## 1. DeMorgan's laws and contrapositives

DeMorgan's laws codify the fact that the negation of a statement of the form "A and $B$ " is "not A or not B", and the negation of a statement of the form "A or B" is "not A and not B".
Use DeMorgan's laws to write useful contrapositives of the following sentences.
(a) If $x$ and $y$ are real numbers, then $x+y$ is a real number.
(b) If $x y$ is even, then $x$ is even or $y$ is even.
(c) If you earned at least $90 \%$ in my class, then you got an A.
(d) If it rains or snows, then I will go for a walk but I will not ride my bike.

## Prove each of the following theorems. Use a Theorem/Proof format for each one.

2. Let $x$ and $y$ be integers. Then $\quad 4 \mid x^{2}+y^{2} \quad$ if and only if $x$ and $y$ are both even.
3. Let $a, b$ and $c$ be integers, with $c \neq 0$. Then $a \mid b$ if and only if $c a \mid c b$.
4. Let $x$ and $y$ be real numbers.
(a) Give a counterexample to show that $x \leq y \Rightarrow x^{2} \leq y^{2}$ is not always true.
(b) Prove that for all positive real numbers $x \leq y \Rightarrow \sqrt{x} \leq \sqrt{y}$.
5. Prove that if $x$ is a rational number and $y$ is an irrational number, then their sum $x+y$ is an irrational number.
Recall and use the definitions:

- A real number $x$ is a rational number if $x=\frac{a}{b}$ for some integer numbers $a$ and $b$, where $b \neq 0$.
- $x$ is irrational if it is not a rational number.

6. Prove by contradiction that there does not exist a smallest positive real number.
7. Let $n$ be a positive integer. Use induction to prove that 3 divides $4^{n}+5$.
8. Let $n$ be an integer. Prove that if $n \geq 4$ then $n!>2^{n}$
9. Let $n$ be a positive integer. Prove that $\sum_{i=1}^{n} \frac{1}{i(i+1)}=\frac{n}{n+1}$.
