1. Does the Trichotomy law hold for sets? In other words, given two sets and, is it true that one of: $A \subset B, B \subset A$ or $A=B$ must be true? If yes, give a proof; if no, give a counterexample.
2. Let $A=\{1,2,3,4\}$.
(a) List all elements of $\mathcal{P}(A)$ the power set of A .
(b) List all elements of $A \times A$.
3. Suppose $A \subseteq B$. Is it true that $\mathcal{P}(A) \subseteq \mathcal{P}(B)$. If yes, prove it; if no, give a counterexample.
4. Using truth tables, prove the following De Morgan Law for sets: $\quad(A \cap B)^{c}=A^{c} \cup B^{c}$
5. Suppose A, B and C are sets and assume $A \neq \emptyset$. Prove that if $A \times B=A \times C$ then $B=C$. (Hint: try the contrapositive.)
6. Give a proof or a counterexample for each of the following statements.
(a) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x+y>0$
(b) $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, x+y>0$
(c) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x y>0$
(d) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x y \geq 0$

Prove each of the following propositions.

7. Let A and B be sets. Then $A \backslash(A \cap B)=A \backslash B$.
8. Let A, B and C be sets. Then $(A \backslash C) \cap(B \backslash C)=(A \cap B) \backslash C$.
9. Let A, B, and C be sets. Then $(A \cup C) \cap B \subseteq A \cup(B \cap C)$.
10. Let A, B, and C be sets. Suppose $A \cup C \subseteq B \cup C$. Then $A \backslash C \subseteq B$.
11. Let $a \in \mathbb{R}$ and $a \neq 0$. For all integers $n \geq 0$, prove that

$$
\sum_{i=0}^{n} a^{i}=\frac{1-a^{n+1}}{1-a}
$$

12. Let a and b be positive integers, with $a>b$. For all integers $n \geq 1$, prove that $a-b$ divides $a^{n}-b^{n}$.
