Math 135: Homework 9

Due Thursday, March 8
(1) Let ℓ_{1} and ℓ_{2} be two skew (i.e. not parallel) line with parameterizations

$$
\ell_{j}: \quad \mathbf{r}(t)=\mathbf{r}_{j}+t \mathbf{d}_{j}, \quad j=1,2
$$

Show that the distance between the lines is given by the formula

$$
\mathrm{d}\left(\ell_{1}, \ell_{2}\right)=\frac{\left|\left(\mathbf{r}_{2}-\mathbf{r}_{1}\right) \cdot\left(\mathbf{d}_{1} \times \mathbf{d}_{2}\right)\right|}{\left\|\mathbf{d}_{1} \times \mathbf{d}_{2}\right\|}
$$

(2) A vector-valued function \mathbf{G} is called an antiderivative for \mathbf{f} on $[a, b]$ provided that \mathbf{G} is continuous on $[a, b]$ and $\mathbf{G}^{\prime}(t)=\mathbf{f}(t)$ for all $t \in(a, b)$.
(a) Show that if \mathbf{f} is continuous on $[a, b]$ and \mathbf{G} is an antiderivative for \mathbf{f} on $[a, b]$ then

$$
\int_{a}^{b} \mathbf{f}(t) d t=\mathbf{G}(b)-\mathbf{G}(a)
$$

(b) Show that if \mathbf{f} is continous on $[a, b]$ and \mathbf{F} and \mathbf{G} are antiderivatives for \mathbf{f} on $[a, b]$ then

$$
\mathbf{F}=\mathbf{G}+\mathbf{C}
$$

for some constant vector \mathbf{C}.
(3) Three objects move in space according to the equations

$$
\mathbf{r}=\mathbf{r}_{1}(t), \quad \mathbf{r}=\mathbf{r}_{2}(t), \quad \text { and } \mathbf{r}=\mathbf{r}_{3}(t)
$$

where t denotes time. Let $A(t)$ denote the area of the triangle formed by the three objects. Suppose that

$$
\begin{array}{lll}
\mathbf{r}_{1}(0)=\mathbf{i}+\mathbf{j}+\mathbf{k} & \mathbf{r}_{2}(0)=\mathbf{i}+\mathbf{j}-\mathbf{k} & \mathbf{r}_{3}(0)=\mathbf{k} \\
\mathbf{r}_{1}^{\prime}(0)=\mathbf{i} & \mathbf{r}_{2}^{\prime}(0)=\mathbf{j} & \mathbf{r}_{3}^{\prime}(0)=\mathbf{k}
\end{array}
$$

Compute $A^{\prime}(0)$.

