1. **Prove that if** \(A, B \) **and** \(C \) **are sets such that** \(C \subseteq A \) **and** \(C \subseteq B \), **then** \(C \subseteq A \cap B \)

2. **For all real numbers** \(x \) **and** \(y \), **prove that** \(|x + y| \leq |x| + |y|\).

 You may use the definition of \(|a|\), the addition, multiplication and transitivity laws for inequalities, and all basic arithmetic properties of real numbers.

3. **Consider the following ”proof”**

 THEOREM: For all sets \(A, B \) **and** \(C \), **if** \(C \subseteq A \cup B \) **and** \(B \cap C = \emptyset \), **then** \(C \subseteq A \).

 ”PROOF”: Let \(A = \{a,b,c,d,e\} \) **and** \(B = \{d,e,f,g\} \). **If** \(C \subseteq A \cup B \), **then** the elements of \(C \) **must be drawn from** **the list** \(a,b,c,d,e,f,g \). **But** \(B \cap C = \emptyset \) **so that** \(B \) **and** \(C \) **have no elements in common**. **Therefore**, the elements of \(C \) **must, in fact**, **be drawn** **from** **the list** \(a,b,c \). **Since each of these elements** **is also an element of** \(A \), **it follows** **that** \(C \subseteq A \).

 a) **What is wrong with this argument?**

 b) **Write a correct proof of this result.**

4. **Prove that**, for all non-negative integers \(n \), \(4^{2n+1} + 3^{n+2} \) **is divisible by** \(13 \).

5. **Show that** \(\sum_{i=0}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \).

6. **Consider the symbolic statement** \(\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, [(x \leq y) \Rightarrow x^2 \leq y^2] \).

 a) **Is the statement true or false?** **If true**, **prove it**. **If false**, **give a counterexample**.

 b) **Write the symbolic negation of the statement.**

7. **Draw up a truth table for the statement** \((p \Rightarrow r) \land (r \Rightarrow q)\).

8. **Let propositions** \(S, W, R \) **and** \(T \) **be defined as follows:**

 S: The sun shines.
 W: The wind blows.
 R: The rain falls.
 T: The temperature rises.

 (i) **Translate into English**: \(\neg(W \land R) \Leftrightarrow S \)

 (ii) **Translate into symbols**: ”The sun shines and the wind doesn’t blow, and the temperature rises only if the rain falls.”

 (iii) **Suppose all of** \(S, W, R, T \) **are true**. (**Yes, it’s a weird day:)**) **Decide which are true**: a) \((S \Rightarrow W) \land (\neg R \land T) \)
 b) \((S \lor \neg R) \Leftrightarrow (T \lor \neg W) \)
 c) \(\neg(R \lor \neg T) \land S \)

9. **Prove that** for any sets \(A \) **and** \(B \), \((A - B) \cap B = \emptyset \).
10. Does the set \(S = \{1 - 1/n \mid n \in \mathbb{Z}^+\} \) have a greatest element? Prove your answer.

11. Let \(f(x) = \sqrt{x + 7} \).

 a) Find its maximal domain \(X \) and list its codomain \(Y \) (in the real numbers).

 b) With the domain and codomain from part a), is \(f \) injective? surjective? Prove your claims.

 c) Write \(f \) as a composition of two functions \(g \) and \(h \), none of which is the identity. Don’t forget to specify the domain and the range of each.

 d) Let

\[
j(x) = \begin{cases}
 f(x), & \text{if } x \geq 2 \\
 x^2 + c, & \text{if } x < 2.
\end{cases}
\]

For what values of \(c \in \mathbb{R} \) is \(j(x) \) a well-defined function?

12. Let \(f : \mathbb{R} \rightarrow \mathbb{R} \) and \(g : \mathbb{R} \rightarrow \mathbb{R} \) be two functions and define \(f + g : \mathbb{R} \rightarrow \mathbb{R} \) by \((f + g)(x) = f(x) + g(x)\). If \(f \) and \(g \) are injective, is \(f + g \) injective? If \(f \) and \(g \) are surjective, is \(f + g \) surjective? If \(f \) is bijective, is \(2f = f + f \) bijective? Prove your claims, or give counterexamples.

13. Define ”function”. Define ”contrapositive of a statement”. Give examples of each.