Math 300 : Review Problems for Midterm 1

- 1. Prove that if A, B and C are sets such that $C \subseteq A$ and $C \subseteq B$, then $C \subseteq A \cap B$
- 2. For all real numbers x and y, prove that $|x+y| \le |x| + |y|$.

You may use the definition of |a|, the addition, multiplication and transitivity laws for inequalities, and all basic arithmetic properties of real numbers.

3. Consider the following "proof"

THEOREM: For all sets A, B and C, if $C \subseteq A \cup B$ and $B \cap C = \emptyset$, then $C \subseteq A$. "**PROOF**": Let $A = \{a, b, c, d, e\}$ and $B = \{d, e, f, g\}$. If $C \subseteq A \cup B$, then the elements of C must be drawn from the list a, b, c, d, e, f, g. But $B \cap C = \emptyset$ so that B and C have no elements in common. Therefore, the elements of C must, in fact, be drawn from the list a, b, c. Since each of these elements is also an element of A, it follows that $C \subseteq A$.

- a) What is wrong with this argument?
- b) Write a correct proof of this result.
- 4. Prove that, for all non-negative integers n, $4^{2n+1} + 3^{n+2}$ is divisible by 13.
- 5. Show that $\sum_{i=0}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$.
- 6. Consider the sybolic statement $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, [(x \leq y) \Rightarrow x^2 \leq y^2]$.

a) Is the statement true or false? If true, prove it. If false, give a counterexample.

b) Write the symbolic negation of the statement.

7. Draw up a truth table for the statement $(p \Rightarrow r) \land (r \Rightarrow q)$.

8. Let propositions S, W, R and T be defined as follows:

S: The sun shines.

W: The wind blows.

R: The rain falls.

T: The temperature rises.

(i) Translate into English: $\neg(W \land R) \Leftrightarrow S$

(ii) Translate into symbols: "The sun shines and the wind doesn't blow, and the temperature rises only if the rain falls."

(iii) Suppose all of S, W, R, T are true. (Yes, it's a weird day:)) Decide which are true: a) $(S \Rightarrow W) \land (\neg R \land T)$ b) $(S \lor \neg R) \Leftrightarrow (T \lor \neg W)$ c) $\neg (R \lor \neg T) \land S$

9. Prove that for any sets A and B, $(A - B) \cap B = \emptyset$.

- 10. Does the set $S = \{1 1/n \mid n \in \mathbb{Z}^+\}$ have a greatest element? Prove your answer.
- 11. Let $f(x) = \sqrt{x+7}$.

a) Find its maximal domain X and list its codomain Y (in the real numbers).

b) With the domain and codomain from part a), is f injective? surjective? Prove your claims.

c) Write f as a composition of two functions g and h, none of which is the identity. Don't forget to specify the domain and the range of each.

d) Let

$$j(x) = \begin{cases} f(x), & \text{if } x \ge 2\\ x^2 + c, & \text{if } x \le 2. \end{cases}$$

For what values of $c \in \mathbb{R}$ is j(x) a well-defined function?

- 12. Let $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ be two functions and define $f + g : \mathbb{R} \to \mathbb{R}$ by (f+g)(x) = f(x) + g(x). If f and g are injective, is f + g injective? If f and g are surjective, is f + g surjective? If f is bijective, is 2f = f + f bijective? Prove your claims, or give counterexamples.
- 13. Define "function". Define "contrapositive of a statement". Give examples of each.