(1) Let \(f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \) be given by \(f(a, b) = a^2 + b^2 \). Consider the statement “if \(f(a, b) \) is odd then \(a \) is odd or \(b \) is odd.

(a) Give the converse of the original statement. Is the converse true? If so, prove it. If not, give a counterexample.

\[
\text{If } a \text{ is odd or } b \text{ is odd then } f(a, b) \text{ is odd.}
\]

\text{This is False. If } a = 5 \text{ and } b = -7 \text{ then } a \text{ and } b \text{ are both odd but } f(5, -7) = 74 \text{ is even.}

(b) Give the contrapositive of the original statement. Is the contrapositive true? If so, prove it. If not, give a counterexample.

\[
\text{If } a \text{ is even and } b \text{ is even then } f(a, b) \text{ is even.}
\]

\text{This is True. Assume } a \text{ and } b \text{ are even. Choose } k, \ell \in \mathbb{Z} \text{ so that } a = 2k \text{ and } b = 2\ell. \text{ Then}
\[
f(a, b) = a^2 + b^2
= (2k)^2 + (2\ell)^2
= 4k^2 + 4\ell^2
= 2 \cdot (2k^2 + 2\ell^2)
\]

\text{Thus } f(a, b) \text{ is even.} \quad \Box
(2) Prove that \[\sum_{i=1}^{n} i(i+1) = \frac{1}{3} n(n+1)(n+2) \] for every positive integer \(n \).

We prove this by induction on \(n \).

Base Case: \[\sum_{i=1}^{1} i(i+1) = 1 \cdot (1+1) = 2 \] and \[\frac{1}{3} \cdot 1 \cdot (1+1) \cdot (1+2) = 2 \]

Induction Hypothesis: Fix \(n \geq 1 \) and assume \[\sum_{i=1}^{n} i(i+1) = \frac{1}{3} n(n+1)(n+2) \].

Induction Step:

\[
\sum_{i=1}^{n+1} i(i+1) = \left[\sum_{i=1}^{n} i(i+1) \right] + (n+1)(n+2)
\]
\[
= \frac{1}{3} n(n+1)(n+2) + (n+1)(n+2) \quad \text{by the Induction Hypothesis}
\]
\[
= (n+1)(n+2) + \frac{1}{3} n(n+1)
\]
\[
= \frac{1}{3} (n+1)(n+2)(n+3)
\]

Thus the result follows by induction on \(n \). \(\square \)
(3) Give a careful proof of the following set theoretic identity.

\[C \setminus (B \setminus A) = (A \cap C) \cup (C \setminus B) \]

Do not use Venn diagrams.

Note that \(x \notin (B \setminus A) \) is equivalent to \(x \notin B \) or \(x \in A \). \((\ast)\)

because \(\neg(x \in B \land x \notin A) = x \notin B \lor x \in A \)

First we prove that \(C \setminus (B \setminus A) \subseteq (A \cap C) \cup (C \setminus B) \).

Let \(x \in C \setminus (B \setminus A) \). Then \(x \in C \) and \(x \notin (B \setminus A) \).

Thus \(x \in C \) and either \(x \notin B \) or \(x \in A \), by \((\ast)\).

There are 2 cases to check.

Case 1: Assume that \(x \notin B \).
Since \(x \in C \) we have \(x \in C \setminus B \).
Thus \(x \in (A \cap C) \cup (C \setminus B) \).

Case 2: Assume that \(x \in A \).
Since \(x \in C \) we get \(x \in A \cap C \).
Thus \(x \in (A \cap C) \cup (C \setminus B) \).

Hence in each case we have shown that \(x \in (A \cap C) \cup (C \setminus B) \).

It follows that \(C \setminus (B \setminus A) \subseteq (A \cap C) \cup (C \setminus B) \).

Now we prove that \((A \cap C) \cup (C \setminus B) \subseteq C \setminus (B \setminus A) \).

Let \(x \in (A \cap C) \cup (C \setminus B) \).
Then \(x \in A \cap C \) or \(x \in C \setminus B \).

There are 2 cases to check.

Case 1: Assume that \(x \in A \cap C \).
Then \(x \in C \) and \(x \in A \).
Since \(x \in A \) we get \(x \notin B \setminus A \), by \((\ast)\).
Thus \(x \in C \setminus (B \setminus A) \).

Case 2: Assume that \(x \in C \setminus B \).
Then \(x \in C \) and \(x \notin B \).
Since \(x \notin B \) we conclude \(x \notin B \setminus A \), by \((\ast)\).
Since \(x \in C \) we get \(x \in C \setminus (B \setminus A) \).

Hence in each case we have shown that \(x \in C \setminus (B \setminus A) \).

It follows that \((A \cap C) \cup (C \setminus B) \subseteq C \setminus (B \setminus A) \).

We have proven that the two sets are equal. \(\square \)
Suppose that functions $f : X \to Y$ and $g : Y \to X$ satisfy $g \circ f = I_X$. Prove that f is an injection and g is a surjection. Give an example to show that $f \circ g$ need not equal I_Y.

Step 1: $f : X \to Y$ is an injection.

Choose any $x_1, x_2 \in X$ and assume that $f(x_1) = f(x_2)$.

\[
\begin{align*}
 f(x_1) &= f(x_2) \\
 g(f(x_1)) &= g(f(x_2)) \\
 g \circ f(x_1) &= g \circ f(x_2) \\
 I_X(x_1) &= I_X(x_2) \\
 x_1 &= x_2
\end{align*}
\]

Thus f is injective.

Step 2: $g : Y \to X$ is a surjection.

Choose any $x \in X$. Define $y = f(x)$.

\[
\begin{align*}
 g(y) &= g(f(x)) \\
 &= g \circ f(x) \\
 &= I_X(x) \\
 &= x
\end{align*}
\]

Thus g is surjective.

One possible example is to take $f(x) = \sqrt{x}$ and $g(x) = x^2$.

Then $X = \mathbb{R}_{\geq 0}$, the non-negative real numbers, and $Y = \mathbb{R}$.

In this case, $g \circ f(x) = x$ but $f \circ g(x) = \sqrt{x^2} = |x|$.