Homework 3

- 1. Does the Trichotomy law hold for sets? In other words, given two sets and, is it true that one of: $A \subset B$, $B \subset A$ or A = B must be true? If yes, give a proof; if no, give a counterexample.
- 2. Let $A = \{1, 2, 3, 4\}$.
 - (a) List all elements of $\mathcal{P}(A)$ the power set of A.
 - (b) List all elements of $A \times A$.
- 3. Suppose $A \subseteq B$. Is it true that $\mathcal{P}(A) \subseteq \mathcal{P}(B)$. If yes, prove it; if no, give a counterexample.
- 4. Using truth tables, prove the following De Morgan Law for sets: $(A \cap B)^c = A^c \cup B^c$
- 5. Suppose *A*, *B* and *C* are sets and assume $A \neq \emptyset$. Prove that if $A \times B = A \times C$ then B = C. (*Hint: try the contrapositive.*)
- 6. Give a proof or a counterexample for each of the following statements.
 - (a) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x + y > 0$
 - (b) $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, x + y > 0$
 - (c) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, xy > 0$
 - (d) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, xy \ge 0$

Prove each of the following propositions.

- 7. Let *A* and *B* be sets. Then $A \setminus (A \cap B) = A \setminus B$.
- 8. Let *A*, *B* and *C* be sets. Then $(A \setminus C) \cap (B \setminus C) = (A \cap B) \setminus C$.
- 9. Let *A*, *B*, and *C* be sets. Then $(A \cup C) \cap B \subseteq A \cup (B \cap C)$.
- 10. Let *A*, *B*, and *C* be sets. Suppose $A \cup C \subseteq B \cup C$. Then $A \setminus C \subseteq B$.
- 11. Let $a \in \mathbb{R}$ and $a \neq 0$. For all integers $n \ge 0$, prove that

$$\sum_{i=0}^{n} a^{i} = \frac{1 - a^{n+1}}{1 - a}.$$

12. Let *a* and *b* be positive integers, with a > b. For all integers $n \ge 1$, prove that a - b divides $a^n - b^n$.