Math 135: Homework 2
Due Thursday, January 12
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(1) Let {an} be the sequence defined inductively by a1 =1, ay+1 = praeT
an

(a) Show that {a,} is a Cauchy sequence.

(b) Show that {a,} converges to a solution of the equation x°+16x—1 =
0.
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(¢) Show that if {b,} is the sequence defined by by =2, b, 1 =

then {b,} is convergent and lim b, = lim a,.
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Hint: Consider the function f: R — R defined by f(x) = 1/(2* + 16).
(2) Show that the equation
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has one and only one solution.

(3) Recall that (by definition) li_>m f(z) = L if and only if for every real
xT (o)

number € > 0 there is a real number zg such that |f(z) — L| < € for all
X > Xg.

Prove the following:

lim f(z) = L if and only if lim f(1/¢t)=1L.
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(4) Show that for any real number ¢,
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