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THE TRAVELING SALESMAN PROBLEM: A SURVEYt 

M. Bellmore and G. L. Nemhauser 

The Johns Hopkins University, Baltimore, Maryland 

(Received June 24, 1966) 

A survey and synthesis of research on the traveling salesman problem 
is given. We begin by defining the problem and presenting several theo- 
rems. This is followed by a general classification of the solution techniques 
and a detailed description of some of the proven methods. Finally a sum- 
mary of computational results is given. 

I N THE traveling salesman problem we are given a nonnegative integer 
n and an n-dimensional square matrix C={cij}. Any sequence of 

p+l integers taken from (1, 2, * , n), in which each of the n integers 
appears at least once and the first and last integers are identical is called a 
tour. A tour may be written ast 

t (j, 2 . . . . 

By a feasible solution to the traveling salesman problem, we mean a 
tour. An optimal solution is a tour such that 

Z(t) = (ij)cv Cij is minimized, 

where t' [(il. i2) 2 (i22 i3), * . .*, (ip-1, ip) I (iP2 il)] 

is the ordered pair representation of t. 
The usual terminology is that the n integers correspond to cities or 

nodes, the ordered pairs (i, j) are links or arcs joining the nodes, and cii 
is the 'distance' from node i to node j, or the length of arc (i, j). The tour 
t is a closed path passing through each node at least once. The length of 
the tour, denoted by z(t), is the sum of the arc lengths over the arcs in- 
cluded in the tour. 

DISTANCE MEASURES 

A SUBTOUR 5, 

S= (i i2,i 3, . . . 

t Partially supported by National Bureau of Standards under Contract CST-348 
to The Johns Hopkins University. 

t Occasionally we will write t= (il, i2, , i- 1, iQ) with the return to i, im- 
plied. 
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is a closed path that does not pass through all of the n nodes [(ii, i * * ik) 

are distinct and k <n]. To have a meaningful problem the length of every 
subtour must be nonnegative, i.e., 

ZOO ) E(i,j)est Cij>O:0 

where s' is the ordered pair representation of s. In fact, if any subtour 
had a negative length, z(t) could be made arbitrarily small by having s 
appear an infinite number of times in t. We shall assume that the length 
of every subtour is nonnegative (note this implies that cj? 0). Clearly 
this will be the case if c1>~ 0 for all i and j. 

In general, except for the nonnegative length of every subtour, the 
elements cij are completely arbitrary. However, there are some restric- 
tions on the distance measures that admit important theoretical results 
and/or superior computational procedures. They are symmetry, triangle 
inequality, Euclidean plane and a particular 'distance' function suitable 
for certain job sequencing problems proposed by GILMORE AND GOMORY [15 

(see the subsection, "Job Sequencing and the Gilmore-Gomory Algorithm.") 

THEORETICAL RESULTS 

PRESENTLY, there is not an adequate theory for the traveling salesman 
problem. We mean this in the sense that solutions to the traveling 
salesman problem cannot, in general, be found as efficiently as they can, 
for example, for a shortest route problem of comparable size. Neverthe- 
less, there is some theory for the traveling salesman problem that, in 
part, has made it possible to construct the algorithms that presently 
exist. 

In this section, we state, without proof, and interpret the main theo- 
rems. Most of them are rather obvious. 

The first four theorems yield exploitable properties of the distance 
measure. 

Theorem 1 181 

If C satisfies the triangle inequality, there is an optimal tour in which 
each node is visited once and only once. 

Note that the triangle inequality is always satisfied if we replace cij by 
ci where c j is the length of a shortest path from i to j. Thus, a problem 
with an arbitrary distance matrix C can be solved assuming that each city 
is visited exactly once by replacing C by C'. If (in, iq) is an arc in the 
optimal tour under C' and (i , is t , i - - , iq) is a shortest route from i, 
to iq under C, then there is an optimal tour under C that contains the 
sequence (ip, is, it ' ... I iq). 
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This result is important because almost all algorithms for the traveling 
salesman problem' are designed to find the minimal length tour that goes 
through each node exactly once. Hereafter we shall assume that C is 
chosen so that there exists an optimal tour in which each node is visited 
exactly once or that the problem is to find an optimal tour under this restric- 
tion. 

When C satisfies the Euclidean distance measure in two dimensions, 
Theorem 1 can be strengthened. Let the nodes be represented by points 
in two-dimensional space' in such a way that the distance between nodes 
i andjis Cij. 

Theorem 2 [3,14] 

There exists an optimal tour that does not cross itself when C satisfies 
the Euclidean distance measure. 

Theorem 3tt3 

Let G be the convex hull of the points in two-dimensional Euclidean 
space. There exists an optimal tour in which the relative order of the 
points on the boundary of G is preserved. 

Theorems 2 and 3 serve to exclude from consideration those tours that 
do not satisfy these properties. Several algorithms can be improved by 
taking advantage of these properties. 

For symmetric, but not necessarily Euclidean problems, we can exclude 
half of the tours since: 

Theorem 4 

If C is symmetric and t1 and t2 are two tours in which the nodes are 
visited in reverse order, that is 

t1o (il2 i22 
. .. ins' il) ten (ill inl . . . 

I i27 il) 

then zQ1) z(t2). 
In general there are (n- 1)! tours, but for symmetric problems only 

(n-J.) !/2 need to be considered. 
The next few theorems are useful in constructing bounds on the length 

of an optimal tour. The 'assignment problem,' which is relatively easy to 
solve may be stated as 

mill w= qu ill c jX) 

subject to: =x 1, (jol, ...,n) 

Ej xjj= n t1* ) 

Xij=0, 1. (all i and j) 

t Actually this theorew is a slight generalization of BAIRACIH T's Theorem 3. 
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Theorem 5 

Let t be any tour in which each node is visited exactly once and Xiq 0 
if (i, j) is not in the tour and xt1 1 if (i, j) is in the tour. Then {x j} is a 
feasible solution to the assignment problem with 

zt)-E=1 1 cijXij W. 

Unfortunately the converse is not true; feasible solutions to the assign- 
ment problem may not be tours. For example, with n 4, x12 X= X34 

=X43= I is a feasible solution to the assignment problem, but when inter- 
preted for the traveling salesman problem, yields the subtours (1, 2, 1) and 
(3, 4, 3). As a result of Theorem 5 we have that min w<z(t), over all 
tours. 

Theorem 6 

Let k, and- kq be real numbers associated with a fixed pair of nodes p 
and q such that: 

Cpj=cpjkp, (j= 1, n; j5q) 

Cjq = CiQ-n ... : * ; t4 

cpq=cpq-kp kq, 

ci, =Xc-, otherwise, 

and z'(t) be the length of tour t under C'. Then z'(t) =z(t) -lkp-kg. 
Theorem 6 allows us conveniently to work with reduced matrices with 

as many zero elements as possible. Closely related to Theorem 6 is 
Theorem 7. 

Theorem 7 

If tour t does not contain arc (p, q) z(t) hp+hq where hp== minjp,, Cpj 
and hq =mrinipq aci. 

Theorem 8 

Let pi and P2 be two different permutations of the integers (2, 3, .., 
kc+ ); 

P1 (il) i2, ..' . Ok). p2 (jlg j2 * jk) 

and let z(Pm) Z(ij)EPnI ciio (ni 1, 2) 

where Pm' is the ordered pair representation of p, Then, if 

Clio-+-Z(PI) +Ciks! <?C2 ,+Z(p2) + Ch1s) 

then (1, P2, s) :cannot.be a segment tof an optimal tour. 
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By applying Theorem 8 recursively we can develop functional equations 
for determining an optimal tour. 

We have noted that all tours are feasible solutions to the assignment 
problem, but that, in addition to tours, subtours are feasible solutions to 
the assignment problem. Since the assignment problem is a linear pro- 
gram in 0-1 variables, if we can find linear constraints in the variables 
Exist that will exclude all subtours but no tours, then the traveling salesman 
problem can be written as a linear program in 0-1 variables. Theorems 9 
and 10 accomplish this. 

Theorem 9[9,10,28] 

Let S, S be a partition of the integers i= 1, * , n: i.e., sns=0 and 
SUS ={1, 2, .. , n}. For symmetric distances let xij= 0 if undirected 
arc (i, j) is not in a tour and xij= 1 if undirected arc (i, j) is in a tour. 
An optimal tour can be found by solving the integer program 

min z-= D 2_i CiJzijY 

subject to: xij=0,.1, (i= l, * *,J-1; j= 2,, * , n) 
and the loop constraints 

E ies E jesxij _ 2, 

for all nonempty partitions (S, S) such that if (S, S) is considered (S, S) 
is not. 

The loop constraints are illustrated in Fig. 1; (a) contains a subtour, 
(b) and (c) do not. There are 2'-- 1 of these constraints in an n-city 
problem. Assymmetric problems require twice as many variables and loop 
constraints. Specifically, the loop constraints are 

E its E jes X ij>2 

for all nonlempty partitions (S, S), where xij= 1, (0) if directed are (i, j) 
is in (not in) a tour. 

A different formulation that reduces the traveling salesman problem to 
an integer program is given in Theorem 10. 

Theorem 10129] 

Let xi= 1, (0) if directed arc (i, j) is in (not in) a tour. An optimal 
tour can be found by solving the integer program 

min z= Do D_1 cow, 

x_] Xij= 1, all j except j=io (io arbitrary), 

D=-l Xij= 1, all i except i=io, 

ui -uj+ nij<n- 17 all i and j except ij=io. 
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This formulation requires approximately n2 constraints, considerably 
fewer than the formulation of Theorem 9. However, this does not neces- 
sarily mean that the formulation of Theorem 10 is easier to solve. We shall 
discuss this point further in the section on algorithms. 

Given a set of nodes, i-1, * *, n where cij is the length of the arc 
joining nodes i and j, the longest path problem is to find a simple path be- 
tween two distinguished nodes, say 1 and n, such that the sum of the arc 
lengths is maximum. Theorem 11 allows one to solve the traveling sales- 
man problem as a longest path problem. 

S (a) S S (b) 

S (c) S 

Fig. 1. Elimination of subtours. 

Theorem 11[lSJ 

Given the nodes (ijn 1, * n*, n), arcs (i, j) and distance matrix C con- 
struct a new network containing the nodes and arcs from the original net- 
work plus one additional node, denoted by a, and an additional arc (i, a) 
for each j such that (I, 1) is an arc in the original network. The distances 
dij in the new network are: 

di = 0, for all i, 

djI =- o, for alljr41, 

dja o=k -ac, for all j7?a, 

d= = k - cij, otherwise, 

where J; is any finite number > sum of n largest cij. 
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A longest path from 1 to a in the new network contains every intermediate 
node (2, *, n) and if (I., i1, *-, &_,, a) is such a longest path (1, il, 

.', in4, 1) is an optimal tour. 
Theorem 11 has not proved to be useful since no efficient algorithms 

for the longest path problem have been discovered yet.t 
The only theoretical results not covered in this section refer to the 

Gilmore and Gomory[101 distance measure. These will be presented later 
with their algorithm. 

Methods of Solution-General Comments and Classification 

The methods for solving the traveling salesman problem usually can be 
divided into three basic parts: a starting point, a solution generation scheme, 
and a termination rule. When the termination rule is such that the itera- 
tion stops if and only if a tour is optimal, the method is exact. When the 

<~~~~~~\k 

Fig. 2. Interchanging two arcs. 

termination rule is such that the iteration stops if but not only if a tour is 
optimal, the method is approximate. In approximate methods the tour 
reached at termination generally depends on the starting point, so it is 
possible to produce many final tours by using different starting points. 
The best of these final tours is then selected. 

Consider the following two termination rules: 

(i) terminate if a tour to has been found such that z(t0) =L, where L is a lower 
bound on the length of all tours. 

(ii) terminate if a tour t* = (i1, i2 *- in, i1) has been found such that z(t*) ?z(t) 
for all tours t that can be produced by interchanging two elements of t*. 

Clearly (i) is exact, that is to is an optimal tour. However, to is best 
only in the local sense described by (ii). However, if t* is optimal, then 
certainly we would terminate at t* under rule (ii). 

Since most starting points and termination rules depend, in part, on the 

t A different longest path formulation is given by SALZJ134 35J. 
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solution generation scheme, we will classify according to the solution 
generation method. We know of three fundamentally different ways of 
generating solutions. 

A. Tour-to-Tour Improvement 

The starting point is an arbitrary tour, say to= (1, 2, 3, , n, 1). The 
solution generation scheme is a rule for finding a better tour that is a 
'neighbor' of the present tour. For example, ts is the best of the tours that 
can be generated by interchanging any element i-2, = 2 , n with 1. If 
tj:= (p, 2, 3, ***, n, p) then t2 is the best tour that can be generated by 
interchanging i= 1, ** * , n, i5p, with p. A termination rule could be to 
stop whenever no improvement can be made. We could then choose any 
other to and repeat the iterative scheme or apply another, more sophisticated, 
scheme. 

All procedures of this type known to us3' 7, 25, 31, 32] are approximate. 
Each must be judged purely on its computational efficiency; i.e., quality 
of solution vs. time spent. Good results have been produced by iterative 
schemes developed by LIN,[251 and REITER AND SHERMAN.1311 

B. Tour Building 

The starting point is an arbitrary node, say i1. From i, we build a 
sequence (i1, i2, -, k) by successively including other nodes into the 
sequence. The procedure terminates when a tour is achieved. A very 
simple scheme of this type is the 'nearest neighbor' rule. From i1 proceed 
to the nearest node i2, from i2 proceed to the nearest node not yet reached 
(not is or i2), *- * *from in return to il. 

Clearly, this method of tour building is approximate and there are 
many variations of the 'nearest neighbor' rule. 18, 21, 37] A method developed 
by KARG AND THOMPSON[211 has yielded good computational results. 
Exact tour building algorithms are dynamic programming15 17, 20] and 
the 'branch-and-bound'1241 algorithms of LITTLE ET AL.,[26' and HATFIELD 

AND PIERCE.1191 

C. Subtour Elimination 

The starting point is an optimal solution to the assignment problem 
under the matrix C. If the solution to the assignment problem is a tour, 
it is optimal for the traveling salesman problem. If the optimal solution 
to the assignment problem is not a tour, an iterative scheme is used to 
eliminate subtours. Exact subtour elimination methods are integer linear 
programming, 9, 10, 28-30] 'branch-and-bound' of EASTMAN1121 and SHA- 

PIRO) 316 and the GILMORE-GOMORY method. 1151 
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DETAILED DESCRIPTIONS OF EFFECTIVE ALGORITHMS 

IN THIS SECTION We present in some detail several algorithms that have 
produced impressive results. These include dynamic programming, 
integer programming, branch-and-bound, tour-to-tour approximations, 
and the Gilmore-Gomory method. In addition, some methods for reducing 
the size of problems will be discussed. 

A. Dynamic Programming 

Dynamic programming algorithms have been developed by BELL- 

MANt5] GONZALES,1[1] and HELD AND KARP.1201 The principle of opti- 
mality, as applied to the traveling salesman problem, yields Theorem 8. 

Specifically, let fki(irlii, * ,-i, i im+1, .**, ik-1) be the length of a 
shortest path that starts at node 1, passes through (i1, *^ , im-_1 * i*-1) 

and terminates at node im. 
From Theorem 8, it follows that a shortest partial tour from node 1 to 

node j that passes through il, *, ikol may be determined from 

fk(jlil, 
.. * * k-1)- =min.==,,nk- [Ak-1(imlill 

.. * imply im~bl .. * * -1) + Ci, j]* 

Applying the above equation recursively we begin with 

f2(jji1)=c1i1+cj11, for all i1 and jF?1, and i131J 

and terminate with an optimal tour by solving 

f? (Ili,*, i*t-,1) = minme=i ..., n-1 [fn-i(imil * im-0i m+i, * * *i)+CjmlI 

The difficulty in solving the recursive equations on a digital computer 
is the storage requirements. To compute ft+i, we must have all values of 
ft readily available in core storage. Once ft+l has been calculated, f may 
be discarded. Furthermore, with an insignificant increase in computation 
time, the elements of fkil may be put in auxiliary storage as they are com- 
puted and then returned to core for the calculation of fk+2. All other core 
storage requirements (program, data, etc.) are negligible compared to the 
core storage needed for fk. The number of values of fk is 

g(n, k)=(n-1) !/(k-1) !(n-k-1)!. 

The storage bottleneck occurs halfway through the computations. Since 
g( 15, 8) = 24,024, the largest problem solvable on a machine with a 32k 
core (such as the IBM 7094) is n= 15.t 

Let p be a bottleneck stage. By calculating the function f, separately 
for suitable subsets of the combinations of argument values, storage de- 
mands can be reduced. [171 The procedure is to calculate only those values 

t Held and Karp[20] report a code for the IBM 7090 for n= 13; however, auxiliary 
storage was not used for storing fk+,. 
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of fk, k = 1, * * *, p- I needed to determine fp(jIi2, *, ) for fixed i2, *, * i 

and all n-p values of j. Once the n-p values of f, are determined, we 
begin again with f2 and calculate another n-p values. When enough 
values of f, are available (n-p-i) values of fp+, are calculated. We 
believe that an eighteen-city problem can be solved in this manner on a 32k 
core computer. 

For a symmetric problem, with n event it is only necessary to compute 
fn/2. [7] In particular 

fn/2 (ji * . . 
) T'n/2-1 ) +fna/2 (jji/2+1y i n-1 ) 

is the length of a tour that is minimum over all tours that proceed from 
node 1 through (il, * * *, i/2-1) in some order, then to node j and back to 
node 1 through (i.,2+1, .. 2 in-1) in some order. Consequently, by ap- 
propriately adding the f-/2 values two at a time, an optimal tour can be 
established. 

B. Integer Programming 

The difficulties in finding an optimal tour in solving the integer program 
of Theorem 9 are the enormous number of loop constraints (2' l-1) and 
the requirement that the (n2-n)/2 variables xij equal 0 or 1 for symmetric 
distances. The solution of a linear program with the loop constraints and 
0?<xj? 1 generally will not satisfy x j=0 or 1. 

However, in 1954 DANTZIG, FULKERCON, AND JOHNSON191 found an 
optimal solution to a 42-city problem using this formulation. t They over- 
came the large number of loop constraints by beginning with only a few, 
and then adding new ones only as they were needed to block subtours. 
Combinatorial arguments were used to eliminate fractional solutions and 
to find an optimal tour. Finally, it was demonstrated that for the prob- 
lem at hand, an ordinary linear program could be devised whose solution 
gave integer valued xi/s representing the optimal tour. The constraints 
that rule out some fractional solutions but no integer solutions were 
forerunners to GoMORY'S 'cutting plane' constraints for solving any 
integer linear program.t["] 

After Gomory's method became available, MILLER, TUCKER, AND 
ZEMLINI29] in 1960 experimented with solving traveling salesman problems 
using a 'cutting plane' algorithm and the formulation of Theorem 10. 
The results were rather disappointing. 

The case was closed until 1966 when MARTIN[281 reported having solved 
Dantzig's 42-city problem by integer linear programming in less than 
five minutes on an IBM 7094. Unfortunately, this is the only large 

t Minor modifications are required when n is odd; see reference 17. 
t An elaboration of their original paper appears in reference 10. 
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problem for which 1\'artin gives computational results. Thus, there is 
not enough evidence to draw any reasonable conclusions. Integer linear 
programming algorithms are notorious for converging rapidly on one 
problem and then performing miserably on the next. 

Martin's impressive results, in contrast with Miller's can be attributed 
to any of a combination of several factors. Martin used the loop con- 
straints of Theorem 9. The constraints of Theorem 9 appear to be better 
suited than the constraints of Theorem 10 for excluding fractional solutions. 
This can be seen by considering a simple example. Suppose we have a 
solution with the subtours (1, 2, 3, 1) and (4, 5, , n, 4). These sub- 
tours can be blocked by a Theorem 9 constraint with S= { 1, 2, 3}, which is 
equivalent to 

x12+x23+x31 2. 
Using the constraints of Theorem 10, three constraints are required 

u1-u2+nxl2<n- 1, 

u2-u3+nX23?n-1, 

U3-ul+nx31<n- 1. 

When these three constraints are added we obtain 

X12+X23+ X3 _ 3-3/n. 

Although this constraint is sufficient to block the subtour, it is weaker than 

x12+ x23 + x31 2, 

and admits more feasible fractional solutions. Despite the fact that the 
formulation of Theorem 9 has many more constraints, generally very few 
of them will actually have to be used. 

The tactics used to add the loop constraints can substantially effect the 
computation time. In solving the 42-city problem Martin began with 84 
constraints, 42 of them coming from the assignment problem and 42 others 
being judiciously selected constraints in which S contained two nodes. 

To eliminate fractional solutions Martin uses his "Accelerated Eu- 
clidean Algorithm :,,E27I This algorithm employs Gomory's 'cutting planes,' 
but in a somewhat different manner than in Gomory's algorithm. It is 
possible that the Accelerated Euclidean Algorithm is very effective for 
traveling salesman problems. Finally, Martin's success is certainly, in 
part, attributable to the rapid developments in computer technology that 
have occurred in the past six years. 

Other integer programming formulations have been obtained by 
BOCK[6] and MUDROV. I0' But neither of these authors report computa- 
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tional results. FLEISHMANN1113 recently has applied BALAS't21 0-1 algo- 
rithm, but only to a seven-city problem. The results are discouraging, 
since the seven-city problem took more than five minutes on the IBM 7094. 

C. Branch-and-Bound 

Branch-and-bound algorithms have been developed by EASTMAN,[12] 

LITTLE, ET AL., [261 and SHAPIRO.Y3'1 Additionally, HATFIELD AND PIERCE [91 

have used branch-and-bound algorithms to solve a job sequencing problem 
closely related to the traveling salesman problem, but further constrained 
because of job deadlines to be met. The work of Little, et al. is a tour- 
building algorithm, while the xvork of Eastman and Shapiro are examples 
of subtour elimination algorithms. The authors are not aware of a branch- 
and-bound algorithm based upon tour-to-tour improvement, although pre- 
sumably one could be constructed. A rather complete survey of branch- 
and-bound methods has been given by LAWLER AND WOOD. [24] 

The algorithm developed by Eastman and extended by Shapiro is a 
search technique in which one partitions the set of tours into subsets and 
calculates lower bounds on the cost of all tours in a subset. The initial 
bound is found by solving the associated assignment problem (Theorem 5). 
The bound is taken as the value of the solution to the assignment problem. 
If the solution to the assignment problem is not a feasible solution to the 
traveling salesman problem because of subtours, then one branches into k 
subproblems, where k is the number of arcs in one of the subtours. If the 
subtour is (il, i2, * * * ik, ii) then for subproblem 1 let Cil = Co, for sub- 
problem 2 let ci2i =_ Co ... and for subproblem k let Ciil = oo. The sub- 
sets then are the set of all tours in which arc (i1, i2) is prohibited, etc. 
Shapiro chooses a subtour with smallest k for branching. This is intui- 
tively appealing but is not necessarily the best choice. The k new assign- 
ment problems are solved and determine the lower bounds for all tours ill 

their respective subsets. If any of these k solutions are tours and if the 
cost of one of these tours is less than or equal to the lower bounds on the 
other subsets, then that tour is optimal. If not, then one takes the subset 
with the lowest bound and branches again according to the subtours pres- 
ent in that solution. Eventually one is assured of finding an optimum 
tour. 

Shapiro reports considerable difficulty with symmetric problems. 
Specifically, the number of subtours of length 2 is excessive. For this 
reason he adopts a different approach for symmetric problems. He takes 
the integer programming formulation of Theorem 9 (for the symmetric 
case) and initially uses n constraints, corresponding to the n ways in which 
set S may contain a single node. This guarantees that the solution xvill 
not have subtours of length 2. If the solution contains subtours he does 
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not add additional constraints in the spirit of Theorem 9, but instead 
partitions the problem into subproblems in the spirit of his work with asym- 
metric problems. The work appears unfinished at this time, but Shapiro 
provides some estimates of what can be expected when one deals with 
symmetric problems. 

The algorithm developed by Little, et al. uses different tactics for 
branching and bounding. The calculation of bounds is based upon 
Theorems 6 and 7 and is referred to as matrix reduction. The reduced 
matrices are used for branching by partitioning the tours in a given subset 
into two subsets. This is done by committing an arc in one of the- subsets 
and prohibiting that arc in the other subset. The computational experience 
of Shapiro appears to make using Little's algorithm less desirable. 

D. Approximate Tour-to-Tour Improvement Algorithms 

There are many approximate algorithms based upon tour-to-tour 
improvement. Most are minor variations of the two fundamental tech- 
niques discussed in this section. REITER AND SHERMAN""] describe a series 
of 4 similar algorithms that culminate in their ALGO IV(r). For ALGO 
IV(1) one starts with a random tour, say t=(il. i2(, *2, ** in) and finds the 
best tour that results from interchanging i1 with i2, then i1 with i3, ... * then 
i1 with in [i.e., find the best position to insert i1 in the sequence (i2, i3, - in)] 

Denote this minimum tour as (ji, j2, .. , j,) and restart the procedure 
except using (j2, j3, *,j,, iil)(i.e., 'circulate' the minimum tour) as the 
initial tour. Each time a set of (n- 1) tours must be examined. The 
procedure is continued until n sets of (n -1) tours are examined without 
finding a shorter tour. 

ALGO IV(2) is an extension of ALGO IV(1). When ALGO IV(1) 
terminates, one applies ALGO IV(2) to the 'best' tour found by ALGO 
IV( 1). ALGO IV(2) finds the best location for (il. i2) in the sequence 
(i3, i4l ...* in) and the best location for (i2, i1) in the sequence (i3, i4, * * 7 

is). Denote the best of these sequences as (il j2, 
- , j) and restart 

ALGO IV(2) except using (j2, J3, . , -jn, j1) as the initial tour. ALGO 
IV(2) is reapplied until one obtains no improvement in n consecutive 
applications. 

One now returns to ALGO IV( 1). The entire process is repeated until 
ALGO IV(1) produces no improvement in n consecutive trials and ALGO 
IV(2) produces no improvement in n consecutive trials. 

ALGO IV(3) is analogous except one finds the best location for (il, 
i2, i3) in the sequence (i4, i5, * - *, Xn) and the best location for (i3, i2, 1l) in 
the sequence (i4, 4i, 6 , in). ALGO IV(r) finds the best location for 
(ill 4~ ... 7 ir) in the sequence (4ise ir+2 - - * 

, 
in) and the best location for 

( ir ir-l) ... , ii) in the sequence (i,+1, i4+2, * * * in). 
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A slightly different approach was suggested by LIN, [25 in which he finds 
approximate solutions which he calls X optimal, for X =2, 3, * * , n. His X 
is analogous to Reiter and Sherman's r, for X- =2. One starts with a ran- 
dom tour say t= (il, 2 *, * in) and systematically tries to find a better 
tour by replacing 2 arcs of the tour by 2 other arcs. t Lin's algorithm is not 
constrained to changing the position of adjacent cities in the sequence. 
Figure 2 illustrates this procedure. 

If the initial tour contained arcs i and j and if they are removed, then 
arcs k and 1 of Fig. 2 are uniquely determined. Note that one part of the 
original sequence will be visited in reverse order. A tour is '2-opt' when 
no improvement can be obtained by replacing any 2 arcs of the tour with 
2 other arcs. Other 2-opt tours may be found by using different initial 
random tours. 

Lin defined a tour as '3-opt' if one could not improve it by replacing any 
3 arcs or any 2 arcs. Analogously, a tour is 'X-opt' if it is '(X- 1) opt' and 
if, in addition, one cannot improve the tour by replacing any X arcs. He 
showed empirically that it is more efficient to find 3-opt tours than 2-opt 
tours. For a fixed amount of computer time, one would find fewer 3-opt 
tours than 2-opt tours, but the best 3-opt tour found would usually be at 
least as good and generally better than the best 2-opt tour found. He also 
found that it is not computationally efficient to find 4-opt tours. 

Lin used a modified procedure in searching for 3-opt tours. After 
several 3-opt tours are found, any arc that appears in all 3-opt tours found 
is assumed to be in all other 3-opt tours and in this way a reduced problem 
is examined in all future computations. 

E. Job Sequencing and the Gilmore-Gomory Algorithm [15] 

An interesting application of the traveling salesman problem concerns 
the sequencing of n jobs on a machine. Assume there is a set-up cost of 
cij units if job j follows job i in the sequence and that the operation is 
cyclic-after the last job is done, the first is begun again. The objective is 
to minimize the sum of the set-up costs. This problem can be identified 
as a traveling salesman problem with Lode i corresponding to job i and the 
set-up cost cij corresponding to the distance between nodes i and j. Al- 
though, in general, the cij can be arbitrary real nonnegative numbers, Gil- 
more and Gomory have considered a particular distance measure that is 
quite meaningful for certain sequencing problems and have discovered a 
remarkably simple algorithm. 

t Actually, CROES[71 first suggested this procedure and in addition reported a 
procedure for deriving exact solutions from these approximate solutions. His exact 
procedure is considered difficult to program for a computer. 

I See Section F, "Partitioning and Decomposition." 



552 M. Bellmore and G. L. Nemhauser 

Let 
rAj 

ci~= J f(x) dx, (Aj?BB) 

ci=J gq(x) dx, (Bi,> A,) 

where (As, By) are arbitrary real numbers associated with job i, i= 1, ***, 

n and f(x), g(x) are any integrable functions satisfying 

f(x) +g(x) > O. 

The motivation for defining cii in this manner is that to start job i, the 
machine must be in state Ai and when job i is done the machine is in state 
Bi. Thus, if job j follows job i the state of the machine must be changed 
from Bi to A>. It is assumed that the status of the machine can be de- 
scribed by one-state variable. 

The first step in the algorithm is to solve the assignment problem. 
This is done very easily. In particular, assume the nodes are numbered so 
thatj>iimplies BjBi. Now arrange the AX so that Ai ,<A 2 <_ Ai.. 
The optimal solution to the assignment problem is xji,= 1, j=1, n, 
x =0 otherwise. This solution is not, in general, a tour. 

By a series of interchanges the optimal assignment solution is converted 
into an optimal tour. An interchange a,8 applied to a solution {xij} with 
Xpk=Xsm= 1 yields the solution {x'j}, x Xm=x=k= 1, Xpk=Xsm=O, Xi=x 

otherwise. The interchanges are chosen specifically to remove subtours. 
Suppose s, and s2 are subtours in a solution and aij is an interchange with 
fess and jEs2, then the new solution contains all of the original subtours 
except that si and 82 have been replaced by a single subtour containing all 
their nodes. By systematically applying a sequence of these interchanges 
the assignment solution is transformed into a minimal tour. 

F. Partitioning and Decomposition 

The size of a traveling salesman problem can be reduced by imposing 
restrictions on the order in which the nodes can be traversed. Suppose the 
nodes (il, ***,i.k) ES must be traversed consecutively in the given order. 
Then the original n node problem can be reduced to a k+ 1 node problem. 
Specifically the nodes are all of original nodes in S [SUS= { 1, 2, * **, 
plus one additional node 0. The distance matrix is C' with 

ct j= Cij, (i)jES) 

C@,1=Cin_kJ Ues 

cow c l, (ieS) io= Ciii.(E) 
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If an optimal tour under C' is (i0, i.-k+i, . *, i,?), the original problem has 
an optimal tour (il, * * * I i-k in-k+il .* * in). 

ROTnKOPFt33] shows another possible simplification. He is motivated 
by sequencing problems in which the cost of processing a job depends 
only on its class and the class of the previous job. He establishes that if 
for any class of nodes 8 

Cii - a, (i, IES) 

= Cjk, (in jES, ICES) 

cki-yes, (i, jES, kcES) 

a+cpq<cpj+cjf for all jES, p, qES, 

then all of the nodes in S are traversed consecutively (in any order) in an 
optimal tour. 

HELD AND KARP 201 use partitioning to obtain approximate solutions. 
Following reference 20 suppose we have some tour t= (il, i2, * *, Gi). 
Assume that n is too large to solve the problem exactly, but that kc+ 1 <n 
is small enough to apply an exact method. Define a k+ 1 city problem by 
partitioning the nodes. For example, we might assume that il, ij2 ..., 

in-k is a segment of an optimal tour and consider a k+ 1 node problem with 
distance matrix C' as described above. Or we could consider the k+ 1 city 
problem derived by assuming the arcs (i1, i2), (i3, i4), * , (i2(nk)-3 

i2(n-k)-2) are segments of an optimal tour. In any case, whatever partition 
is chosen, the tour t' obtained from the optimal tour for the k+ 1 city prob- 
lem is such that 

z(t') ?z(t). 

We can then partition t' and continue. 
Held and Karp give some rules for selecting 'good' partitions. The 

rules attempt to identify a partition such that an optimal tour on the parti- 
tioned problem is as short as possible. The partitioned problems (n ? 13) 
are solved by dynamic programming, although other exact methods could 
be used. 

KARG AND THOMPsON[211 use partitions in a slightly different way. 
Assume that i1, - * *, il, appears promising as an optimal tour segment. 
Consider two traveling salesman problems P1 and P2. P1 contains the k 
nodes (i], . * *, ik) and the restriction that the arc (ik, i1) must be traversed 
and P2 contains the n-k+2 nodes (i, ilk, ik+1, . *, in) with the restriction 
that (i1, ik) must be traversed. Suppose the solutions to P1 and Ps are 
respectively (i1, - - *, ik, i1) and (ik, iml, - - - , ij, , ik). The optimal tours 
are combined as (il, i2, * * * i ik) ik+1, 

. in, i1). IKarg and Thompson 
select their tour segment (i1, - , ik) using the criterion that the closed 
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circuit (il, i2 , i, i1) approximates a convex set in two-dimensional 
Euclidean space. The test for convexity (not really convexity in the 
strict mathematical sense) is algebraic and they claim it has been applied 
to non-Euclidean problems with some success as well. Subproblems such 
as P2 once solved can be partitioned further, based upon the notion of 
convexity. Karg and Thompson use their tour building heuristic to solve 
the partitioned problems, although it would seem more desirable to apply 
an exact procedure when the subproblems are small enough. 

LIN 251 and ROBERTS AND FLORESW32] reduce problem size by assuming 
that once an arc appears in enough solutions obtained by approximate 
algorithms it will be in an optimal tour. 

G. Other Approaches 

A review of the traveling salesman problem through approximately 
1960 appeared in reference 1. BEARDWOOD, HALTON, AND HAMuMERSLYW4] 

derived asymptotic bounds on the length of an optimal tour containing a 
large number of cities contained in a region of specified dimensions. 
KRUSIALt22I pointed out a possible relation between the traveling salesman 
and shortest spanning tree problems. DERMAN AND KLEIN[11] consider 
an inspection and maintenance problem for which the model is a traveling 
salesman problem without the 0-1 restrictions on the variables. 
LAWLER[23] establishes that the traveling salesman problem is a special 
case of the quadratic assignment problem, which is a combinatorial prob- 
lem even more difficult than the traveling salesman problem itself. 

COMPUTATIONAL EXPERIENCE 

COMPARISON OF published computational experience is always difficult 
because of the different machines used and relative efficiency of different 
programming languages. The majority of reported times are for the 
IBM 1620 class and the IBM 7090 class of computing machines. The 
authors' personal experience on these two classes of machines indicate 
that as a first order approximation the 7090 is from 50 to 300 times faster 
than the 1620. Obviously, the exact ratio depends upon the particular 
application. 

Table I summarizes the reported computational time for exact al- 
gorithms. In examining this table, one should be aware that the times 
reported for integer programming and branch-and-bound are expected 
times, and particular problems may take considerably longer. 

It is difficult to compare approximate algorithms since one is interested 
in the probability of finding optimal tours and the amount of computer 
time required. Ideally one would compare algorithms in terms of the best 
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solution found for a particular problem as a function of the total computer 
time required. The variance of reporting methods used in the literature 
makes such comparisons impossible. 

Two well-known problems that have been treated by most approximate 
algorithms are the 48-city problem proposed by HELD AND KARPI20] and 
the 57-city problem proposed by KARG AND THOMPSON.[21] Optimum 

TABLE I 

COMPUTATIONAL EXPERIENCE (EXACT ALGORITHMS) 

Largest 
prob- Com- Time Remarks 
lem puter (min.) 

solved 

Dynamic programming 23 7090 0 28 (I) Storage limitations prevented the solution of larger 
(Held and Karp)[20] problems. 

(2) Required computer time is deterministic. 

Branch-and-Bound 40 7090 8.37 (I) Time reported is the expected time and one might 
(Little, et al)(261 experience large deviations for a particular 

problem. 
(2) Time reported refers to randomly selected, asym- 

metric cy. Considerable difficulty reported for 
Euclidean problems. 

Branch-and-bound 70 i620 103.5 (I) Only one 70-city problem was solved. The actual 
(Shapiro)[5d 40 z620 8. i6 computer time for a particular problem might be 

significantly different; however, this is the largest 
problem reported solved by any exact algorithm. 

(2) Time reported refers to randomly selected asym- 
metric ci. Considerable difficulty reported for 
randomly selected symmetric ciy. 

(3) 40-city result is given to aid direct comparison with 
Little's experience (note the difference in machine 
used). 

Integer programming 42 7094 Approx. (I) The time was reported for only one problem. 
(Martin)124l 5 min. (2) Considerable variance may be experienced with 

particular problems. 
(3) Other authors have reported much less favorable 

results from integer programming algorithms. 

solutions are not known with certainty for either problem. Table II 
compares five approximate algorithms with respect to these problems. 
The algorithms of LINE26] and REITER and SHERMAN131] were both able to 
find the best known solutions to both problems. We feel that the com- 
putational efficiency of these two algorithms is similar. 

Lin reports that the average IBM 7094 Model II computer time to 
obtain a 3-opt tour is under 30n3 microseconds and the probability that a 
'3-opt' tour is actually optimum is approximately p(n) = 2-1o. He 
suggests that a pessimistic estimate of this probability is Y4 p(n). Based 
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upon empirical results, the computer time required to achieve 99 per cent 
probability of finding the optimal solution for a 40-city problem is 2.5 milt 
and for a 60-city problem, 8 min. Lin estimates that in 100 miii, there is 
a 54 per cent probability of solving a 100-city problem. He has used this 
method to treat a 105-city problem. 

CONCLUSION 

IF THE authors were faced with the problem of finding a solution to a 
particular traveling salesman problem we would use dynamic program- 
ming for problems with 13 citiest or less, Shapiro's branch-and-bound 
algorithm for larger problems (up to about 70-100 cities for asymmetric 

TABLE II 

COMPUTATIONAL EXPERIENCE (APPROXIMATE ALGORITHMS) 

Length of Best Tour Found 

Algorithm 48 City (Held 57 City (Karg 

and KaP1101) 
and 

and Karpi"0]) Thompson]1"]) 

Held and Karp["] (Dynamic pro- II470 

gramming with partitioning) 
Karg and Thompson[21]" I2985 
Reiter and Sherman[3"] II46i 12955 
Shen Lin["] I46I 12955 

Roberts and Flores"32] II46i 12985 

Best known solution II46i I2955 

problems and up to about 40 cities for symmetric problems) and Shen 
Lin's '3-opt' algorithm for problems that cannot be handled by Shapiro's 
algorithm. We recommend dynamic programming over branch-and- 
bound for smaller problems because, although the expected computer 
time might be greater, we are assured that the maximum time is very 
small. 
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