
Math 135A, Winter 2012 Notes on Taylor polynomials

[This document was originally written by Jerry Folland, and then modified by John Palmieri.]

Suppose that f(x) has n+1 continuous derivatives, and let Pn(x) be the nth Taylor polynomial of x
about a = 0. The estimate for the remainder Rn+1(x) = f(x)−Pn(x) on p. 605 of Salas-Hille-Etgen
(12.6.3) can be restated as follows:

If
∣∣f (n+1)(x)

∣∣ ≤ C for all x in some interval J containing 0, then |Rn(x)| ≤ C|x|n+1

(n + 1)!
for

all x ∈ J .

Definition 1 (“Big O” notation). If g(x) is a function defined near x = 0, and if there is a constant
C such that |g(x)| ≤ C|x|k for x near 0, then we say that g(x) is O(xk) (as x→ 0).

With this notation, we have Rn(x) = O(xn+1), or

f(x) = Pn(x) + O(xn+1) as x→ 0. (2)

Moreover, Pn(x) is the only polynomial of degree at most n with this property.

Proposition 3. Suppose that f(x) has n + 1 continuous derivatives, and suppose that Qn(x) is a
polynomial of degree at most n such that f(x) = Qn(x) +O(xn+1) as x→ 0. Then Qn(x) = Pn(x).

Proof. Subtract the equation in the statement from f(x) = Pn(x)+O(xn+1) to get Pn(x)−Qn(x) =
O(xn+1). Let Pn(x) =

∑n
k=0 anx

n and Qn(x) =
∑n

k=0 bnx
n; then we have

(a0 − b0) + (a1 − b1)x + · · ·+ (an − bn)xn = O(xn+1). (4)

Plugging in x = 0 gives a0 − b0 = 0, so a0 = b0. So cancel those terms from (4) and divide by x:

(a1 − b1) + (a2 − b2)x + · · ·+ (an − bn)xn−1 = O(xn).

Set x = 0 again to get a1 = b1. Continue inductively to find that ak = bk for all k, which means
that Pn(x) = Qn(x).

Proposition 3 is useful for calculating Taylor polynomials: if we can use any method at all to find
a polynomial Qn(x) of degree at most n so that f(x) = Qn(x) + O(xn+1), then Qn(x) must equal
Pn(x). Here are two applications.

Taylor polynomials and l’Hôpital’s rule.

Suppose that f , g, and their first k − 1 derivatives vanish at x = 0, but g(k)(0) does not vanish.
The Taylor expansions of f and g then look like

f(x) =
f (k)(0)

k!
xk + O(xk+1), g(x) =

g(k)(0)

k!
xk + O(xk+1).
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Taking the quotient and canceling out xk/k! gives

f(x)

g(x)
=

f (k)(0) + O(x)

g(k)(0) + O(x)
→ f (k)(0)

g(k)(0)
as x→ 0.

This is just what l’Hôpital’s rule says, but we can sometimes use the earlier observation to compute
the answer without computing all of the derivatives.

Example 5. What is

lim
x→0

x2 − sin2 x

x2 sin2 x
?

Since

sin2 x =

(
x− x3

6
+ O(x5)

)2

= x2 − x4

3
+ O(x6),

we get x2 sin2 x = x4 + O(x6) and

x2 − sin2 x

x2 sin2 x
=

1
3x

4 + O(x6)

x4 + O(x6)
=

1
3 + O(x2)

1 + O(x2)
→ 1

3
.

Example 6. What is

lim
x→1

(
1

log x
+

x

x− 1

)
?

Since the limit is as x→ 1, we need to expand Taylor series about 1. First of all,

1

log x
+

x

x− 1
=

x− 1− x log x

(x− 1) log x
=

(x− 1)− (x− 1) log x− log x

(x− 1) log x
.

Next, if we expand log x about a = 1, we get log x = (x−1)+ 1
2(x−1)2 +O((x−1)3), and plugging

this in yields

(x− 1)− (x− 1)2 −
[
(x− 1)− 1

2(x− 1)2
]

+ O((x− 1)3)

(x− 1)2 + O((x− 1)3)
=
−1

2 + O(x− 1)

1 + O(x− 1)
→ −1

2
.

Higher derivative tests for critical points.

Recall that if f ′(a) = 0, then f(x) has a local maximum at x = a if f ′′(a) < 0, and similarly it
has a local minimum if f ′′(a) > 0. What happens if f ′′(a) = 0? Then the behavior of f near a is
controlled by the first nonvanishing derivative at a.

Proposition 7. Suppose that f(x) has k continuous derivatives near a, with f ′(a) = f ′′(a) = · · · =
f (k−1)(a) = 0, but f (k)(a) 6= 0. If k is even, then f has a local max if f (k)(a) < 0, while it has a
local min if f (k)(a) > 0. If k is odd, it has neither a local max nor a local min.
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Proof. The degree k − 1 Taylor polynomial for f(x) about x = a is simply the constant f(a) – all
the other terms are zero. So Taylor’s formula of order k − 1 with remainder becomes

f(x) = f(a) +
f (k)(c)

k!
(x− a)k for some c between x and a.

If x is close to a, then so is c, so f (k)(c) is close to f (k)(a), by continuity of fk. In particular, it is
nonzero, with the same sign as f (k)(a). Furthermore, (x− a)k is always non-negative if k is even,
but it changes sign at x = a if k is odd. Thus if k is even, f(x) − f(a) always has the same sign
– the sign of f (k)(a) – when x is near a. For example, if k is even and f (k)(a) is negative, then
f(x)− f(a) < 0 for all x near a: that is, f(x) < f(a) for all x near a, which means that f(a) is a
local maximum. On the other hand, if k is odd, then f(x)− f(a) changes sign at x = a, so f(a) is
neither a max nor a min.
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