Axioms and properties of the real numbers

The basic axioms of addition and multiplication: Given two real numbers a and b, they have a sum $a+b$ and a product $a b$ which are also real numbers. These satisfy the following properties, for all real numbers a, b, and c :

- (Well-defined) If $a=b$, then $a+c=b+c$ and $a c=b c$.
- (Associativity) $(a+b)+c=a+(b+c)$ and $(a b) c=a(b c)$.
- (Commutativity) $a+b=b+a$ and $a b=b a$.
- (Distributivity) $a(b+c)=a b+a c$.
- (Zero) There is a number 0 which satisfies $a+0=0$.
- (One) There is a number 1 which satisfies $a \times 1=a$.
- (Negatives) The equation $a+x=0$ has the unique solution $x=-a$.
- (Reciprocals) If $a \neq 0$, the equation $a x=1$ has the unique solution $x=1 / a=a^{-1}$.
Some consequences (for any real numbers a, b, c):
- (Cancellation) If $a+c=b+c$, then $a=b$.
- (Cancellation) If $c \neq 0$ and $a c=b c$, then $a=b$.
- $a \times 0=0=0 \times a$.
- $(-a) b=-(a b)=a(-b),(-a)(-b)=a b$.

The basic axioms of inequalities: There is an ordering $<$ on real numbers, satisfying the following, for all real numbers a, b, and c :

- (Transitivity) If $a<b$ and $b<c$, then $a<c$.
- (Trichotomy) For any a and b, exactly one of the following is true: $a<b$, $a=b, a>b$.
- $a<b$ if and only if $a+c<b+c$.
- If $a \geq 0$ and $b \geq 0$, then $a b \geq 0$.

Some consequences (for any real numbers a, b, c):

- $a>0$ if and only if $-a<0$.
- For all $a, a^{2} \geq 0$. If $a \neq 0$, then $a^{2}>0$.
- In particular, $1>0$.
- If $c>0$, then $a<b \Leftrightarrow a c<b c$.
- If $c<0$, then $a<b \Leftrightarrow a c>b c$.
- If $a>0$ and $b>0$, then $a b>0$.

