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1 Discrete Random Variables

A discrete random variable X takes on values x; with probability p;, ¢+ =
1,...,m, where >7", p; = 1.

Example 1: Roll a fair die and let X be the value that appears.
Then X takes on the values 1 through 6, each with probability
1/6.

Example 2: You are told that there is a hundred dollar bill behind
one of three doors and there is nothing behind the other two.
Choose one of the doors and let X be the amount of money that
you find behind your door. Then X takes on the value 100 with
probability 1/3 and 0 with probability 2/3.

Now suppose that after choosing a door, but before opening it,
you are told one of the other doors that does not contain the
money. That is, suppose the hundred dollars is behind door num-
ber one. If you guessed one, then you are told either that it is
not behind door number two or that it is not behind door number
three. If you guessed two, you are told that it is not behind door
number three, and if you guessed three then you are told that it
is not behind door number two. You may now change your guess
to the remaining door — the one that you did not choose the first
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time and that you were not told did not contain the hundred dol-
lars. Let Y be the amount of money that you find if you change
your guess. Then Y takes on the value 100 with probability 2/3
and 0 with probability 1/3. Do you see why?

The expected value of a discrete random variable X is defined as
E(X)=(X) =) _pui.
i=1
This is also sometimes called the mean of the random variable X and denoted
as [.
In Example 1 above,

1 1 1 1 1 1 7
E(X)==--14+--24+—. — 44— — .=~
(X) 5 +6 +63+6 —|—65—|—66 5

In Example 2 above,

If X is a discrete random variable and ¢ is any function, then g(X) is a
discrete random variable and

E(g(X)) = >_pig(x:).
i=1
Example: g(X) = aX + b, a and b constants.

Bg(X)) = 3 pilazi +b)

=1

= aZpZ-;z;i + b (since Zpi =1)

= a-FE(X)+b.



Example: g(X) = X?. Then E(g(X)) = X7, pia?.
In Example 1 above,
1 1 1 1 1 1 91
EX) == 1"+ 2243444~ .5 4 —. 6" = —.
(X7) 6 + 6 + 6 + 6 + 6 + 6 6

Let p = E(X) denote the expected value of X. The expected value of
the square of the difference between X and p is

BX =) = Lo )
= ipi(a?f—?ﬁmfﬁr#z)

= d_piri —2u) pixi + g
i=1 i=1

= B(X?) -y’

= E(X?) - (E(X))
The quantity E(X?)— (E(X))? is called the variance of the random variable
X and is denoted var(X). The square root of the variance, o = /var(X) is

called the standard deviation. In Example 1 above,
1 2
var(X) = o <z) = §
6 2 12
Let X and Y be two random variables and let ¢; and ¢y be constants.

Then

var(e; X + YY) = E((aX +eY)?) — (B(aX +¢Y))?
= B(AEX?4+206XY +Y?) — (aB(X)+ E(Y))?
= c%E(XQ) +2c16,B(XY) + cgE(YQ) —
[cH(E(X))? + 216 B(X)E(Y) + 5 (E(Y))?]
= c%var(X) + cgvar(Y) +2c16(E(XY) — E(X)E(Y)).
The covariance of X and Y, denoted cov(X,Y), is the quantity E£(XY) —
E(X)E(Y).



Two random variables X and Y are said to be independent if the value
of one does not depend on that of the other; that is, if the probability that
X = z; i1s the same regardless of the value of Y and the probability that
Y = y; is the same regardless of the value of X. Equivalently, the probability
that X = z; and Y = y; is the product of the probability that X = z; and
the probability that ¥V = y;.

Example: Toss two fair coins. There are four equally probable
outcomes: HH, HT, TH, TT. Let X equal 1 if first coin is heads,
0 if first coin is tails. Let Y equal 1 if second coin is heads, 0 if
second coin is tails. Then X and Y are independent because, for
example,

1
Prob(X =1and Y =0) = 1= = Prob(X = 1)-Prob(Y = 0),

D | —

1
2

and similarly, for all other possible values, Prob(X = z; and Y =
y;) = Prob(X = z;) - Prob(Y = y;). In contrast, if we define
Y to be 0 if outcome is T'T" and 1 otherwise, then X and Y
are not independent because Prob(X = 1and Y = 0) = 0, yet
Prob(X =1) =1/2 and Prob(Y =0) = 1/4.

If X and Y are independent random variables, then cov(X,Y) = 0, and

var(e1 X + oY) = c%var(X) + cgvar(Y).

2 Continuous Random Variables

If a random variable X can take on any of a continuum of values, say, any
value between 0 and 1, then we cannot define it by listing values z; and giving
the probability p; that X = z;; for any single value z;, Prob(X = z;) is zero!
Instead we can define the cumulative distribution function:

F(z) = Prob(X < z),
or the probabilily densily function (pdf):

p(x)dz = Prob(X € [z,2+ dz]) = F(x + dx) — F(z).

4



Letting dr — 0, we find

(For a more formal mathematical derivation, take a course in probability or
measure theory. This will suffice for our purposes.)
The expected value of a continuous random variable X is then defined by

E(X)= /OO zp(z)de.

— 00

Note that by definition, [*°_p(z)dz = 1. The expected value of X? is

B(X*) = [ *p(e) da,

— 00

and the variance is again defined as E(X?) — (E(X))2.

Example: Uniform Distribution in [0, 1].

0 ifz<O 0 ifz<0
Flz)y=4 z f0<2<1 | pla)=q¢1 if0<2<1
1 ifz>1 0 fz>1

Example: Normal (Gaussian) Distribution, Mean g, Variance 2.
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Figure 1: Probability Density Function (rho(x)) and Cumulative Distribution
Function (F(x)) for a Uniform Distribution in [0, 1] and a Normal Distribution
with Mean 0, Variance 1

In MATLAB,

rand generates random numbers from a uniform distribution be-
tween 0 and 1.

Suppose you need random numbers uniformly distributed
between —1 and 3. How can you use rand to obtain
such a distribution?

randn generates random numbers from a normal distribution with
mean 0 and variance 1.

Suppose you need random numbers from a normal dis-
tribution with mean 6 and variance 4. How can you
use randn to obtain such a distribution?



3 The Central Limit Theorem

Let X1,..., Xy be independent identically distributed (iid) random variables,
with mean i and variance 0. Consider the average value, Ay = = SN X
According to the Law of Large Numbers, this average approaches the mean
i@ as N — oo, with probability 1.

Example: If you toss a fair coin many, many times, the fraction
of heads will approach %

The Central Limit Theorem states that, for N sufficiently large, values
of the random variable Ay are normally distributed about u, with variance
o%/N. The expression for the variance follows from the rules we derived for
variance of sums and products:

1 N
var(Ay) = WZVM(XZ') = —.
=1

This means that an observed value for Ay i1s within one standard devia-
tion (o/v/N) of p about 68.3% of the time, within two standard deviations
about 95.4% of the time, and within three standard deviations about 99.7%
of the time. If we wish to compute the expected value of a random variable
by taking the average of many different samples, this gives us an idea of how
much confidence we can place in our computed approximation. However, it
applies only asymptotically as N — oc.

4 Pseudorandom Number Generators

Almost all random quantities (e.g., normally distributed or exponentially
distributed random variables) are generated from uniform random numbers.

Pseudorandom number generators start with a seed: rand(’seed’, ...).
Each time called, they produce a new random number and update the seed.
This enables repeatability for debugging.

A pseudorandom number generator with only one 32 bit integer as seed
should not be used because it must repeat in no more than 232 ~ 4 billion
steps. Monte Carlo computations often use more than this!



