Math 135: Homework 6
 Due Thursday, February 9

1. Fix a real constant α. Show that $\sum_{k=0}^{\infty} \frac{\sin \alpha k}{2^{k}}$ converges. Evaluate the sum exactly (in terms of α) by using the fact that $\sin \alpha k=\operatorname{Im}\left(e^{i \alpha k}\right)$. Hints: You may assume that all of the series we've been discussing work equally well with complex numbers as with real numbers. Also, note that for any real numbers a and b, we have $\frac{1}{a+i b}=\frac{a}{a^{2}+b^{2}}-i \frac{b}{a^{2}+b^{2}}$.
2. Fix an interval $I=(a, b)$. Let $y_{1}(x)$ and $y_{2}(x)$ be solutions of $y^{\prime \prime}+$ $p(x) y^{\prime}+q(x) y=0$ on I, where $p(x), q(x)$ are continuous functions on I. Show that if there is a point in I where both y_{1} and y_{2} vanish or where both have maxima or minima, then one of y_{1} and y_{2} is a multiple of the other. [Hint: use existence and uniqueness of solutions, Theorem 19.2.]
3. In the following, you are given a differential equation and one solution of it. Use reduction of order to find the general solution. We will discuss this method in class on Monday or Tuesday: try a solution of the form $y_{2}(x)=u(x) y_{1}(x)$ and solve for the unknown function $u(x)$. When you plug $y_{2}(x)$ into the differential equation, the u terms will cancel, leaving an equation of the form $f(x) u^{\prime \prime}+g(x) u^{\prime}=0$. This is a first order linear equation (and also separable) in the function u^{\prime}, so solve for u^{\prime}. Integrate to get u, and then you can get the second solution $y_{2}=u y_{1}$.
(This technique is also discussed in the book: in the constant coefficient case, see Lesson 20C, and with nonconstant coefficients but using slightly different notation, see Lesson 23B.)
(a) $x^{2} y^{\prime \prime}-x(x+2) y^{\prime}+(x+2) y=0, y_{1}(x)=x$.
(b) $x y^{\prime \prime}-(x+2) y^{\prime}+2 y=0, y_{1}(x)=e^{x}$.
