Math 135: Homework 1 Due Thursday, January 5

- 1. Let $\{a_n\}$ be a bounded sequence. Prove that if $\{a_n\}$ is nonincreasing then it converges to its greatest lower bound.
- 2. Let $\{a_n\}$ and $\{b_n\}$ be sequences such that $a_n \to 0$ and $\{b_n\}$ is bounded. Prove that $a_nb_n \to 0$.
- 3. Suppose that f is a differentiable function on $(0,\infty)$ such that $f'(x)\to 0$ as $x\to\infty$. Show that

$$\lim_{n\to\infty} \left(f(n+1) - f(n) \right) = 0.$$

For instance, $\sqrt{n+1}-\sqrt{n}\to 0$ as $n\to\infty$ even though $\sqrt{n}\to\infty$ as $n\to\infty.$

Hint: Mean value theorem.