1. Determine if the following limits exist. If they exist, compute them. Justify your answers.
(a) (4 points) $\lim _{x \rightarrow 2} \frac{x^{2}-4}{2 x^{2}-3 x-2}$

This is a $\frac{0}{0}$ limit. We remove the singularity.

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x^{2}-4}{2 x^{2}-3 x-2} & =\lim _{x \rightarrow 2} \frac{(x-2)(x+2)}{(2 x+1)(x-2)} \\
& =\lim _{x \rightarrow 2} \frac{x+2}{2 x+1} \\
& =\frac{4}{5}
\end{aligned}
$$

(b) (4 points) $\lim _{t \rightarrow 0}\left(\frac{5}{3 t^{2}+5 t}-\frac{1}{t}\right)$

Combine over a common denominator.

$$
\begin{aligned}
\lim _{t \rightarrow 0}\left(\frac{5}{3 t^{2}+5 t}-\frac{1}{t}\right) & =\lim _{t \rightarrow 0}\left(\frac{5}{3 t^{2}+5 t}-\frac{1}{t} \cdot \frac{3 t+5}{3 t+5}\right) \\
& =\lim _{t \rightarrow 0} \frac{-3 t}{3 t^{2}+5 t} \\
& =\lim _{t \rightarrow 0} \frac{-3}{3 t+5} \\
& =-\frac{3}{5}
\end{aligned}
$$

(c) (4 points) $\lim _{x \rightarrow 2} \frac{\sqrt{3 x-2}}{2 x^{2}-7 x+6}$

This is a $\frac{2}{0}$ limit. It is an infinite limit and we must use one-sided limits.
Factor the denominator to get $2 x^{2}-7 x+6=(x-2)(2 x-3)$. Conclude that $2 x^{2}-7 x+6$ is positive when $x>2$ and negative when $\frac{3}{2}<x<2$.
Near $x=2$ the numerator is near 2 and hence is positive.
Thus $\lim _{x \rightarrow 2^{+}} \frac{\sqrt{3 x-2}}{2 x^{2}-7 x+6}=\infty$ because the top is positive and the bottom is positive.
Also $\lim _{x \rightarrow 2^{-}} \frac{\sqrt{3 x-2}}{2 x^{2}-7 x+6}=-\infty$ because the top is positive and the bottom is negative.
We conclude $\lim _{x \rightarrow 2} \frac{\sqrt{3 x-2}}{2 x^{2}-7 x+6}$ does not exist.
2. (7 points) Use the limit definition of the derivative on this problem. Find the slope of the tangent line to the curve $y=\sqrt{5 x+1}$ at the point $(3,4)$.

Compute the derivative at $x=3$.

$$
\begin{aligned}
\lim _{x \rightarrow 3} \frac{\sqrt{5 x+1}-\sqrt{5 \cdot 3+1}}{x-3} & =\lim _{x \rightarrow 3} \frac{\sqrt{5 x+1}-4}{x-3} \cdot \frac{\sqrt{5 x+1}+4}{\sqrt{5 x+1}+4} \\
& =\lim _{x \rightarrow 3} \frac{5 x+1-16}{(x-3)(\sqrt{5 x+1}+4)} \\
& =\lim _{x \rightarrow 3} \frac{5}{\sqrt{5 x+1}+4} \\
& =\frac{5}{8}
\end{aligned}
$$

The slope of the tangent line is $\quad m_{\mathrm{tan}}=\frac{5}{8}$.
3. (7 points) Calculate the equation of the tangent line to $\quad f(t)=7 t^{2} \cdot \sin (t)$ at $t=\pi$.

The tangent line is $\quad y-b=m(t-a) \quad$ where $a=\pi, b=f(\pi)=0$ and $m=f^{\prime}(\pi)$.
$f^{\prime}(t)=14 t \cdot \sin (t)+7 t^{2} \cdot \cos (t)$
$f^{\prime}(0)=-7 \pi^{2}$
The equation of the tangent line is $\quad y=-7 \pi^{2}(t-\pi)$
4. (8 points) Let c be a constant. Define $F(x)$ by the piecewise formula

$$
F(x)= \begin{cases}c x^{2}-3 x & \text { if } x \leq-1 \\ c x+11 & \text { if } x>-1\end{cases}
$$

Find a value of c that makes F continuous on $(-\infty, \infty)$. Justify your answer. (Your justification should involve limits).

For any value $c, F(x)$ is quadratic if $x<-1$ and linear if $x>1$. Thus the only value where is might not be continuous is $x=-1$.

We must find c so that $\lim _{x \rightarrow-1} F(x)=F(-1)$. Note that $F(-1)=c+3$.
For the limit to exist, we must have $\lim _{x \rightarrow-1^{-}} F(x)=\lim _{x \rightarrow-1^{+}} F(x)$.

$$
\begin{aligned}
\lim _{x \rightarrow-1^{-}} F(x) & =\lim _{x \rightarrow-1^{-}} c x^{2}-3 x \\
& =c+3 \\
\lim _{x \rightarrow-1^{+}} F(x) & =\lim _{x \rightarrow-1^{+}} c x+11 \\
& =11-c
\end{aligned}
$$

Thus we must have $c+3=11-c$, or $c=4$.
This makes F continuous everywhere because $\lim _{x \rightarrow-1^{-}} F(x)=F(-1)$.
5. (8 points) Find two different points on the curve $y=x^{3}$ at which the tangent line passes through the point $(-2,0)$.

Let (a, b) be a point on the curve with the given property.
The tangent line looks like $\quad y-b=m(x-a)$. We have $b=a^{3}$ and $x=-2, y=0$.
$m=\left.\frac{d y}{d x}\right|_{x=a}=3 a^{2}$

$$
\begin{aligned}
0-a^{3} & =3 a^{2}(-2-a) \\
2 a^{3}+6 a^{2} & =0 \\
2 a^{2}(a+3) & =0 \\
a & =-3,0
\end{aligned}
$$

The two points are $(0,0)$ and $(-3,-27)$.
6. (8 points) Find the equations of all tangent lines to the curve $y=\frac{5 x-4}{2 x-3}$ that are parallel to the line $7 x+9 y=2$.

First compute $\frac{d y}{d x}=-\frac{7}{(2 x-3)^{2}}$
The slope of $7 x+9 y=2$ is $m=-\frac{7}{9}$.
Solve $-\frac{7}{(2 x-3)^{2}}=-\frac{7}{9}$ to get $x=0,3$.
The points on the curve are $(0,4 / 3)$ and $(3,11 / 3)$.
The lines are $y-\frac{4}{3}=-\frac{7}{9} x$ and $y-\frac{11}{3}=-\frac{7}{9}(x-3)$.

