Math 126E First Midterm Solutions Autumn 2014

(8 points) Find the angle between a diagonal of a cube and one of
its edges. Give your answer rounded to the nearest degree.

We may assume the length of a side of the cube is 1.

Then the diagonal is given by the vector v = (1,1,1).
The 3 sides are given by the vectorsi= (1,0,0), j = (0,1,0) and k = (0,0,1). Each gives the
same angle.
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(10 points)  Let r(t) = 3t*i + 5t%j. Compute all the points on the curve where the tangent
line passes through the point (12,0).

The curve has parametric equations x = 3t3, y = 5t2.

The tangent line is given by an equation of the form y — b = m(x — a) where (a,b) is a point
on the curve.
Thus a = 3t> and b = 5t2.
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The tangent line passes through the point (12,0) means x = 12 and y = 0.

Putting it all together gives
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t = —2

There is only one point and it has coordinates (—24,20).
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(10 points) Compute symmetric equations for the line of intersection of the planes
2c+y—2=2 and x—y—2z=1. Where does this line intersect the plane z—2z=17

We need a point on the line and the direction vector.

To get the point, add the 2 equations together to get 3x — 3z = 3.
Take z = 0 to get x = 1. Plug these values into 2x +y — z = 2 to get y = 0.
Thus the point (1,0,0) is on both planes.

The direction vector is the cross product of the 2 plane normals.
(2,1,-1) x (1,-1,—-2) = (-3,3,-3)

We can use (1,—1,1)

The parametric equations are x =t+1,y=—t and z =1

The symmetric equations are x — 1= —y =z

To intersect the line with the plane x — z = 1, substitute the parametric equations into the
plane equation.

r—z = 1
(t+1)—t =1
1 =1

This equation is true for all values of t. Thus the line lies in the plane x — z = 1.
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(12 points)  Let r(t) = <cos (mt), tsin(7t), t3>.

(a) Give parametric equations for the tangent line to this curve at the point (1,0, —8).

We have the point, so we only need the direction vector. Note that r(—2) = (1,0, —8)

r'(t) = (—msin(nt), sin(wt) + 7t cos(mt), 3t2)
r'(—2) = (0, —2m, 12)
The parametric equations are x =1, y = —2nt and z = 12t — 8

(b) Compute the curvature at the given point.

/ _2 ! _2
We use the equation Kk = Ir'( |r,)(i2r)|§ )

We have r'(=2) = 2(0, —m,6) from part (a).

(t) =
"(=2)
r'(=2) x " (-2) = —27%(0,6, 7)
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(—m% cos(mt), w cos(mt) + 7 cos(mwt) — w2t sin(7t), 6t)
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(10 points) Consider the polar curve r = e? where 0 < # < 27. Find all points on the
curve where the tangent line has slope 3. Give your answer in xy coordinates.

First give x and y as paramteric functions of 6.

e?? cos @

= e*sind
Compute dy/dz and set it equal to 3.

de/df = 2e¢* cosh —e*sinf
dy/df = 2e*’sinf+ e* cosh
2sinf + cosf
dy/de = ——— =
y/d 2cosf —sind

Solve for 6.

2sinf + cosf = 6Gcosh — 3sinb
5sinff = bHcosf
tan 6 1
0 = w/4, br/4

Use the parametric equations to calculate the points.

67r/2 67r/2 657r/2 657r/2
——= | and | ———, ——=
V2 V2 V2T 2
Or approximately
(3.4,3.4) and (—1821.5, —1821.5)



