1 Δ -complexes

Definition 1.1. Let Δ^n be the *standard n-simplex*, consisting of the points $(x_0, x_1, \ldots, x_n) \in \mathbf{R}^{n+1}$ satisfying $\sum x_i = 1, 0 \leq x_i \leq 1$ for all *i*. There are *coface maps* $d^i : \Delta^{n-1} \to \Delta^n, 0 \leq i \leq n$, defined by

$$d^{i}(x_{0}, x_{1}, \dots, x_{n-1}) = (x_{0}, \dots, x_{i-1}, 0, x_{i}, \dots, x_{n-1}).$$

Note that the coface maps satisfy identities:

$$d^j d^i = d^i d^{j-1}$$
 for all $i < j$.

Definition 1.2. An abstract Δ -complex X consists of a collection of sets X_n , $n \geq 0$, together with functions $d_i : X_n \to X_{n-1}, 0 \leq i \leq n$, satisfying the simplicial identity

$$d_i d_j = d_{j-1} d_i$$
 for all $i < j$.

The elements of X_n are called *n*-simplices. The maps d_i are called *face maps*.

Given an abstract Δ -complex X, its geometric realization is the following topological space |X|:

$$|X| = \prod_{n} X_n \times |\Delta^n| / \sim = \prod_{n, x \in X_n} (\Delta^n, x) / \sim,$$

where $(z, d_i x) \sim (d^i z, x)$ for $x \in X_n, z \in \Delta^{n-1}$. In the right-hand disjoint union, you should interpret " (Δ^n, x) " as being the copy of Δ^n labeled by $x \in X_n$.