NOTE: In Problems 5 and 6 below, you may assume that the Continuum Hypothesis holds.

1. (a) Prove that if x is a non-zero rational number and y is an irrational number, then the product $x y$ must be irrational.
(b) Give an example to show that the product of two irrational numbers may be a rational.
2. From Problems III, page 186, Problem 26:

Prove that each finite decimal number (except zero) can be written as an infinite decimal in two distinct ways. That is, prove that:

$$
a_{0} \cdot a_{1} a_{2} \ldots a_{n 1} a_{n} \overline{0}=a_{0} \cdot a_{1} a_{2} \ldots a_{n 1}\left(a_{n}-1\right) \overline{9}
$$

where $a_{0} \in \mathbb{Z}, a_{i} \in\{0,1, \ldots, 9\}$ for $i>0$ and $a_{n} \geq 1$.
You may use without proof the fact that $1 . \overline{0}=0 . \overline{9}$ (which we proved in class).
3. Use Cantors diagonal argument to write a complete formal proof showing that the interval of real numbers [2,3] is uncountable.
4. Assume that A is uncountable and B is a countable subset of A. Prove that $A \backslash B$ is uncountable.
5. Determine the cardinality of the following sets. Your answer should be either an integer number, or one of $\aleph_{0}, \aleph_{1}, \aleph_{2}$ etc. Give a brief justification.
(a) the irrational numbers
(b) $\mathbb{Q} \times \mathbb{Q}$
(c) $S=\{\sqrt{n} \mid n \in \mathbb{Q}, n \geq 0\}$
(d) $T=\{\sqrt[m]{n} \mid m, n \in \mathbb{N}\}$
(e) $A=\{n \in \mathbb{Z} \mid 0 \leq n \leq 41\}$
(f) the power set of the rational numbers, $\mathcal{P}(\mathbb{Q})$
(g) the complex numbers: $C=\left\{x+i y \mid x, y \in \mathbb{R}, i^{2}=-1\right\}$
6. Give examples of sets (other than precisely $\mathbb{N}_{81}, \mathbb{N}, \mathbb{Z}, \mathbb{Q}$ or \mathbb{R}) with each of the following cardinalities.
(a) 81
(b) 0
(c) \aleph_{1}
(d) \aleph_{5}

