First Midterm Solutions

(1) Let $f : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ be given by $f(a, b) = a^2 + b^2$. Consider the statement "if f(a, b) is odd then a is odd or b is odd.

(a) Give the converse of the original statement. Is the converse true? If so, prove it. If not, give a counterexample.

If a is odd or b is odd then f(a, b) is odd. This is False. If a = 5 and b = -7 then a and b are both odd but f(5, -7) = 74 is even.

(b) Give the contrapositive of the original statement. Is the contrapositive true? If so, prove it. If not, give a counterexample.

If a is even and b is even then f(a, b) is even.

This is True.

Assume a and b are even. Choose $k, \ell \in \mathbb{Z}$ so that a = 2k and $b = 2\ell$. Then

$$f(a,b) = a^{2} + b^{2}$$

= $(2k)^{2} + 2\ell)^{2}$
= $4k^{2} + 4\ell^{2}$
= $2 \cdot (2k^{2} + 2\ell^{2})$

Thus f(a, b) is even. \Box

Math 300D

First Midterm Solutions

(2) Prove that $\sum_{i=1}^{n} i(i+1) = \frac{1}{3}n(n+1)(n+2)$ for every positive integer n.

We prove this by induction on n.

Base Case:
$$\sum_{i=1}^{1} i(i+1) = 1 \cdot (1+1) = 2$$
 and $\frac{1}{3} \cdot 1 \cdot (1+1) \cdot (1+2) = 2$

 $\label{eq:induction Hypothesis: Fix $n \geq 1$ and assume $\sum_{i=1}^n i(i+1) = \frac{1}{3}n(n+1)(n+2)$.}$

Induction Step:

$$\begin{split} \sum_{i=1}^{n+1} i(i+1) &= \left[\sum_{i=1}^{n} i(i+1)\right] + (n+1)(n+2) \\ &= \frac{1}{3}n(n+1)(n+2) + (n+1)(n+2) \quad by \ the \ Induction \ Hypothesis \\ &= (n+1)(n+2) \cdot \left[\frac{1}{3}n+1\right] \\ &= \frac{1}{3}(n+1)(n+2)(n+3) \end{split}$$

Thus the result follows by induction on n. \Box

Math 300D

(3) Give a careful proof of the following set theoretic identity.

$$C \setminus (B \setminus A) = (A \cap C) \cup (C \setminus B)$$

Do not use Venn diagrams.

Note that $x \notin (B \setminus A)$ is equivalent to $x \notin B$ or $x \in A$. (*) because $\neg (x \in B \land x \notin A) = x \notin B \lor x \in A$ First we prove that $C \setminus (B \setminus A) \subseteq (A \cap C) \cup (C \setminus B)$. Let $x \in C \setminus (B \setminus A)$. Then $x \in C$ and $x \notin (B \setminus A)$. Thus $x \in C$ and either $x \notin B$ or $x \in A$, by (*). There are 2 cases to check. Case 1: Assume that $x \notin B$. Since $x \in C$ we have $x \in C \setminus B$. Thus $x \in (A \cap C) \cup (C \setminus B)$. Case 2: Assume that $x \in A$. Since $x \in C$ we get $x \in A \cap C$. Thus $x \in (A \cap C) \cup (C \setminus B)$. Hence in each case we have shown that $x \in (A \cap C) \cup (C \setminus B)$. It follows that $C \setminus (B \setminus A) \subseteq (A \cap C) \cup (C \setminus B)$. Now we prove that $(A \cap C) \cup (C \setminus B) \subseteq C \setminus (B \setminus A)$. Let $x \in (A \cap C) \cup (C \setminus B)$. Then $x \in A \cap C$ or $x \in C \setminus B$. There are 2 cases to check. Case 1: Assume that $x \in A \cap C$. Then $x \in C$ and $x \in A$. Since $x \in A$ we get $x \notin B \setminus A$, by (*). Thus $x \in C \setminus (B \setminus A)$. Case 2: Assume that $x \in C \setminus B$. Then $x \in C$ and $x \notin B$. Since $x \notin B$ we conclude $x \notin B \setminus A$, by (*). Since $x \in C$ we get $x \in C \setminus (B \setminus A)$. Hence in each case we have shown that $x \in C \setminus (B \setminus A)$. It follows that $(A \cap C) \cup (C \setminus B) \subseteq C \setminus (B \setminus A)$.

We have proven that the two sets are equal. \Box

(4) Suppose that functions $f: X \to Y$ and $g: Y \to X$ satisfy $g \circ f = I_X$. Prove that f is an injection and g is a surjection. Give an example to show that $f \circ g$ need not equal I_Y .

Step 1: $f: X \to Y$ is an injection.

Choose any $x_1, x_2 \in X$ and assume that $f(x_1) = f(x_2)$.

$$f(x_1) = f(x_2) g(f(x_1)) = g(f(x_2)) g \circ f(x_1) = g \circ f(x_2) I_X(x_1) = I_X(x_2) x_1 = x_2$$

Thus f is injective.

Step 2: $g: Y \to X$ is a surjection.

Choose any $x \in X$. Define y = f(x).

$$g(y) = g(f(x))$$

= $g \circ f(x)$
= $I_X(x)$
= x

Thus g is surjective.

One possible example is to take $f(x) = \sqrt{x}$ and $g(x) = x^2$. Then $X = \mathbb{R}_{\geq 0}$, the non-negative real numbers, and $Y = \mathbb{R}$. In this case, $g \circ f(x) = x$ but $f \circ g(x) = \sqrt{x^2} = |x|$.