Homework 7

Patrick Perkins

NOTE: In Problems 5 and 6 below, you may assume that the Continuum Hypothesis holds.

1. (a) Prove that if x is a non-zero rational number and y is an irrational number, then the product xy must be irrational.

(b) Give an example to show that the product of two irrational numbers may be a rational.

 From Problems III, page 186, Problem 26: Prove that each finite decimal number (except zero) can be written as an infinite decimal in two distinct ways. That is, prove that:

 $a_0.a_1a_2\ldots a_{n1}a_n\overline{0} = a_0.a_1a_2\ldots a_{n1}(a_n-1)\overline{9}$

where $a_0 \in \mathbb{Z}$, $a_i \in \{0, 1, ..., 9\}$ for i > 0 and $a_n \ge 1$.

You may use without proof the fact that $1.\overline{0} = 0.\overline{9}$ (which we proved in class).

- 3. Use Cantors diagonal argument to write a complete formal proof showing that the interval of real numbers [2, 3] is uncountable.
- 4. Assume that *A* is uncountable and *B* is a countable subset of *A*. Prove that $A \setminus B$ is uncountable.
- 5. Determine the cardinality of the following sets. Your answer should be either an integer number, or one of \aleph_0 , \aleph_1 , \aleph_2 etc. Give a brief justification.
 - (a) the irrational numbers
 - (b) $\mathbb{Q} \times \mathbb{Q}$
 - (c) $S = \{\sqrt{n} \mid n \in \mathbb{Q}, n \ge 0\}$
 - (d) $T = \{ \sqrt[m]{n} \mid m, n \in \mathbb{N} \}$
 - (e) $A = \{n \in \mathbb{Z} \mid 0 \le n \le 41\}$
 - (f) the power set of the rational numbers, $\mathcal{P}(\mathbb{Q})$
 - (g) the complex numbers: $C = \{x + iy \mid x, y \in \mathbb{R}, i^2 = -1\}$
- 6. Give examples of sets (other than precisely \mathbb{N}_{81} , \mathbb{N} , \mathbb{Z} , \mathbb{Q} or \mathbb{R}) with each of the following cardinalities.
 - (a) 81
 - (b) 0
 - (c) ℵ₁
 - (d) ℵ₅