[This document was originally written by Jerry Folland, and then modified by John Palmieri.]
Suppose that $f(x)$ has $n+1$ continuous derivatives, and let $P_{n}(x)$ be the nth Taylor polynomial of x about $a=0$. The estimate for the remainder $R_{n+1}(x)=f(x)-P_{n}(x)$ on p. 605 of Salas-Hille-Etgen (12.6.3) can be restated as follows:

If $\left|f^{(n+1)}(x)\right| \leq C$ for all x in some interval J containing 0 , then $\left|R_{n}(x)\right| \leq \frac{C|x|^{n+1}}{(n+1)!}$ for all $x \in J$.

Definition 1 ("Big O" notation). If $g(x)$ is a function defined near $x=0$, and if there is a constant C such that $|g(x)| \leq C|x|^{k}$ for x near 0 , then we say that $g(x)$ is $O\left(x^{k}\right)$ (as $x \rightarrow 0$).

With this notation, we have $R_{n}(x)=O\left(x^{n+1}\right)$, or

$$
\begin{equation*}
f(x)=P_{n}(x)+O\left(x^{n+1}\right) \quad \text { as } x \rightarrow 0 . \tag{2}
\end{equation*}
$$

Moreover, $P_{n}(x)$ is the only polynomial of degree at most n with this property.
Proposition 3. Suppose that $f(x)$ has $n+1$ continuous derivatives, and suppose that $Q_{n}(x)$ is a polynomial of degree at most n such that $f(x)=Q_{n}(x)+O\left(x^{n+1}\right)$ as $x \rightarrow 0$. Then $Q_{n}(x)=P_{n}(x)$.

Proof. Subtract the equation in the statement from $f(x)=P_{n}(x)+O\left(x^{n+1}\right)$ to get $P_{n}(x)-Q_{n}(x)=$ $O\left(x^{n+1}\right)$. Let $P_{n}(x)=\sum_{k=0}^{n} a_{n} x^{n}$ and $Q_{n}(x)=\sum_{k=0}^{n} b_{n} x^{n}$; then we have

$$
\begin{equation*}
\left(a_{0}-b_{0}\right)+\left(a_{1}-b_{1}\right) x+\cdots+\left(a_{n}-b_{n}\right) x^{n}=O\left(x^{n+1}\right) . \tag{4}
\end{equation*}
$$

Plugging in $x=0$ gives $a_{0}-b_{0}=0$, so $a_{0}=b_{0}$. So cancel those terms from (4) and divide by x :

$$
\left(a_{1}-b_{1}\right)+\left(a_{2}-b_{2}\right) x+\cdots+\left(a_{n}-b_{n}\right) x^{n-1}=O\left(x^{n}\right) .
$$

Set $x=0$ again to get $a_{1}=b_{1}$. Continue inductively to find that $a_{k}=b_{k}$ for all k, which means that $P_{n}(x)=Q_{n}(x)$.

Proposition 3 is useful for calculating Taylor polynomials: if we can use any method at all to find a polynomial $Q_{n}(x)$ of degree at most n so that $f(x)=Q_{n}(x)+O\left(x^{n+1}\right)$, then $Q_{n}(x)$ must equal $P_{n}(x)$. Here are two applications.

Taylor polynomials and l'Hôpital's rule.

Suppose that f, g, and their first $k-1$ derivatives vanish at $x=0$, but $g^{(k)}(0)$ does not vanish. The Taylor expansions of f and g then look like

$$
f(x)=\frac{f^{(k)}(0)}{k!} x^{k}+O\left(x^{k+1}\right), \quad g(x)=\frac{g^{(k)}(0)}{k!} x^{k}+O\left(x^{k+1}\right) .
$$

Taking the quotient and canceling out x^{k} / k ! gives

$$
\frac{f(x)}{g(x)}=\frac{f^{(k)}(0)+O(x)}{g^{(k)}(0)+O(x)} \rightarrow \frac{f^{(k)(0)}}{g^{(k)}(0)} \quad \text { as } x \rightarrow 0 .
$$

This is just what l'Hôpital's rule says, but we can sometimes use the earlier observation to compute the answer without computing all of the derivatives.

Example 5. What is

$$
\lim _{x \rightarrow 0} \frac{x^{2}-\sin ^{2} x}{x^{2} \sin ^{2} x} ?
$$

Since

$$
\sin ^{2} x=\left(x-\frac{x^{3}}{6}+O\left(x^{5}\right)\right)^{2}=x^{2}-\frac{x^{4}}{3}+O\left(x^{6}\right)
$$

we get $x^{2} \sin ^{2} x=x^{4}+O\left(x^{6}\right)$ and

$$
\frac{x^{2}-\sin ^{2} x}{x^{2} \sin ^{2} x}=\frac{\frac{1}{3} x^{4}+O\left(x^{6}\right)}{x^{4}+O\left(x^{6}\right)}=\frac{\frac{1}{3}+O\left(x^{2}\right)}{1+O\left(x^{2}\right)} \rightarrow \frac{1}{3} .
$$

Example 6. What is

$$
\lim _{x \rightarrow 1}\left(\frac{1}{\log x}+\frac{x}{x-1}\right) ?
$$

Since the limit is as $x \rightarrow 1$, we need to expand Taylor series about 1. First of all,

$$
\frac{1}{\log x}+\frac{x}{x-1}=\frac{x-1-x \log x}{(x-1) \log x}=\frac{(x-1)-(x-1) \log x-\log x}{(x-1) \log x} .
$$

Next, if we expand $\log x$ about $a=1$, we get $\log x=(x-1)+\frac{1}{2}(x-1)^{2}+O\left((x-1)^{3}\right)$, and plugging this in yields

$$
\frac{(x-1)-(x-1)^{2}-\left[(x-1)-\frac{1}{2}(x-1)^{2}\right]+O\left((x-1)^{3}\right)}{(x-1)^{2}+O\left((x-1)^{3}\right)}=\frac{-\frac{1}{2}+O(x-1)}{1+O(x-1)} \rightarrow-\frac{1}{2} .
$$

Higher derivative tests for critical points.

Recall that if $f^{\prime}(a)=0$, then $f(x)$ has a local maximum at $x=a$ if $f^{\prime \prime}(a)<0$, and similarly it has a local minimum if $f^{\prime \prime}(a)>0$. What happens if $f^{\prime \prime}(a)=0$? Then the behavior of f near a is controlled by the first nonvanishing derivative at a.

Proposition 7. Suppose that $f(x)$ has k continuous derivatives near a, with $f^{\prime}(a)=f^{\prime \prime}(a)=\cdots=$ $f^{(k-1)}(a)=0$, but $f^{(k)}(a) \neq 0$. If k is even, then f has a local max if $f^{(k)}(a)<0$, while it has a local min if $f^{(k)}(a)>0$. If k is odd, it has neither a local max nor a local min.

Proof. The degree $k-1$ Taylor polynomial for $f(x)$ about $x=a$ is simply the constant $f(a)$ all the other terms are zero. So Taylor's formula of order $k-1$ with remainder becomes

$$
f(x)=f(a)+\frac{f^{(k)}(c)}{k!}(x-a)^{k} \quad \text { for some } c \text { between } x \text { and } a .
$$

If x is close to a, then so is c, so $f^{(k)}(c)$ is close to $f^{(k)}(a)$, by continuity of f^{k}. In particular, it is nonzero, with the same sign as $f^{(k)}(a)$. Furthermore, $(x-a)^{k}$ is always non-negative if k is even, but it changes sign at $x=a$ if k is odd. Thus if k is even, $f(x)-f(a)$ always has the same sign - the sign of $f^{(k)}(a)$ - when x is near a. For example, if k is even and $f^{(k)}(a)$ is negative, then $f(x)-f(a)<0$ for all x near a : that is, $f(x)<f(a)$ for all x near a, which means that $f(a)$ is a local maximum. On the other hand, if k is odd, then $f(x)-f(a)$ changes sign at $x=a$, so $f(a)$ is neither a max nor a min.

