write a LINGO program that can solve a fixed-charge
problem of the type described in Example 3. Assume there
is a limited demand for each product. Then use your program
to solve a four-product, three-resource fixed-charge problem
with the parameters shown in Tables 53, 54, and 55.

TA B L E  50

Available Bonds

Year Bond 1 Bond 2 Bond 3 Bond 4 Bond 5 Bond 6

1 50 100 130 20 100 120
2 60 90 130 20 100 100
3 70 80 130 20 100 80
4 80 70 130 20 100 140
5 90 60 130 20 100 100
6 100 50 130 80 100 90
7 110 40 130 40 100 110
8 120 30 130 150 100 130
9 130 20 130 200 100 180

10 1,010 1,040 1,130 1,200 1,100 950

TA B L E  51

Variable Cost ($)

Plant Fixed Cost ($) Taurus Lincoln Escort

1 7 billion 12,000 16,000 19,000
2 6 billion 15,000 18,000 11,000
3 4 billion 17,000 19,000 12,000
4 2 billion 19,000 22,000 14,000

TA B L E  52

Investment
Project

($ Million) 1 2 3 4 5 6 7 8 9 10

Year 1 6 9 12 15 18 21 24 27 30 35
Year 2 3 5 7 9 11 13 15 17 19 21
Year 3 5 7 9 12 12 14 16 11 20 24

NPV 20 30 40 50 60 70 80 90 100 130

TA B L E  53

Resource Resource Availability

1 40
2 60
3 80



512 C H A P T E R 9 Integer Programming

9.3 The Branch-and-Bound Method for Solving 
Pure Integer Programming Problems
In practice, most IPs are solved by using the technique of branch-and-bound. Branch-and-
bound methods find the optimal solution to an IP by efficiently enumerating the points in
a subproblem’s feasible region. Before explaining how branch-and-bound works, we need
to make the following elementary but important observation: If you solve the LP relax-
ation of a pure IP and obtain a solution in which all variables are integers, then the op-
timal solution to the LP relaxation is also the optimal solution to the IP.

To see why this observation is true, consider the following IP:

max z � 3x1 � 2x2

s.t. 2x1 � x2 � 6

x1, x2 � 0; x1, x2 integer

The optimal solution to the LP relaxation of this pure IP is x1 � 0, x2 � 6, z � 12. Be-
cause this solution gives integer values to all variables, the preceding observation implies
that x1 � 0, x2 � 6, z � 12 is also the optimal solution to the IP. Observe that the feasi-
ble region for the IP is a subset of the points in the LP relaxation’s feasible region (see
Figure 10). Thus, the optimal z-value for the IP cannot be larger than the optimal z-value
for the LP relaxation. This means that the optimal z-value for the IP must be � 12. But
the point x1 � 0, x2 � 6, z � 12 is feasible for the IP and has z � 12. Thus, x1 � 0, 
x2 � 6, z � 12 must be optimal for the IP.

TA B L E  54

Unit Profit
Product Demand Contribution ($) Fixed Charge ($)

1 40 2 30
2 60 5 40
3 65 6 50
4 70 7 60

TA B L E  55

Product

Resource Usage 1 2 3 4

1 1 2 3.5 4
2 5 6 7.5 9
3 3 4 5.5 6

x2

x1
1

1

= IP feasible point
= IP relaxation,s feasible region

2 3

2

3

4

5

6

F I G U R E  10
Feasible Region for 

an IP and Its 
LP Relaxation



The Telfa Corporation manufactures tables and chairs. A table requires 1 hour of labor
and 9 square board feet of wood, and a chair requires 1 hour of labor and 5 square board
feet of wood. Currently, 6 hours of labor and 45 square board feet of wood are available.
Each table contributes $8 to profit, and each chair contributes $5 to profit. Formulate and
solve an IP to maximize Telfa’s profit.

Solution Let

x1 � number of tables manufactured

x2 � number of chairs manufactured

Because x1 and x2 must be integers, Telfa wants to solve the following IP:

max z � 8x1 � 5x2

s.t. x1 � x2 � 6 (Labor constraint)

s.t. 9x1 � 5x2 � 45 (Wood constraint)

x1, x2 � 0; x1, x2 integer

The branch-and-bound method begins by solving the LP relaxation of the IP. If all the de-
cision variables assume integer values in the optimal solution to the LP relaxation, then
the optimal solution to the LP relaxation will be the optimal solution to the IP. We call
the LP relaxation subproblem 1. Unfortunately, the optimal solution to the LP relaxation
is z � �

16
4
5

�, x1 � �
1
4
5
�, x2 � �

9
4

� (see Figure 11). From Section 9.1, we know that (optimal 
z-value for IP) � (optimal z-value for LP relaxation). This implies that the optimal z-value
for the IP cannot exceed �

16
4
5

�. Thus, the optimal z-value for the LP relaxation is an upper
bound for Telfa’s profit.

Our next step is to partition the feasible region for the LP relaxation in an attempt to
find out more about the location of the IP’s optimal solution. We arbitrarily choose a vari-
able that is fractional in the optimal solution to the LP relaxation—say, x1. Now observe
that every point in the feasible region for the IP must have either x1 � 3 or x1 � 4. (Why
can’t a feasible solution to the IP have 3 
 x1 
 4?) With this in mind, we “branch” on
the variable x1 and create the following two additional subproblems:
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Branch-and-Bound MethodE X A M P L E  9

x2

x1
1

1

2

3

4

5

6

7

8

9 = IP feasible point
= IP relaxation,s feasible region

Optimal LP solution to subproblem 1

9x1 + 5x2 = 45

x1 + x2 = 6

x1 = 3.75
x2 = 2.25

2 3 4 5 6

F I G U R E  11
Feasible Region for

Telfa Problem



Subproblem 2 Subproblem 1 � Constraint x1 � 4.

Subproblem 3 Subproblem 1 � Constraint x1 � 3.

Observe that neither subproblem 2 nor subproblem 3 includes any points with x1 � �
1
4
5
�.

This means that the optimal solution to the LP relaxation cannot recur when we solve sub-
problem 2 or subproblem 3.

From Figure 12, we see that every point in the feasible region for the Telfa IP is in-
cluded in the feasible region for subproblem 2 or subproblem 3. Also, the feasible regions
for subproblems 2 and 3 have no points in common. Because subproblems 2 and 3 were
created by adding constraints involving x1, we say that subproblems 2 and 3 were created
by branching on x1.

We now choose any subproblem that has not yet been solved as an LP. We arbitrarily
choose to solve subproblem 2. From Figure 12, we see that the optimal solution to sub-
problem 2 is z � 41, x1 � 4, x2 � �

9
5

� (point C). Our accomplishments to date are sum-
marized in Figure 13.

A display of all subproblems that have been created is called a tree. Each subproblem
is referred to as a node of the tree, and each line connecting two nodes of the tree is called
an arc. The constraints associated with any node of the tree are the constraints for the LP
relaxation plus the constraints associated with the arcs leading from subproblem 1 to the
node. The label t indicates the chronological order in which the subproblems are solved.
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The optimal solution to subproblem 2 did not yield an all-integer solution, so we
choose to use subproblem 2 to create two new subproblems. We choose a fractional-
valued variable in the optimal solution to subproblem 2 and then branch on that variable.
Because x2 is the only fractional variable in the optimal solution to subproblem 2, we
branch on x2. We partition the feasible region for subproblem 2 into those points having
x2 � 2 and x2 � 1. This creates the following two subproblems:

Subproblem 4 Subproblem 1 � Constraints x1 � 4 and x2 � 2 � subproblem 2 � Con-
straint x2 � 2.

Subproblem 5 Subproblem 1 � Constraints x1 � 4 and x2 � 1 � subproblem 2 � Con-
straint x2 � 1.

The feasible regions for subproblems 4 and 5 are displayed in Figure 14. The set of un-
solved subproblems consists of subproblems 3, 4, and 5. We now choose a subproblem to
solve. For reasons that are discussed later, we choose to solve the most recently created
subproblem. (This is called the LIFO, or last-in-first-out, rule.) The LIFO rule implies that
we should next solve subproblem 4 or subproblem 5. We arbitrarily choose to solve sub-
problem 4. From Figure 14 we see that subproblem 4 is infeasible. Thus, subproblem 4
cannot yield the optimal solution to the IP. To indicate this fact, we place an � by sub-
problem 4 (see Figure 15). Because any branches emanating from subproblem 4 will yield
no useful information, it is fruitless to create them. When further branching on a sub-
problem cannot yield any useful information, we say that the subproblem (or node) is
fathomed. Our results to date are displayed in Figure 15.

Now the only unsolved subproblems are subproblems 3 and 5. The LIFO rule implies
that subproblem 5 should be solved next. From Figure 14, we see that the optimal solu-
tion to subproblem 5 is point I in Figure 14: z � �

36
9
5

�, x1 � �
4
9
0
�, x2 � 1. This solution does

not yield any immediately useful information, so we choose to partition subproblem 5’s
feasible region by branching on the fractional-valued variable x1. This yields two new sub-
problems (see Figure 16).

Subproblem 6 Subproblem 5 � Constraint x1 � 5.

Subproblem 7 Subproblem 5 � Constraint x1 � 4.
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Together, subproblems 6 and 7 include all integer points that were included in the feasi-
ble region for subproblem 5. Also, no point having x1 � �

4
9
0
� can be in the feasible region

for subproblem 6 or subproblem 7. Thus, the optimal solution to subproblem 5 will not
recur when we solve subproblems 6 and 7. Our tree now looks as shown in Figure 17.

Subproblems 3, 6, and 7 are now unsolved. The LIFO rule implies that we next solve
subproblem 6 or subproblem 7. We arbitrarily choose to solve subproblem 7. From Figure
16, we see that the optimal solution to subproblem 7 is point H: z � 37, x1 � 4, 
x2 � 1. Both x1 and x2 assume integer values, so this solution is feasible for the original
IP. We now know that subproblem 7 yields a feasible integer solution with z � 37. We also
know that subproblem 7 cannot yield a feasible integer solution having z 	 37. Thus, fur-
ther branching on subproblem 7 will yield no new information about the optimal solution
to the IP, and subproblem has been fathomed. The tree to date is pictured in Figure 18.
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A solution obtained by solving a subproblem in which all variables have integer val-
ues is a candidate solution. Because the candidate solution may be optimal, we must
keep a candidate solution until a better feasible solution to the IP (if any exists) is found.
We have a feasible solution to the original IP with z � 37, so we may conclude that the
optimal z-value for the IP � 37. Thus, the z-value for the candidate solution is a lower
bound on the optimal z-value for the original IP. We note this by placing the notation 
LB � 37 in the box corresponding to the next solved subproblem (see Figure 19).

The only remaining unsolved subproblems are 6 and 3. Following the LIFO rule, we
next solve subproblem 6. From Figure 16, we find that the optimal solution to subprob-
lem 6 is point A: z � 40, x1 � 5, x2 � 0. All decision variables have integer values, so
this is a candidate solution. Its z-value of 40 is larger than the z-value of the best previ-
ous candidate (candidate 7 with z � 37). Thus, subproblem 7 cannot yield the optimal so-
lution of the IP (we denote this fact by placing an � by subproblem 7). We also update
our LB to 40. Our progress to date is summarized in Figure 20.

Subproblem 3 is the only remaining unsolved problem. From Figure 12, we find that
the optimal solution to subproblem 3 is point F: z � 39, x1 � x2 � 3. Subproblem 3 can-
not yield a z-value exceeding the current lower bound of 40, so it cannot yield the opti-
mal solution to the original IP. Therefore, we place an � by it in Figure 20. From Figure
20, we see that there are no remaining unsolved subproblems, and that only subproblem
6 can yield the optimal solution to the IP. Thus, the optimal solution to the IP is for Telfa
to manufacture 5 tables and 0 chairs. This solution will contribute $40 to profits.

In using the branch-and-bound method to solve the Telfa problem, we have implicitly
enumerated all points in the IP’s feasible region. Eventually, all such points (except for
the optimal solution) are eliminated from consideration, and the branch-and-bound pro-
cedure is complete. To show that the branch-and-bound procedure actually does consider
all points in the IP’s feasible region, we examine several possible solutions to the Telfa
problem and show how the procedure found these points to be nonoptimal. For example,
how do we know that x1 � 2, x2 � 3 is not optimal? This point is in the feasible region
for subproblem 3, and we know that all points in the feasible region for subproblem 3
have z � 39. Thus, our analysis of subproblem 3 shows that x1 � 2, x2 � 3 cannot beat
z � 40 and cannot be optimal. As another example, why isn’t x1 � 4, x2 � 2 optimal?
Following the branches of the tree, we find that x1 � 4, x2 � 2 is associated with sub-
problem 4. Because no point associated with subproblem 4 is feasible, x1 � 4, x2 � 2
must fail to satisfy the constraints for the original IP and thus cannot be optimal for the
Telfa problem. In a similar fashion, the branch-and-bound analysis has eliminated all
points x1, x2 (except for the optimal solution) from consideration.

For the simple Telfa problem, the use of the branch-and-bound method may seem like
using a cannon to kill a fly, but for an IP in which the feasible region contains a large
number of integer points, the procedure can be very efficient for eliminating nonoptimal
points from consideration. For example, suppose we are applying the branch-and-bound
method and our current LB � 42. Suppose we solve a subproblem that contains 1 mil-
lion feasible points for the IP. If the optimal solution to this subproblem has z 
 42, then
we have eliminated 1 million nonoptimal points by solving a single LP!

The key aspects of the branch-and-bound method for solving pure IPs (mixed IPs are
considered in the next section) may be summarized as follows:

Step 1 If it is unnecessary to branch on a subproblem, then it is fathomed. The following
three situations result in a subproblem being fathomed: (1) The subproblem is infeasible; (2)
the subproblem yields an optimal solution in which all variables have integer values; and (3)
the optimal z-value for the subproblem does not exceed (in a max problem) the current LB.
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Step 2 A subproblem may be eliminated from consideration in the following situations:
(1) The subproblem is infeasible (in the Telfa problem, subproblem 4 was eliminated for
this reason); (2) the LB (representing the z-value of the best candidate to date) is at least
as large as the z-value for the subproblem (in the Telfa problem, subproblems 3 and 7 were
eliminated for this reason).

Recall that in solving the Telfa problem by the branch-and-bound procedure, many seem-
ingly arbitrary choices were made. For example, when x1 and x2 were both fractional in the
optimal solution to subproblem 1, how did we determine the branching variable? Or how
did we determine which subproblem should next be solved? The manner in which these
questions are answered can result in trees that differ greatly in size and in the computer time
required to find an optimal solution. Through experience and ingenuity, practitioners of the
procedure have developed guidelines on how to make the necessary decisions.

Two general approaches are commonly used to determine which subproblems should
be solved next. The most widely used is the LIFO rule, which chooses to solve the most
recently created subproblem.† LIFO leads us down one side of the branch-and-bound tree
(as in the Telfa problem) and quickly finds a candidate solution. Then we backtrack our
way up to the top of the other side of the tree. For this reason, the LIFO approach is of-
ten called backtracking.

The second commonly used method is jumptracking. When branching on a node, the
jumptracking approach solves all the problems created by the branching. Then it branches
again on the node with the best z-value. Jumptracking often jumps from one side of the
tree to the other. It usually creates more subproblems and requires more computer stor-
age than backtracking. The idea behind jumptracking is that moving toward the subprob-
lems with good z-values should lead us more quickly to the best z-value.

If two or more variables are fractional in a subproblem’s optimal solution, then on
which variable should we branch? Branching on the fractional-valued variable that has the
greatest economic importance is often the best strategy. In the Nickles example, suppose
the optimal solution to a subproblem had y1 and x12 fractional. Our rule would say to
branch on y1 because y1 represents the decision to operate (or not operate) a lockbox in
city 1, and this is presumably a more important decision than whether region 1 payments
should be sent to city 2. When more than one variable is fractional in a subproblem so-
lution, many computer codes will branch on the lowest-numbered fractional variable.
Thus, if an integer programming computer code requires that variables be numbered, they
should be numbered in order of their economic importance (1 � most important).

R E M A R K S 1 For some IP’s, the optimal solution to the LP relaxation will also be the optimal solution to the
IP. Suppose the constraints of the IP are written as Ax � b. If the determinant‡ of every square sub-
matrix of A is �1, �1, or 0, we say that the matrix A is unimodular. If A is unimodular and each
element of b is an integer, then the optimal solution to the LP relaxation will assign all variables
integer values [see Shapiro (1979) for a proof] and will therefore be the optimal solution to the IP.
It can be shown that the constraint matrix of any MCNFP is unimodular. Thus, as was discussed in
Chapter 8, any MCNFP in which each node’s net outflow and each arc’s capacity are integers will
have an integer-valued solution.
2 As a general rule, the more an IP looks like an MCNFP, the easier the problem is to solve by
branch-and-bound methods. Thus, in formulating an IP, it is good to choose a formulation in which
as many variables as possible have coefficients of �1, �1, and 0. To illustrate this idea, recall that
the formulation of the Nickles (lockbox) problem given in Section 9.2 contained 16 constraints of
the following form:

Formulation 1 xij � yj (i � 1, 2, 3, 4; j � 1, 2, 3, 4) (25)
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†For two subproblems created at the same time, many sophisticated methods have been developed to deter-
mine which one should be solved first. See Taha (1975) for details.
‡The determinant of a matrix is defined in Section 2.6.



As we have already seen in Section 9.2, if the 16 constraints in (25) are replaced by the following
4 constraints, then an equivalent formulation results:

Formulation 2 x11 � x21 � x31 � x41 � 4y1

x12 � x22 � x32 � x42 � 4y2

x13 � x23 � x33 � x43 � 4y3

x14 � x24 � x34 � x44 � 4y4

Because formulation 2 has 16 � 4� 12 fewer constraints than formulation 1, one might think that
formulation 2 would require less computer time to find the optimal solution. This turns out to be
untrue. To see why, recall that the branch-and-bound method begins by solving the LP relaxation
of the IP. The feasible region of the LP relaxation of formulation 2 contains many more noninteger
points than the feasible region of formulation 1. For example, the point y1 � y2 � y3 � y4

� �
1
4

�, x11 � x22 � x33 � x44 � 1 (all other xij’s equal 0) is in the feasible region for the LP relax-
ation of formulation 2, but not for formulation 1. The branch-and-bound method must eliminate all
noninteger points before obtaining the optimal solution to the IP, so it seems reasonable that formu-
lation 2 will require more computer time than formulation 1. Indeed, when the LINDO package was
used to find the optimal solution to formulation 1, the LP relaxation yielded the optimal solution.
But 17 subproblems were solved before the optimal solution was found for formulation 2. Note that
formulation 2 contains the terms 4y1, 4y2, 4y3, and 4y4. These terms “disturb” the network-like struc-
ture of the lockbox problem and cause the branch-and-bound method to be less efficient.
3 When solving an IP in the real world, we are usually happy with a near-optimal solution. For ex-
ample, suppose that we are solving a lockbox problem and the LP relaxation yields a cost of
$200,000. This means that the optimal solution to the lockbox IP will certainly have a cost of at least
$200,000. If we find a candidate solution during the course of the branch-and-bound procedure that
has a cost of, say, $205,000, why bother to continue with the branch-and-bound procedure? Even if
we found the optimal solution to the IP, it could not save more than $5,000 in costs over the candi-
date solution with z � 205,000. It might even cost more than $5,000 in computer time to find the
optimal lockbox solution. For this reason, the branch-and-bound procedure is often terminated when
a candidate solution is found with a z-value close to the z-value of the LP relaxation.
4 Subproblems for branch-and-bound problems are often solved using some variant of the dual
simplex algorithm. To illustrate this, we return to the Telfa example. The optimal tableau for the LP
relaxation of the Telfa problem is

zx1x2 � 1.25s1 � 0.75s2 � 41.25
zx1x2 � 2.25s1 � 0.25s2 � 2.25
zx1x2 � 1.25s1 � 0.25s2 � 3.75

After solving the LP relaxation, we solved subproblem 2, which is just subproblem 1 plus the con-
straint x1 � 4. Recall that the dual simplex is an efficient method for finding the new optimal so-
lution to an LP when we know the optimal tableau and a new constraint is added to the LP. We have
added the constraint x1 � 4 (which may be written as x1 � e3 � 4). To utilize the dual simplex, 
we must eliminate the basic variable x1 from this constraint and use e3 as a basic variable for x1 �
e3 � 4. Adding �(second row of optimal tableau) to the constraint x1 � e3 � 4, we obtain the 
constraint 1.25s1 � 0.25s2 � e3 � 0.25. Multiplying this constraint through by �1, we obtain
�1.25s1 � 0.25s2 � e3 � �0.25. After adding this constraint to subproblem 1’s optimal tableau,
we obtain the tableau in Table 56. The dual simplex method states that we should enter a variable
from row 3 into the basis. Because s1 is the only variable with a negative coefficient in row 3, s1

will enter the basis in row 3. After the pivot, we obtain the (optimal) tableau in Table 57. Thus, the
optimal solution to subproblem 2 is z � 41, x2 � 1.8, x1 � 4, s1 � 0.20.
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TA B L E  56
Initial Tableau for Solving Subproblem 2 by Dual Simplex

Basic Variable

z x1 x2 � 1.25s1 � 0.75s2 � e3 � 41.25 z1 � 41.25
z x1 x2 � 2.25s1 � 0.25s2 � e3 � 2.25 x2 � 2.25
z x1 x2 � 1.25s1 � 0.25s2 � e3 � 3.75 x1 � 3.75
z x1 x2 � 1.25s1 � 0.25s2 � e3 � �0.25 e3 � �0.25



5 In Problem 8, we show that if we create two subproblems by adding the constraints xk � i and
xk � i � 1, then the optimal solution to the first subproblem will have xk � i and the optimal 
solution to the second subproblem will have xk � i � 1. This observation is very helpful when we
graphically solve subproblems. For example, we know the optimal solution to subproblem 5 of 
Example 9 will have x2 � 1. Then we can find the value of x1 that solves subproblem 5 by choos-
ing x1 to be the largest integer satisfying all constraints when x2 � 1.

Solver Tolerance Option for Solving IPs

When solving integer programming problems with the Excel Solver, you may go to Options
and set a tolerance. A tolerance value of, say, .20, causes the Excel Solver to stop when a fea-
sible solution is found that has an objective function value within 20% of the optimal z-value
for the problem’s LP relaxation. For instance, in Example 9, the optimal z-value for the LP
relaxation was 41.25. With a tolerance of .20, the Solver would stop whenever a feasible in-
teger solution is found with a z-value exceeding (1 � .2)(41.25) � 33. Thus, if we solved
Example 9 with the Excel Solver and found a feasible integer solution having z � 35, then
the Solver would stop because this solution would be within 20% of the LP relaxation bound.

Why set a nonzero tolerance? For many large IP problems, it might take a long time (weeks
or months!) to find an optimal solution. It might take much less time to find a near-optimal
solution (say, within 5% of the optimal LP relaxation). In this case, we would be much better
off with a near-optimal solution, and use of the tolerance option might be appropriate.
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TA B L E  57
Optimal Tableau for Solving Subproblem 2 by Dual Simplex

Basic Variable

z x1 x2 s1 � 0.20s2 � 0.80e3 � 41 z1 � 41
z x1 x2 s1 � 0.20s2 � 01.8e3 � 1.8 x2 � 1.8
z x1 x2 s1 � 0.20s2 � 0.80e3 � 4 x1 � 4
z x1 x2 s1 � 0.20s2 � 0.80e3 � 0.20 s1 � 0.20

Use branch-and-bound to solve the following IPs:

1 max z � 5x1 � 2x2

s.t. 3x1 � x2 � 12
s.t. x1 � x2 � 5
s.t. 3x1x1, x2 � 0; x1, x2 integer

2 The Dorian Auto example of Section 3.2.

3 max z � 2x1 � 3x2

s.t. x1 � 2x2 � 10
s.t. 3x1 � 4x2 � 25
s.t. 3x1 x1, x2 � 0; x1, x2 integer

4 max z � 4x1 � 3x2

s.t. 4x1 � 9x2 � 26
s.t. 8x1 � 5x2 � 17
s.t. 3x1 x1, x2 � 0; x1, x2 integer

5 max z � 4x1 � 5x2

s.t. x1 � 4x2 � 5
s.t. 3x1 � 2x2 � 7
s.t. 3x1 x1, x2 � 0; x1, x2 integer

6 max z � 4x1 � 5x2

s.t. 3x1 � 2x2 � 10
s.t. x1 � 4x2 � 11
s.t. 3x1 � 3x2 � 13
s.t. 3x1 x1, x2 � 0; x1, x2 integer

7 Use the branch-and-bound method to find the optimal
solution to the following IP:

max z � 7x1 � 3x2

s.t. 2x1 � x2 � 9
s.t. 3x1 � 2x2 � 13
s.t. 3x1 x1, x2 � 0; x1, x2 integer



Group B

8 Suppose we have branched on a subproblem (call it
subproblem 0, having optimal solution SOL0) and have
obtained the following two subproblems:

Subproblem 1 Subproblem 0 � Constraint x1 � i.
Subproblem 2 Subproblem 0 � Constraint x1 � i � 1 (i is
some integer).

Prove that there will exist at least one optimal solution to
subproblem 1 having x1 � i and at least one optimal solution
to subproblem 2 having x1 � i � 1. [Hint: Suppose an
optimal solution to subproblem 1 (call it SOL1) has x1 �
x�1, where x�1 
 i. For some number c ( 0 
 c 
 1), c(SOL0)
� (1 � c)SOL1 will have the following three properties:

a The value of x1 in c(SOL0) � (1 � c)SOL1 will
equal i.
b c(SOL0) � (1 � c)SOL1 will be feasible in sub-
problem 1.
c The z-value for c(SOL0) � (1 � c)SOL1 will be at
least as good as the z-value for SOL1.

Explain how this result can help when we graphically solve
branch-and-bound problems.]

9 During the next five periods, the demands in Table 58
must be met on time. At the beginning of period 1, the
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inventory level is 0. Each period that production occurs a
setup cost of $250 and a per-unit production cost of $2 are
incurred. At the end of each period a per-unit holding cost
of $1 is incurred.

a Solve for the cost-minimizing production schedule
using the following decision variables: xt � units pro-
duced during month t and yt � 1 if any units are pro-
duced during period t, yt � 0 otherwise.
b Solve for the cost-minimizing production schedule
using the following variables: yt’s defined in part (a) and
xit � number of units produced during period i to sat-
isfy period t demand.
c Which formulation took LINDO or LINGO less time
to solve?
d Give an intuitive explanation of why the part (b) for-
mulation is solved faster than the part (a) formulation.

9.4 The Branch-and-Bound Method for Solving 
Mixed Integer Programming Problems
Recall that, in a mixed IP, some variables are required to be integers and others are al-
lowed to be either integers or nonintegers. To solve a mixed IP by the branch-and-bound
method, modify the method described in Section 9.3 by branching only on variables that
are required to be integers. Also, for a solution to a subproblem to be a candidate solu-
tion, it need only assign integer values to those variables that are required to be integers.
To illustrate, let us solve the following mixed IP:

max z � 2x1 � x2

s.t. 5x1 � 2x2 � 8

s.t. x1 � x2 � 3

x1, x2 � 0; x1 integer

As before, we begin by solving the LP relaxation of the IP. The optimal solution of the
LP relaxation is z � �

1
3
1
�, x1 � �

2
3

�, x2 � �
7
3

�. Because x2 is allowed to be fractional, we do not
branch on x2; if we did so, we would be excluding points having x2 values between 2 and
3, and we don’t want to do that. Thus, we must branch on x1. This yields subproblems 2
and 3 in Figure 21.

We next choose to solve subproblem 2. The optimal solution to subproblem 2 is the
candidate solution z � 3, x1 � 0, x2 � 3. We now solve subproblem 3 and obtain the can-
didate solution z � �

7
2

�, x1 � 1, x2 � �
3
2

�. The z-value from the subproblem 3 candidate ex-
ceeds the z-value for the subproblem 2 candidate, so subproblem 2 can be eliminated from
consideration, and the subproblem 3 candidate (z � �

7
2

�, x1 � 1, x2 � �
3
2

�) is the optimal so-
lution to the mixed IP.

TA B L E  58

Period

1 2 3 4 5

Demand 220 280 360 140 270



P R O B L E M S
Group A

524 C H A P T E R 9 Integer Programming

Candidate solution

Subproblem 1

Subproblem 2

z  =

z  =  3

x1  =  0

x1  =
t  = 1

t  = 2 t  = 3

x2  =

x1  ≤  0 x1  ≥  1

11
3

7
3

2
3

x2  =  3

Subproblem 3
z  =

x1  =  1

x2  =

LB  =  3

7
2

3
2

Candidate solution

F I G U R E  21
Branch-and-Bound 
Tree for Mixed IP

Use the branch-and-bound method to solve the follow-
ing IPs:

1 max z � 3x1 � x2

s.t. 5x1 � 2x2 � 10
s.t. 4x1 � x2 � 7

s.t. 5x1x1, x2 � 0; x2 integer

2 min z � 3x1 � x2

s.t. x1 � 5x2 � 8
s.t. x1 � 2x2 � 4
s.t. 5x1x1, x2 � 0; x1 integer

3 max z � 4x1 � 3x2 � x3

s.t. 3x1 � 2x2 � x3 � 7
s.t. 2x1 � x2 � 2x3 � 11

s.t. 5x1x2, x3 integer, x1, x2, x3 � 0

9.5 Solving Knapsack Problems by the Branch-and-Bound Method
In Section 9.2, we learned that a knapsack problem is an IP with a single constraint. In
this section, we discuss knapsack problems in which each variable must equal 0 or 1 (see
Problem 1 at the end of this section for an explanation of how any knapsack problem can
be reformulated so that each variable must equal 0 or 1). A knapsack problem in which
each variable must equal 0 or 1 may be written as

max z � c1x1 � c2x2 � ��� � cnxn

s.t. a1x1 � a2x2 � ��� � anxn � b (38)

xi � 0 or 1 (i � 1, 2, . . . , n)

Recall that ci is the benefit obtained if item i is chosen, b is the amount of an available
resource, and ai is the amount of the available resource used by item i.

When knapsack problems are solved by the branch-and-bound method, two aspects of
the method greatly simplify. Because each variable must equal 0 or 1, branching on xi

will yield an xi � 0 and an xi � 1 branch. Also, the LP relaxation (and other subprob-
lems) may be solved by inspection. To see this, observe that �

a
ci

i
� may be interpreted as the

benefit item i earns for each unit of the resource used by item i. Thus, the best items have 
the largest values of �

a
ci

i
�, and the worst items have the smallest values of ��

a
ci

i
�. To solve any



subproblem resulting from a knapsack problem, compute all the ratios ��
a
ci

i
�. Then put 

the best item in the knapsack. Then put the second-best item in the knapsack. Continue
in this fashion until the best remaining item will overfill the knapsack. Then fill the knap-
sack with as much of this item as possible.

To illustrate, we solve the LP relaxation of

max z � 40x1 � 80x2 � 10x3 � 10x4 � 4x5 � 20x6 � 60x7

s.t. 40x1 � 50x2 � 30x3 � 10x4 � 10x5 � 40x6 � 30x7 � 100 (39)

xi � 0 or 1 (i � 1, 2, . . . , 7)

We begin by computing the �
a
ci

i
� ratios and ordering the variables from best to worst (see

Table 59). To solve the LP relaxation of (39), we first choose item 7 (x7 � 1). Then 
100 � 30 � 70 units of the resource remain. Now we include the second-best item (item
2) in the knapsack by setting x2 � 1. Now 70 � 50 � 20 units of the resource remain.
Item 4 and item 1 have the same �

a
ci

i
� ratio, so we can next choose either of these items. We

arbitrarily choose to set x4 � 1. Then 20 � 10 � 10 units of the resource remain. The
best remaining item is item 1. We now fill the knapsack with as much of item 1 as we
can. Because only 10 units of the resource remain, we set x1 � �

1
4
0
0
� � �

1
4

�. Thus an optimal
solution to the LP relaxation of (39) is z � 80 � 60 � 10 � (�

1
4

�)(40) � 160, x2 � x7 �
x4 � 1, x1 � �

1
4

�, x3 � x5 � x6 � 0.
To show how the branch-and-bound method can be used to solve a knapsack problem,

let us find the optimal solution to the Stockco capital budgeting problem (Example 1).
Recall that this problem was

max z � 16x1 � 22x2 � 12x3 � 8x4

s.t. 5x1 � 7x2 � 4x3 � 3x4 � 14

xj � 0 or 1

The branch-and-bound tree for this problem is shown in Figure 22. From the tree, we find
that the optimal solution to Example 1 is z � 42, x1 � 0, x2 � x3 � x4 � 1. Thus, we
should invest in investments 2, 3, and 4 and earn an NPV of $42,000. As discussed in
Section 9.2, the “best” investment is not used.

R E M A R K S The method we used in traversing the tree of Figure 22 is as follows:
1 We used the LIFO approach to determine which subproblem should be solved.
2 We arbitrarily chose to solve subproblem 3 before subproblem 2. To solve subproblem 3, we first
set x3 � 1 and then solved the resulting knapsack problem. After setting x3 � 1, 14 � 4 � $10
million was still available for investment. Applying the technique used to solve the LP relaxation
of a knapsack problem yielded the following optimal solution to subproblem 3: x3 � 1, x1 � 1, 
x2 � �

5
7

�, x4 � 0, z � 16 � (�
5
7

�)(22) � 12 � �
30
7
6

�. Other subproblems were solved similarly; of course,
if a subproblem specified xi � 0, the optimal solution to that subproblem could not use investment i.

9 . 5 Solving Knapsack Problems by the Branch-and-Bound Method 525

TA B L E  59
Ordering Items from Best to Worst in a Knapsack Problem

ci Ranking
Item ai (1 � best, 7 � worst)

1 1 3.5 (tie for third or fourth)
2 �

8
5

� 2
3 �

1
3

� 7
4 1 3.5
5 �

1
4
0
� 6

6 �
1
2

� 5
7 2 1
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3 Subproblem 4 yielded the candidate solution x1 � x3 � x4 � 1, z � 36. We then set LB � 36.
4 Subproblem 6 yielded a candidate solution with z � 42. Thus, subproblem 4 was eliminated
from consideration, and the LB was updated to 42.
5 Subproblem 7 was infeasible because it required x1 � x2 � x3 � 1, and such a solution requires
at least $16 million.
6 Subproblem 8 was eliminated because its z-value (z � 38) did not exceed the current LB of 42.
7 Subproblem 9 had a z-value of 42�

6
7

�. Because the z-value for any all-integer solution must also
be an integer, this meant that branching on subproblem 9 could never yield a z-value larger than 42.
Thus, further branching on subproblem 9 could not beat the current LB of 42, and subproblem 9
was eliminated from consideration.

In Chapter 13, we show how dynamic programming can be used to solve knapsack
problems.

P R O B L E M S
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Subproblem 1

Subproblem 2

z  =  44

z  =  43

x1  =  x2   =  1 

x1  =  x2   =   1t  = 1

t  = 7

x3  =

x3  =  0 x3  =  1

x4  =  0 x4  =  1 x2  =  0

1
2

1
3

2
3

x3  =  0

x4  =

LB  =  42

Subproblem 3

x1  =  x3   =  1 t  = 2

z  =  43 5
7

5
7

x2  =

x4  =  0

Subproblem 8

x1  =  x2   =  1 

x3  =  x4   =  0 

t  = 8

z  =  38

LB  =  42

Subproblem 4

x1  =  x3   =  1 

x2  =   0 

x4  =   1 

t  = 3

z  =  36

Candidate solution

Subproblem 9

x1  =  x4   =  1 

t  = 9

z  =  42 6
7

6
7

x2  =

x3  =  0

LB  =  42

x2  =  1

x1  =  0 x1  =  1

Subproblem 5

x1  =

t  = 4

t  = 5

t  = 6

z  =  43 3
5

3
5

x2  =  x3  =  1

x4  =  0

LB  =  36

Subproblem 6

x1  =  0

x2  =  1

x3  =  1

x4  =  1

LB  =  36

Candidate solution

z  =  42

Subproblem 7

Infeasible

LB  =  42

F I G U R E  22
Branch-and-Bound 

Tree for Stockco
Knapsack Problem

1 Show how the following problem can be expressed as a
knapsack problem in which all variables must equal 0 or 1.
NASA is determining how many of three types of objects
should be brought on board the space shuttle. The weight

and benefit of each of the items are given in Table 60. If the
space shuttle can carry a maximum of 26 lb of items 1–3,
which items should be taken on the space shuttle?



9.6 Solving Combinatorial Optimization Problems 
by the Branch-and-Bound Method
Loosely speaking, a combinatorial optimization problem is any optimization problem
that has a finite number of feasible solutions. A branch-and-bound approach is often the
most efficient way to solve them. Three examples of combinatorial optimization problems
follow:

1 Ten jobs must be processed on a single machine. You know the time it takes to com-
plete each job and the time at which each job must be completed (the job’s due date).
What ordering of the jobs minimizes the total delay of the 10 jobs?

2 A salesperson must visit each of 10 cities once before returning to his home. What or-
dering of the cities minimizes the total distance the salesperson must travel before re-
turning home? Not surprisingly, this problem is called the traveling salesperson problem
(TSP).

3 Determine how to place eight queens on a chessboard so that no queen can capture
any other queen (see Problem 7 at the end of this section).

In each of these problems, many possible solutions must be considered. For instance,
in Problem 1, the first job to be processed can be one of 10 jobs, the next job can be 
one of 9 jobs, and so on. Thus, even for this relatively small problem there are 10(9)(8) ���
(1) � 10! � 3,628,000 possible ways to schedule the jobs. A combinatorial optimization
problem may have many feasible solutions, so it can require a great deal of computer time
to enumerate all possible solutions explicitly. For this reason, branch-and-bound methods
are often used for implicit enumeration of all possible solutions to a combinatorial opti-
mization problem. As we will see, the branch-and-bound method should take advantage
of the structure of the particular problem that is being solved.

To illustrate how branch-and-bound methods are used to solve combinatorial opti-
mization problems, we show how the approach can be used to solve Problems 1 and 2 of
the preceding list.
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2 I am moving from New Jersey to Indiana and have rented
a truck that can haul up to 1,100 cu ft of furniture. The
volume and value of each item I am considering moving on
the truck are given in Table 61. Which items should I bring
to Indiana? To solve this problem as a knapsack problem,
what unrealistic assumptions must we make?

3 Four projects are available for investment. The projects
require the cash flows and yield the net present values (NPV)
(in millions) shown in Table 62. If $6 million is available
for investment at time 0, find the investment plan that
maximizes NPV.

TA B L E  60

Weight
Item Benefit (Pounds)

1 10 3
2 15 4
3 17 5

TA B L E  61

Volume
Item Value ($) (Cubic Feet)

Bedroom set 60 800
Dining room set 48 600
Stereo 14 300
Sofa 31 400
TV set 10 200

TA B L E  62

Cash Outflow
Project at Time 0 ($) NPV ($)

1 3 5
2 5 8
3 2 3
4 4 7



Branch-and-Bound Approach 
for Machine-Scheduling Problem

Example 10 illustrates how a branch-and-bound approach may be used to schedule jobs
on a single machine. See Baker (1974) and Hax and Candea (1984) for a discussion of
other branch-and-bound approaches to machine-scheduling problems.

Four jobs must be processed on a single machine. The time required to process each job
and the date the job is due are shown in Table 63. The delay of a job is the number of
days after the due date that a job is completed (if a job is completed on time or early, the
job’s delay is zero). In what order should the jobs be processed to minimize the total de-
lay of the four jobs?

Solution Suppose the jobs are processed in the following order: job 1, job 2, job 3, and job 4. Then
the delays shown in Table 64 would occur. For this sequence, total delay � 0 � 6 � 3 �
7 � 16 days. We now describe a branch-and-bound approach for solving this type of 
machine-scheduling problem.

Because a possible solution to the problem must specify the order in which the jobs
are processed, we define

xij � �
The branch-and-bound approach begins by partitioning all solutions according to the job
that is last processed. Any sequence of jobs must process some job last, so each sequence
of jobs must have x14 � 1, x24 � 1, x34 � 1, or x44 � 1. This yields four branches with
nodes 1–4 in Figure 23. After we create a node by branching, we obtain a lower bound
on the total delay (D) associated with the node. For example, if x44 � 1, we know that
job 4 is the last job to be processed. In this case, job 4 will be completed at the end of
day 6 � 4 � 5 � 8 � 23 and will be 23 � 16 � 7 days late. Thus, any schedule having

if job i is the jth job to be processed

otherwise

1

0
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TA B L E  63
Durations and Due Date of Jobs

Days Required to
Job Complete Job Due Date

1 6 End of day 8
2 4 End of day 4
3 5 End of day 12
4 8 End of day 16

TA B L E  64
Delays Incurred If Jobs Are Processed in the Order 1–2–3–4

Completion Delay
Job Time of Job of Job

1 6 � 4 � 5 � 8 � 26 10 � 14 � 0
2 6 � 4 � 6 � 4 � 10 10 � 14 � 6
3 6 � 6 � 4 � 5 � 15 15 � 12 � 3
4 6 � 4 � 5 � 8 � 23 23 � 16 � 7



x44 � 1 must have D � 7. Thus, we write D � 7 inside node 4 of Figure 23. Similar rea-
soning shows that any sequence of jobs having x34 � 1 will have D � 11, x24 � 1 will
have D � 19, and x14 � 1 will have D � 15. We have no reason to exclude any of nodes
1–4 from consideration as part of the optimal job sequence, so we choose to branch on a
node. We use the jumptracking approach and branch on the node that has the smallest
bound on D: node 4. Any job sequence associated with node 4 must have x13 � 1, x23 �
1, or x33 � 1. Branching on node 4 yields nodes 5–7 in Figure 23. For each new node,
we need a lower bound for the total delay. For example, at node 7, we know from our
analysis of node 1 that job 4 will be processed last and will be delayed by 7 days. For
node 7, we know that job 3 will be the third job processed. Thus, job 3 will be completed
after 6 � 4 � 5 � 15 days and will be 15 � 12 � 3 days late. Any sequence associated
with node 7 must have D � 7 � 3 � 10 days. Similar reasoning shows that node 5 must
have D � 14, and node 6 must have D � 18. We still do not have any reason to elimi-
nate any of nodes 1–7 from consideration, so we again branch on a node. The jumptrack-
ing approach directs us to branch on node 7. Any job sequence associated with node 7
must have either job 1 or job 2 as the second job processed. Thus, any job sequence as-
sociated with node 7 must have x12 � 1 or x22 � 1. Branching on node 7 yields nodes 8
and 9 in Figure 23.

Node 9 corresponds to processing the jobs in the order 1–2–3–4. This sequence yields
a total delay of 7 (for job 4) � 3 (for job 3) � (6 � 4 � 4) (for job 2) � 0 (for job 1) �
16 days. Node 9 is a feasible sequence and may be considered a candidate solution having
D � 16. We now know that any node that cannot have a total delay of less than 16 days
can be eliminated.

Node 8 corresponds to the sequence 2–1–3–4. This sequence has a total delay of 7 (for
job 4) � 3 (for job 3) � (4 � 6 � 8) (for job 1) � 0 (for job 2) � 12 days. Node 8 is a
feasible sequence and may be viewed as a candidate solution with D � 12. Because node
8 is better than node 9, node 9 may be eliminated from consideration.

Similarly, node 5 (having D � 14), node 6 (having D � 18), node 1 (having D � 15),
and node 2 (having D � 19) can be eliminated. Node 3 cannot yet be eliminated, because
it is still possible for node 3 to yield a sequence having D � 11. Thus, we now branch on
node 3. Any job sequence associated with node 3 must have x13 � 1, x23 � 1, or x43 �
1, so we obtain nodes 10–12.

For node 10, D � (delay from processing job 3 last) � (delay from processing job 1
third) � 11 � (6 � 4 � 8 � 8) � 21. Because any sequence associated with node 10
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for Machine-Scheduling
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must have D � 21 and we have a candidate with D � 12, node 10 may be eliminated.
For node 11, D � (delay from processing job 3 last) � (delay from processing job 2

third) � 11 � (6 � 4 � 8 � 4) � 25. Any sequence associated with node 11 must have
D � 25, and node 11 may be eliminated.

Finally, for node 12, D � (delay from processing job 3 last) � (delay from processing
job 4 third) � 11 � (6 � 4 � 8 � 16) � 13. Any sequence associated with node 12 must
have D � 13, and node 12 may be eliminated.

With the exception of node 8, every node in Figure 23 has been eliminated from con-
sideration. Node 8 yields the delay-minimizing sequence x44 � x33 � x12 � x21 � 1. Thus,
the jobs should be processed in the order 2–1–3–4, with a total delay of 12 days resulting.

Branch-and-Bound Approach 
for Traveling Salesperson Problem

Joe State lives in Gary, Indiana. He owns insurance agencies in Gary, Fort Wayne, Evans-
ville, Terre Haute, and South Bend. Each December, he visits each of his insurance agen-
cies. The distance between each agency (in miles) is shown in Table 65. What order of
visiting his agencies will minimize the total distance traveled?

Solution Joe must determine the order of visiting the five cities that minimizes the total distance
traveled. For example, Joe could choose to visit the cities in the order 1–3–4–5–2–1. Then
he would travel a total of 217 � 113 � 196 � 79 � 132 � 737 miles.

To tackle the traveling salesperson problem, define

xij � �
Also, for i  j,

cij � distance between cities i and j

cii � M, where M is a large positive number

It seems reasonable that we might be able to find the answer to Joe’s problem by solving an
assignment problem having a cost matrix whose ijth element is cij. For instance, suppose we
solved this assignment problem and obtained the solution x12 � x24 � x45 � x53 � x31 � 1.
Then Joe should go from Gary to Fort Wayne, from Fort Wayne to Terre Haute, from Terre
Haute to South Bend, from South Bend to Evansville, and from Evansville to Gary. This so-
lution can be written as 1–2–4–5–3–1. An itinerary that begins and ends at the same city and
visits each city once is called a tour.

if Joe leaves city i and travels next to city j

otherwise

1

0
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TA B L E  65
Distance between Cities in Traveling Salesperson Problem

Fort Terre South
Day Gary Wayne Evansville Haute Bend

City 1 Gary 0 132 217 164 58
City 2 Fort Wayne 132 0 290 201 79
City 3 Evansville 217 290 290 113 303
City 4 Terre Haute 164 201 113 0 196
City 5 South Bend 58 79 303 196 0



If the solution to the preceding assignment problem yields a tour, then it is the optimal
solution to the traveling salesperson problem. (Why?) Unfortunately, the optimal solution to
the assignment problem need not be a tour. For example, the optimal solution to the assign-
ment problem might be x15 � x21 � x34 � x43 � x52 � 1. This solution suggests going from
Gary to South Bend, then to Fort Wayne, and then back to Gary. This solution also suggests
that if Joe is in Evansville he should go to Terre Haute and then to Evansville (see Figure
24). Of course, if Joe begins in Gary, this solution will never get him to Evansville or Terre
Haute. This is because the optimal solution to the assignment problem contains two subtours.
A subtour is a round trip that does not pass through all cities. The current assignment con-
tains the two subtours 1–5–2–1 and 3–4–3. If we could exclude all feasible solutions that con-
tain subtours and then solve the assignment problem, we would obtain the optimal solution
to the traveling salesperson problem. This is not easy to do, however. In most cases, a branch-
and-bound approach is the most efficient approach for solving a TSP.

Several branch-and-bound approaches have been developed for solving TSPs [see
Wagner (1975)]. We describe an approach here in which the subproblems reduce to as-
signment problems. To begin, we solve the preceding assignment problem, in which, for
i  j, the cost cij is the distance between cities i and j and cii � M (this prevents a per-
son in a city from being assigned to visit that city itself). Because this assignment prob-
lem contains no provisions to prevent subtours, it is a relaxation (or less constrained prob-
lem) of the original traveling salesperson problem. Thus, if the optimal solution to the
assignment problem is feasible for the traveling salesperson problem (that is, if the as-
signment solution contains no subtours), then it is also optimal for the traveling salesper-
son problem. The results of the branch-and-bound procedure are given in Figure 25.

We first solve the assignment problem in Table 66 (referred to as subproblem 1). The
optimal solution is x15 � x21 � x34 � x43 � x52 � 1, z � 495. This solution contains two
subtours (1–5–2–1 and 3–4–3) and cannot be the optimal solution to Joe’s problem.

We now branch on subproblem 1 in a way that will prevent one of subproblem 1’s sub-
tours from recurring in solutions to subsequent subproblems. We choose to exclude the
subtour 3–4–3. Observe that the optimal solution to Joe’s problem must have either x34 �
0 or x43 � 0 (if x34 � x43 � 1, the optimal solution would have the subtour 3–4–3). Thus,
we can branch on subproblem 1 by adding the following two subproblems:

Subproblem 2 Subproblem 1 � (x34 � 0, or c34 � M).

Subproblem 3 Subproblem 1 � (x43 � 0, or c43 � M).

We now arbitrarily choose subproblem 2 to solve, applying the Hungarian method to the
cost matrix as shown in Table 67. The optimal solution to subproblem 2 is z � 652, 
x14 � x25 � x31 � x43 � x52 � 1. This solution includes the subtours 1–4–3–1 and 2–5–2,
so this cannot be the optimal solution to Joe’s problem.

We now branch on subproblem 2 in an effort to exclude the subtour 2–5–2. We must
ensure that either x25 or x52 equals zero. Thus, we add the following two subproblems:

Subproblem 4 Subproblem 2 � (x25 � 0, or c25 � M).

Subproblem 5 Subproblem 2 � (x52 � 0, or c52 � M).
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Subproblem 1

z  =  495

x15  =  x21   =   x34

=  x43   =   x52  =  1

t  = 1

Subproblem 2

z  =  652

x14  =  x25   =   x31

=  x43   =   x52  =  1
t  = 2

Subproblem 3

z  =  652

UB  =  668

x13  =  x25   =   x34

=  x41   =   x52  =  1
t  = 5

x34  =  0 x43  =  0

x25  =  0

x25  =  0 x52  =  0

x52  =  0

Subproblem 4

z  =  668

Candidate solution

x15  =  x24   =   x31

=  x43   =   x52  =  1
t  = 3

Subproblem 5

z  =  704

UB  =  668

x14  =  x43   =   x32

=  x25   =   x51  =  1
t  = 4

Subproblem 6

z  =  704

UB  =  668

x15  =  x34

=  x23   =   x41

=  x52    =  1

t  = 6

Subproblem 6

z  =  910

UB  =  668

x13  =  x25

=  x31   =   x42

=  x54

t  = 7

F I G U R E  25
Branch-and-Bound Tree

for Traveling
Salesperson Problem

TA B L E  66
Cost Matrix for Subproblem 1

City 1 City 2 City 3 City 4 City 5

City 1 M 132 217 164 58
City 2 132 M 290 201 79
City 3 217 290 M 113 303
City 4 164 201 113 M 196
City 5 58 79 303 196 M

TA B L E  67
Cost Matrix for Subproblem 2

City 1 City 2 City 3 City 4 City 5

City 1 M 132 217 164 58
City 2 132 M 290 201 79
City 3 217 290 M M 303
City 4 164 201 113 M 196
City 5 58 79 303 196 M



Following the LIFO approach, we should next solve subproblem 4 or subproblem 5. We
arbitrarily choose to solve subproblem 4. Applying the Hungarian method to the cost ma-
trix shown in Table 68, we obtain the optimal solution z � 668, x15 � x24 � x31 � x43 �
x52 � 1. This solution contains no subtours and yields the tour 1–5–2–4–3–1. Thus, sub-
problem 4 yields a candidate solution with z � 668. Any node that cannot yield a z-value

 668 may be eliminated from consideration.

Following the LIFO rule, we next solve subproblem 5, applying the Hungarian method
to the matrix in Table 69. The optimal solution to subproblem 5 is z � 704, x14 � x43 �
x32 � x25 � x51 � 1. This solution is a tour, but z � 704 is not as good as the subprob-
lem 4 candidate’s z � 668. Thus, subproblem 5 may be eliminated from consideration.

Only subproblem 3 remains. We find the optimal solution to the assignment problem
in Table 70, x13 � x25 � x34 � x41 � x52 � 1, z � 652. This solution contains the sub-
tours 1–3–4–1 and 2–5–2. Because 652 
 668, however, it is still possible for subprob-
lem 3 to yield a solution with no subtours that beats z � 668. Thus, we now branch on
subproblem 3 in an effort to exclude the subtours. Any feasible solution to the traveling
salesperson problem that emanates from subproblem 3 must have either x25 � 0 or x52 �
0 (why?), so we create subproblems 6 and 7.

Subproblem 6 Subproblem 3 � (x25 � 0, or c25 � M).

Subproblem 7 Subproblem 3 � (x52 � 0, or c52 � M).
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TA B L E  68
Cost Matrix for Subproblem 4

City 1 City 2 City 3 City 4 City 5

City 1 M 132 217 164 58
City 2 132 M 290 201 M
City 3 217 290 M M 303
City 4 164 201 113 M 196
City 5 58 79 303 196 M

TA B L E  69
Cost Matrix for Subproblem 5

City 1 City 2 City 3 City 4 City 5

City 1 M 132 217 164 58
City 2 132 M 290 201 79
City 3 217 290 M M 303
City 4 164 201 113 M 196
City 5 58 M 303 196 M

TA B L E  70
Cost Matrix for Subproblem 3

City 1 City 2 City 3 City 4 City 5

City 1 M 132 217 164 58
City 2 132 M 290 201 79
City 3 217 290 M 113 303
City 4 164 201 M M 196
City 5 58 79 303 196 M



We next choose to solve subproblem 6. The optimal solution to subproblem 6 is x15 �
x34 � x23 � x41 � x52 � 1, z � 704. This solution contains no subtours, but its z-value
of 704 is inferior to the candidate solution from subproblem 4, so subproblem 6 cannot
yield the optimal solution to the problem.

The only remaining subproblem is subproblem 7. The optimal solution to subproblem
7 is x13 � x25 � x31 � x42 � x54 � 1, z � 910. Again, z � 910 is inferior to z � 668,
so subproblem 7 cannot yield the optimal solution.

Subproblem 4 thus yields the optimal solution: Joe should travel from Gary to South
Bend, from South Bend to Fort Wayne, from Fort Wayne to Terre Haute, from Terre Haute
to Evansville, and from Evansville to Gary. Joe will travel a total distance of 668 miles.

Heuristics for TSPs

When using branch-and-bound methods to solve TSPs with many cities, large amounts of
computer time may be required. For this reason, heuristic methods, or heuristics, which
quickly lead to a good (but not necessarily optimal) solution to a TSP, are often used. A
heuristic is a method used to solve a problem by trial and error when an algorithmic ap-
proach is impractical. Heuristics often have an intuitive justification. We now discuss two
heuristics for the TSP: the nearest-neighbor and the cheapest-insertion heuristics.

To apply the nearest-neighbor heuristic (NNH), we begin at any city and then “visit”
the nearest city. Then we go to the unvisited city closest to the city we have most recently
visited. Continue in this fashion until a tour is obtained. We now apply the NNH to Ex-
ample 11. We arbitrarily choose to begin at city 1. City 5 is the closest city to city 1, so
we have now generated the arc 1–5. Of cities 2, 3, and 4, city 2 is closest to city 5, so we
have now generated the arcs 1–5–2. Of cities 3 and 4, city 4 is closest to city 2. We now
have generated the arcs 1–5–2–4. Of course, we must next visit city 3 and then return to
city 1; this yields the tour 1–5–2–4–3–1. In this case, the NNH yields an optimal tour. If
we had begun at city 3, however, the reader should verify that the tour 3–4–1–5–2–3
would be obtained. This tour has length 113 � 164 � 58 � 79 � 290 � 704 miles and
is not optimal. Thus, the NNH need not yield an optimal tour. A popular heuristic is to
apply the NNH beginning at each city and then take the best tour obtained.

In the cheapest-insertion heuristic (CIH), we begin at any city and find its closest
neighbor. Then we create a subtour joining those two cities. Next, we replace an arc in
the subtour [say, arc (i, j)] by the combination of two arcs—(i, k) and (k, j), where k is
not in the current subtour—that will increase the length of the subtour by the smallest (or
cheapest) amount. Let cij be the length of arc (i, j). Note that if arc (i, j) is replaced by
arcs (i, k) and (k, j), then a length cik � ckj � cij is added to the subtour. Then we con-
tinue with this procedure until a tour is obtained. Suppose we begin the CIH at city 1.
City 5 is closest to city 1, so we begin with the subtour (1, 5)–(5, 1). Then we could 
replace (1, 5) by (1, 2)–(2, 5), (1, 3)–(3, 5), or (1, 4)–(4, 5). We could also replace arc 
(5, 1) by (5, 2)–(2, 1), (5, 3)–(3, 1), or (5, 4)–(4, 1). The calculations used to determine
which arc of (1,5)–(5,1) should be replaced are given in Table 71 (* indicates the correct
replacement). As seen in the table, we may replace either (1, 5) or (5, 1). We arbitrarily
choose to replace arc (1, 5) by arcs (1, 2) and (2, 5). We currently have the subtour (1,
2)–(2, 5)–(5, 1). We must now replace an arc (i, j) of this subtour by the arcs (i, k) and
(k, j), where k � 3 or 4. The relevant computations are shown in Table 72.

We now replace (1, 2) by arcs (1, 4) and (4, 2). This yields the subtour (1, 4)–(4, 2)–(2,
5)–(5, 1). An arc (i, j) in this subtour must now be replaced by arcs (i, 3) and (3, j). The
relevant computations are shown in Table 73. We now replace arc (1, 4) by arcs (1, 3) and
(3, 4). This yields the tour (1, 3)–(3, 4)–(4, 2)–(2, 5)–(5, 1). In this example, the CIH
yields an optimal tour—but, in general, the CIH does not necessarily do so.
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Evaluation of Heuristics

The following three methods have been suggested for evaluating heuristics:

1 Performance guarantees

2 Probabilistic analysis

3 Empirical analysis

A performance guarantee for a heuristic gives a worst-case bound on how far away from
optimality a tour constructed by the heuristic can be. For the NNH, it can be shown that
for any number r, a TSP can be constructed such that the NNH yields a tour that is r times
as long as the optimal tour. Thus, in a worst-case scenario, the NNH fares poorly. For 
a symmetric TSP satisfying the triangle inequality (that is, for which cij � cji and cik �
cij � cjk for all i, j, and k), it has been shown that the length of the tour obtained by the
CIH cannot exceed twice the length of the optimal tour.

In probabilistic analysis, a heuristic is evaluated by assuming that the location of cities
follows some known probability distribution. For example, we might assume that the cities
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TA B L E  71
Determining Which Arc of (1, 5)–(5, 1) Is Replaced

Arc Replaced Arcs Added to Subtour Added Length

(1, 5)* (1, 2)–(2, 5) c12 � c25 � c15 � 153
(1, 5) (1, 3)–(3, 5) c13 � c35 � c15 � 462
(1, 5) (1, 4)–(4, 5) c14 � c45 � c15 � 302
(5, 1)* (5, 2)–(2, 1) c52 � c21 � c51 � 153
(5, 1) (5, 3)–(3, 1) c53 � c31 � c51 � 462
(5, 1) (5, 4)–(4, 1) c54 � c41 � c51 � 302

TA B L E  72
Determining Which Arc of (1, 2)–(2, 5)–(5, 1) Is Replaced

Arc Replaced Arcs Added Added Length

(1, 2) (1, 3)–(3, 2) c13 � c32 � c12 � 375
(1, 2)* (1, 4)–(4, 2) c14 � c42 � c12 � 233
(2, 5) (2, 3)–(3, 5) c23 � c35 � c25 � 514
(2, 5) (2, 4)–(4, 5) c24 � c45 � c25 � 318
(5, 1) (5, 3)–(3, 1) c53 � c31 � c51 � 462
(5, 1) (5, 4)–(4, 1) c54 � c41 � c51 � 302

TA B L E  73
Determining Which Arc of (1, 4)–(4, 2)–(2, 5)–(5, 1) Is Replaced

Arc Replaced Arcs Added Added Length

(1, 4)* (1, 3)–(3, 4) c13 � c34 � c14 � 166
(4, 2) (4, 3)–(3, 2) c43 � c32 � c42 � 202
(2, 5) (2, 3)–(3, 5) c23 � c35 � c25 � 514
(5, 1) (5, 3)–(3, 1) c53 � c31 � c51 � 462



are independent random variables that are uniformly distributed on a cube of unit length,
width, and height. Then, for each heuristic, we would compute the following ratio:

The closer the ratio is to 1, the better the heuristic.
For empirical analysis, heuristics are compared to the optimal solution for a number of

problems for which the optimal tour is known. As an illustration, for five 100-city TSPs,
Golden, Bodin, Doyle, and Stewart (1980) found that the NNH—taking the best of all so-
lutions found when the NNH was applied beginning at each city—produced tours that av-
eraged 15% longer than the optimal tour. For the same set of problems, it was found that
the CIH (again applying the best solution obtained by applying CIH to all cities) produced
tours that also averaged 15% longer than the optimal tour.

R E M A R K S 1 Golden, Bodin, Doyle, and Stewart (1980) describe a heuristic that regularly comes within 2–3%
of the optimal tour.
2 It is also important to compare heuristics with regard to computer running time and ease of 
implementation.
3 For an excellent discussion of heuristics, see Chapters 5–7 of Lawler (1985).

An Integer Programming Formulation of the TSP

We now discuss how to formulate an IP whose solution will solve a TSP. We note, how-
ever, that the formulation of this section becomes unwieldy and inefficient for large TSPs.
Suppose the TSP consists of cities 1, 2, 3, . . . , N. For i  j let cij � distance from city i
to city j and let cii � M, where M is a very large number (relative to the actual distances
in the problem). Setting cii � M ensures that we will not go to city i immediately after
leaving city i. Also define

xij � �
Then the solution to a TSP can be found by solving

min z � �
i

�
j

cijxij (40)

s.t. �
i�N

i�1

xij � 1 (for j � 1, 2, . . . , N) (41)

s.t. �
j�N

j�1

xij � 1 (for i � 1, 2, . . . , N) (42)

ui � uj � Nxij � N � 1 (for i  j; i � 2, 3, . . . , N; j � 2, 3, . . . , N) (43)

All xij � 0 or 1, All uj � 0

The objective function (40) gives the total length of the arcs included in a tour. The con-
straints in (41) ensure that we arrive once at each city. The constraints in (42) ensure that
we leave each city once. The constraints in (43) are the key to the formulation. They en-
sure the following:

1 Any set of xij’s containing a subtour will be infeasible [that is, they violate (43)].

2 Any set of xij’s that forms a tour will be feasible [there will exist a set of uj’s that sat-
isfy (43)].

To illustrate that any set of xij’s containing a subtour will violate (43), consider the sub-
tour illustration given in Figure 24. Here x15 � x21 � x43 � x43 � x52 � 1. This assign-

if the solution to TSP goes from city i to city j

otherwise

1

0

Expected length of the path found by the heuristic
������
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ment contains the two subtours 1–5–2–1 and 3–4–3. Choose the subtour that does not con-
tain city 1 (3–4–3) and write down the constraints in (43) corresponding to the arcs in
this subtour. We obtain u3 � u4 � 5x34 � 4 and u4 � u3 � 5x43 � 4. Adding these con-
straints yields 5(x34 � x43) � 8. Clearly, this rules out the possibility that x43 � x34 � 1,
so the subtour 3–4–3 (and any other subtour!) is ruled out by the constraints in (43).

We now show that for any set of xij’s that does not contain a subtour, there exist values
of the uj’s that will satisfy all constraints in (43). Assume that city 1 is the first city vis-
ited (we visit all cities eventually, so this is okay). Let ti � the position in the tour where
city i is visited. Then setting ui � ti will satisfy all constraints in (43). To illustrate, con-
sider the tour 1–3–4–5–2–1. Then we choose u1 � 1, u2 � 5, u3 � 2, u4 � 3, u5 � 4.
We now show that with this choice of the ui’s all constraints in (43) are satisfied. First,
consider any constraint corresponding to an arc having xij � 1. For example, the constraint
corresponding to x52 is u5 � u2 � 5x52 � 4. Because city 2 immediately follows city 5,
u5 � u2 � �1. Then the constraint for x52 in (43) reduces to �1 � 5 � 4, which is true.
Now consider a constraint corresponding to an xij (say, x32) satisfying xij � 0. For x32, we
obtain the constraint u3 � u2 � 5x32 � 4. This reduces to u3 � u2 � 4. Because u3 � 5
and u2 	 1, u3 � u2 cannot exceed 5 � 2.

This shows that the formulation defined by (40)–(43) eliminates from consideration all
sequences of N cities that begin in city 1 and include a subtour. We have also shown that
this formulation does not eliminate from consideration any sequence of N cities begin-
ning in city 1 that does not include a subtour. Thus, (40)–(43) will (if solved) yield the
optimal solution to the TSP.

Using LINGO to Solve TSPs

The IP described in (40)–(43) can easily be implemented with the following LINGO pro-
gram (file TSP.lng).

MODEL:
1]SETS:
2]CITY/1..5/:U;
3]LINK(CITY,CITY):DIST,X;
4]ENDSETS
5]DATA:
6]DIST= 50000 132 217 164 58
7]132 50000 290 201 79
8]217 290 50000 113 303
9]164 201 113 50000 196

10]58 79 303 196 5000;
11]ENDDATA
12]N=@SIZE(CITY);
13]MIN=@SUM(LINK:DIST*X);
14]@FOR(CITY(K):@SUM(CITY(I):X(I,K))=1;);
15]@FOR(CITY(K):@SUM(CITY(J):X(K,J))=1;);
16]@FOR(CITY(K):@FOR(CITY(J)|J#GT#1#AND#K#GT#1:
17]U(J)-U(K)+N*X(J,K)<N-1;));
18]@FOR(LINK:@BIN(X););

END

In line 2, we define our five cities and associate a U(J) with city J. In line 3, we cre-
ate the arcs joining each combination of cities. With the arc from city I to city J, we as-
sociate the distance between city I and J and a 0–1 variable X(I,J), which equals 1 if city
J immediately follows city I in a tour.

In lines 6–10, we input the distance between the cities given in Example 11. Note that
the distance between city I and itself is assigned a large number, to ensure that city I does
not follow itself.

In line 12, we use @SIZE to compute the number of cities (we use this in line 17). In
line 13, we create the objective function by summing over each link (I,J) the product of
the distance between cities I and J and X(I,J). Line 14 ensures that for each city we en-
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ter the city exactly once. Line 15 ensures that for each city we leave the city exactly once.
Lines 16–17 create the constraints in (43). Note that we only create these constraints for
combinations J,K where J 	 1 and K 	 1. This agrees with (43). Note that when J � K
line 17 generates constraints of the form N*X(J,J) � N � 1, which imply that all 
X(J,J) � 0. In line 18, we ensure that each X(I,J) � 0 or 1. We need not constrain the
U(J)’s, because LINGO assumes they are nonnegative. Note: Even for small TSPs, this
formulation will exceed the capacity of student LINGO.

P R O B L E M S
Group A
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1 Four jobs must be processed on a single machine. The
time required to perform each job and the due date for each
job are shown in Table 74. Use the branch-and-bound
method to determine the order of performing the jobs that
minimizes the total time the jobs are delayed.

2 Each day, Sunco manufactures four types of gasoline:
lead-free premium (LFP), lead-free regular (LFR), leaded
premium (LP), and leaded regular (LR). Because of cleaning
and resetting of machinery, the time required to produce a
batch of gasoline depends on the type of gasoline last
produced. For example, it takes longer to switch between a
lead-free gasoline and a leaded gasoline than it does to
switch between two lead-free gasolines. The time (in
minutes) required to manufacture each day’s gasoline
requirements are shown in Table 75. Use a branch-and-
bound approach to determine the order in which the
gasolines should be produced each day.

3 A Hamiltonian path in a network is a closed path that
passes exactly once through each node in the network before

returning to its starting point. Taking a four-city TSP as an
example, explain why solving a TSP is equivalent to finding
the shortest Hamiltonian path in a network.

4 There are four pins on a printed circuit. The distance
between each pair of pins (in inches) is given in Table 76.

a Suppose we want to place three wires between the
pins in a way that connects all the wires and uses the
minimum amount of wire. Solve this problem by using
one of the techniques discussed in Chapter 8.
b Now suppose that we again want to place three wires
between the pins in a way that connects all the wires and
uses the minimum amount of wire. Also suppose that if
more than two wires touch a pin, a short circuit will oc-
cur. Now set up a traveling salesperson problem that can
be used to solve this problem. (Hint: Add a pin 0 such
that the distance between pin 0 and any other pin is 0.)

5 a Use the NNH to find a solution to the TSP in Problem
2. Begin with LFR.
b Use the CIH to find a solution to the TSP in Prob-
lem 2. Begin with the subtour LFR–LFP–LFR.

6 LL Pea stores clothes at five different locations. Several
times a day it sends an “order picker” out to each location
to pick up orders. Then the order picker must return to the
packaging area. Describe a TSP that could be used to
minimize the time needed to pick up orders and return to
the packaging area.

Group B

7 Use branch-and-bound to determine a way (if any exists
to place four queens on a 4 � 4 chessboard so that no queen
can capture another queen. (Hint: Let xij � 1 if a queen is
placed in row i and column j of the chessboard and xij � 0
otherwise. Then branch as in the machine-delay problem.

TA B L E  74

Time to
Perform Job Due Date

Job (Minutes) of Job

1 7 End of minute 14
2 5 End of minute 13
3 9 End of minute 18
4 11 End of minute 15

TA B L E  75

Last-Produced
Gas to Be Next Produced

Gasoline LFR LFP LR LP

LFR — 150 120 140
LFP 160 — 140 110
LR 190 130 — 160
LP 130 120 180 —

Note: Assume that the last gas produced yesterday precedes the
first gas produced today.

TA B L E  76

1 2 3 4

1 0 1 2 2
2 1 0 3 2.9
3 2 3 0 3
4 2 2.9 3 0



Many nodes may be eliminated from consideration because
they are infeasible. For example, the node associated with
the arcs x11 � x22 � 1 is infeasible, because the two queens
can capture each other.)

8 Although the Hungarian method is an efficient method
for solving an assignment problem, the branch-and-bound
method can also be used to solve an assignment problem.
Suppose a company has five factories and five warehouses.
Each factory’s requirements must be met by a single
warehouse, and each warehouse can be assigned to only one
factory. The costs of assigning a warehouse to meet a
factory’s demand (in thousands) are shown in Table 77.

Let xij � 1 if warehouse i is assigned to factory j and 0
otherwise. Begin by branching on the warehouse assigned to
factory 1. This creates the following five branches: x11 � 1,
x21 � 1, x31 � 1, x41 � 1, and x51 � 1. How can we obtain
a lower bound on the total cost associated with a branch?
Examine the branch x21 � 1. If x21 � 1, no further
assignments can come from row 2 or column 1 of the cost
matrix. In determining the factory to which each of the
unassigned warehouses (1, 3, 4, and 5) is assigned, we cannot
do better than assign each to the smallest cost in the
warehouse’s row (excluding the factory 1 column). Thus, the
minimum-cost assignment having x21 � 1 must have a total
cost of at least 10 � 10 � 9 � 5 � 5 � 39.

Similarly, in determining the warehouse to which each
of the unassigned factories (2, 3, 4, and 5) is assigned, we
cannot do better than to assign each to the smallest cost in
the factory’s column (excluding the warehouse 2 row). Thus,
the minimum-cost assignment having x21 � 1 must have a
total cost of at least 10 � 9 � 5 � 5 � 7 � 36. Thus, the
total cost of any assignment having x21 � 1 must be at least
max(36, 39) � 39. So, if branching ever leads to a candidate
solution having a total cost of 39 or less, the x21 � 1 branch
may be eliminated from consideration. Use this idea to solve
the problem by branch-and-bound.

9† Consider a long roll of wallpaper that repeats its pattern
every yard. Four sheets of wallpaper must be cut from the
roll. With reference to the beginning (point 0) of the
wallpaper, the beginning and end of each sheet are located
as shown in Table 78. Thus, sheet 1 begins 0.3 yd from the
beginning of the roll (and 1.3 yd from the beginning of the
roll) and sheet 1 ends 0.7 yd from the beginning of the roll
(and 1.7 yd from the beginning of the roll). Assume we are
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at the beginning of the roll. In what order should the sheets
be cut to minimize the total amount of wasted paper?
Assume that a final cut is made to bring the roll back to the
beginning of the pattern.

10‡ A manufacturer of printed circuit boards uses
programmable drill machines to drill six holes in each board.
The x and y coordinates of each hole are given in Table 79.
The time (in seconds) it takes the drill machine to move
from one hole to the next is equal to the distance between
the points. What drilling order minimizes the total time that
the drill machine spends moving between holes?

11 Four jobs must be processed on a single machine. The
time required to perform each job, the due date, and the penalty
(in dollars) per day the job is late are given in Table 80.

Use branch-and-bound to determine the order of
performing the jobs that will minimize the total penalty
costs due to delayed jobs.

TA B L E  77

Factory ($)

Warehouse 1 2 3 4 5

1 15 15 20 25 10
2 10 12 15 15 19
3 15 17 18 19 11
4 18 19 10 15 12
5 19 10 15 11 17

†Based on Garfinkle (1977). ‡Based on Magirou (1986).

TA B L E  78

Beginning End
Sheet (Yards) (Yards)

1 0.3 0.7
2 0.4 0.8
3 0.2 0.5
4 0.7 0.9

TA B L E  79

x y Hole

1 2 1
3 1 2
5 3 3
7 2 4
8 3 5

TA B L E  80

Job Time (Days) Due Date Penalty

1 4 Day 4 4
2 5 Day 2 5
3 2 Day 13 7
4 3 Day 8 2


