Cohomology operations and the Steenrod algebra

John H. Palmieri

Department of Mathematics
University of Washington

WCATSS, 27 August 2011
Cohomology operations

cohomology operations = NatTransf($H^n(_, G), H^m(_, G')$).
If X is a CW complex, then

$$H^n(X; G) \cong [X, K(G, n)].$$

So by Yoneda’s lemma, there is a bijection

$$\text{NatTransf}(H^n(_, G), H^m(_, G'))
\leftrightarrow [K(G, n), K(G', m)]
\cong H^m(K(G, n); G').$$

Thus elements of $H^m(K(G, n); G')$ give cohomology operations.
Serre, Borel, Cartan, et al. computed the groups $\tilde{H}^m(K(G, n); G')$ for G, G' finite abelian.

First, note that they’re zero when $m < n$ (by the Hurewicz theorem).

Now focus on case $G = \mathbb{Z}/p\mathbb{Z} = G'$, with p a prime.

The groups stabilize: for all q, n, there is a map

$$H^{q+n}(K(\mathbb{Z}/p\mathbb{Z}, n); \mathbb{Z}/p\mathbb{Z}) \rightarrow H^{q+n-1}(K(\mathbb{Z}/p\mathbb{Z}, n-1); \mathbb{Z}/p\mathbb{Z}),$$

It’s an isomorphism when $q < n - 1$.

Iterate this. The inverse limit is the collection of mod p stable cohomology operations of degree q. Assemble together for all q: you get the mod p Steenrod algebra, which is an \mathbb{F}_p-algebra under composition.
The mod 2 Steenrod algebra A

- For any space (or spectrum) X, $H^*(X; F_2)$ is a module over A.
- A is generated as an algebra by elements Sq^q (pronounced “square q”), with $Sq^q : H^n(__) \to H^{n+q}(__)$.
- If X is a space:
 - $Sq^q : H^q X \to H^{2q} X$ is the cup-squaring map.
 - $Sq^q : H^i X \to H^{i+q} X$ is zero if $i < q$.
- A is associative, non-commutative. (Example: $Sq^1 Sq^2 \neq Sq^2 Sq^1$. On the polynomial generator x of $H^*(\mathbb{R}P^\infty)$, $Sq^2 Sq^1(x) = x^4$ while $Sq^1 Sq^2(x) = 0$.)
Applications

- Two spaces can have the same cohomology rings but different module structures over the Steenrod algebra, in which case they can’t be homotopy equivalent. (Example: \(\Sigma \mathbb{C}P^2 \) and \(S^3 \vee S^5 \).)

- The Hopf invariant one problem: a nice multiplication on \(\mathbb{R}^n \) \(\rightsquigarrow \) a CW complex with mod 2 cohomology

\[
\begin{array}{ccc}
\bullet & x & x^2 \\
1 & \text{dim } n
\end{array}
\]

Hence \(\text{Sq}^n(x) \neq 0 \) while \(\text{Sq}^i(x) = 0 \) for \(0 < i < n \). Thus \(\text{Sq}^n \) must be indecomposable in the mod 2 Steenrod algebra. This implies that \(n \) is a power of 2. (Adams refined this approach to solve the problem completely: \(n = 1, 2, 4, 8 \).)

- See Mosher-Tangora for more details and examples.
The Adams spectral sequence

Fix a prime p and let A be the mod p Steenrod algebra. For spaces or spectra X and Y, there is a spectral sequence, the Adams spectral sequence, with

$$E_2 \cong \text{Ext}_A^*(H^*Y, H^*X) \Rightarrow [X, Y].$$

It “converges” if X and Y are nice enough.
Other topics:

- A is a graded Hopf algebra.
- Milnor’s theorem: the graded vector space dual A_\ast of A has a very nice structure. At the prime 2: as algebras, $A_\ast \cong F_2[\xi_1, \xi_2, \xi_3, \ldots]$, and there is a simple formula for the comultiplication on each ξ_n.
- You can do computations in A using Sage.
- For generalized homology theories, it is often better to work with homology rather than cohomology: if E is a spectrum representing a homology theory, then $E_* E$ is often better behaved than $E^* E$.
- For spectra X and Y, the Adams spectral sequence looks like

$$E_2 \cong \text{Ext}^*_E(E_* X, E_* Y),$$

abutting to $[X, Y]$.
Fix a prime p and let A be the mod p Steenrod algebra. Mod p cohomology defines a functor

$$\text{Spectra}^{\text{op}} \to A\text{-Mod}.$$

Make a new category, $A\tilde{\text{Mod}}$: same objects as $A\text{-Mod}$, but the morphisms from M to N are $\text{Ext}_A^*(M, N)$. Then we have functors

$$\text{Spectra}^{\text{op}} \to A\text{-Mod} \to A\tilde{\text{Mod}}$$

as well as a connection, via the Adams SS,

$$A\tilde{\text{Mod}} \leadsto \text{Spectra}^{\text{op}}.$$

So via cohomology and the Adams SS, the category $A\tilde{\text{Mod}}$ is an approximation to the category of spectra.
Furthermore, $\widetilde{A-\text{Mod}}$ (actually a “fattened up” version of this category) has many formal similarities to Spectra: it satisfies the axioms for a stable homotopy category.

Some details:

- $A_* = \text{graded dual of the mod } p \text{ Steenrod algebra}$.
- $\text{Ch}(A_*) = \text{category with objects cochain complexes of } A_*\text{-comodules, morphisms cochain maps}$. Then $\text{Ch}(A_*)$ has a (cofibrantly generated) model category structure.
- Cofibrations: degree-wise monomorphisms. Fibrations: degree-wise epimorphisms with degree-wise injective kernel. Weak equivalences: maps $f : X \to Y$ which induce an isomorphism

$$[\Sigma^i F_p, J \otimes X] \to [\Sigma^i F_p, J \otimes Y],$$

where J is an injective resolution of the trivial module F_p.
The associated homotopy category is a stable homotopy category. Call it Stable(A_\ast).

Alternative construction

Stable(A_\ast) is the category with objects cochain complexes of injective A_\ast-comodules, morphisms cochain homotopy classes of maps.

- Smash product: $- \otimes_{F_p} -$
- Sphere object: injective resolution of F_p
There is a functor, in fact the inclusion of a full subcategory,

\[A_\ast\text{-Comod} \to A\text{-Mod}. \]

If \(M \) and \(N \) are \(A_\ast \)-comodules, then

\[\text{Hom}_{\text{Stable}(A_\ast)}(\Sigma^i M, N) \cong \text{Ext}_{A}^{i}(M, N). \]

So cohomology gives us a functor

\[\text{Spectra} \to \text{Stable}(A_\ast) \]

and the Adams spectral gives a loose connection

\[\text{Stable}(A_\ast) \rightsquigarrow \text{Spectra}. \]

Furthermore, \(\text{Stable}(A_\ast) \) is a stable homotopy category.
Theorem (Nishida’s theorem)

If \(n > 0 \), then every \(\alpha \in \pi_n(S^0) \) is nilpotent.

Analogue for the Steenrod algebra – things are more complicated:

Theorem

Let \(p = 2 \). There is a ring \(R \) and a ring map \(\Ext^*_A(F_2, F_2) \to R \) which is an isomorphism mod nilpotence.

The ring \(R \) can be described explicitly.

(This is also analogous to the Quillen stratification theorem for group cohomology.)
Idea of proof.

- Stable(A_*) is a stable homotopy category and F_2 is the sphere object. So $\text{Ext}^*_A(F_2, F_2)$ is the “homotopy groups of spheres”.
- So there are Adams SS converging to $\text{Ext}^*_A(F_2, F_2)$.
- That is:
 \[? \implies \text{Ext}^*_A(F_2, F_2) \implies \pi_*(S^0) \]
- In particular: any Lyndon-Hochschild-Serre spectral sequence can be viewed as an Adams spectral sequence.
- For a certain normal sub-Hopf algebra $D \leq A$:
 \[\text{Ext}^*_A(F_2, F_2) \to R \text{ is (essentially) an edge homomorphism.} \]
- Use properties of Adams spectral sequences, plus some computations, to show that, mod nilpotence, R detects everything in $\text{Ext}^*_A(F_2, F_2)$.

Lemma

Vanishing lines in Adams spectral sequences are generic.

That is: For fixed ring spectrum E and fixed slope m, the collection of all objects X for which, at some term of the Adams spectral sequence

$$\text{Ext}_{E^*E}(E^*, E_*X) \Rightarrow \pi_*X,$$

there is a vanishing line of slope m, is a thick subcategory.

To prove the theorem, show that for each $m > 0$, there is a vanishing line of slope m at some term of the spectral sequence

$$\text{Ext}_{A//D}^*(F_2, \text{Ext}_D^*(F_2, F_2)) \Rightarrow \text{Ext}_A^*(F_2, F_2).$$

This implies that everything not on the bottom edge is nilpotent...
This Steenrod analogue of Nishida’s theorem can be modified to give a nilpotence theorem (à la DHS).

Question

What about a thick subcategory theorem?

Question

What about the Bousfield lattice?

Question

What about a periodicity theorem and other chromatic structure?
Other ideas:

- Study Bousfield localization in $\text{Stable}(A_*)$.
- Investigate the telescope conjecture.
- Investigate the odd primary case.
- Investigate analogous categories coming from BP_*BP or other Hopf algebroids.
References

