
Math 135A, Winter 2012 Fixed Points

Sequences are often defined by recursion. For example, suppose that f : R → R is a function and
x0 is a real number. Then we may define a sequence {xn} iteratively

x1 = f(x0), x2 = f(x1),

and in general by the formula

xn+1 = f(xn) for n = 0, 1, 2, . . . .

The purpose of this handout is to study this sequence, for a certain family of functions.

We begin with some definitions. Throughout this handout, Ω ⊂ R denotes a set of one of the forms
[a, b] for a < b, [a,∞), (−∞, b], or R; and f denotes a function of the form

f : Ω → Ω

(i.e. Ω is the domain of f and the range of f is contained in Ω).

Definition 1. The function f is said to be a contraction map if there is a real number K with
0 < K < 1 for which

|f(x)− f(y)| ≤ K|x− y| for all x, y ∈ Ω.

For example, if f(x) is differentiable and if there is a real number K with 0 < K < 1 so that
|f ′(x)| ≤ K for all x in the interior of Ω, then f is a contraction. (Prove this!)

Lemma 2. If f is a contraction map then f is continuous on Ω.

Proof. Exercise.

Definition 3. A point x0 ∈ Ω is called a fixed point of f if f(x0) = x0.

Lemma 4. A contraction map has at most one fixed point.

Proof. Exercise

Theorem 5. Let f : Ω → Ω be a contraction map and let x0 ∈ Ω. Then the sequence {xn} defined

inductively by xn+1 = f(xn), for n ≥ 0, is a Cauchy sequence. Moreover, the limit x∞ = lim
n→∞

xn

is a fixed point of f .

Corollary 6. Let f : Ω → Ω be a contraction map. Then f has exactly one fixed point.

We will prove the theorem through a series of lemmas.

Lemma 7. Suppose xn → x∞. Then x∞ is a fixed point.
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Proof. First note since Ω is either a closed interval or all of R, then x∞ ∈ Ω. Hence f(x∞) is
defined. (Why?)

To see that f(x∞) = x∞, choose any ǫ > 0. Then there is an integer N > 0 such that |xn−x∞| < ǫ
for all n ≥ N . Choose any n ≥ N , and use the triangle inequality to estimate as follows:

|f(x∞)− x∞| = |f(x∞)− f(xn) + f(xn)− x∞| ≤ |f(x∞)− f(xn)|+ |f(xn)− x∞|
≤ K|x∞ − xn|+ |xn+1 − x∞| < 2ǫ .

Since ǫ was arbitrary, it follows that f(x∞) = x∞.

Lemma 8. The sequence {xn} is bounded. In particular, there is a real number R so that |xn−x0| ≤
R for all n ≥ 0.

Proof. Let A = |x1 − x0|. Observe that for any n > 1,

|xn − xn−1| = |f(xn−1)− f(xn−2)| ≤ K|xn−1 − xn−2| .

Repeating this step n times yields the inequality

|xn − xn−1| ≤ AKn−1,

valid for all n ≥ 1. Thus,

|xn − x0| = |xn − xn−1 + xn−1 − xn−2 + xn−2 + · · ·+ (x1 − x0)|
≤ |xn − xn−1|+ |xn−1 − xn−2|+ · · ·+ |x1 − x0|

≤ (Kn−1 +Kn−2 + · · ·+K + 1)A ≤ A

1−K
.

Let R = A/(1−K); then |xn − x0| ≤ R for all n.

Lemma 9. The sequence {xn} is Cauchy.

Proof. Choose any ǫ > 0. Since 0 < K < 1, there is an integer N > 0 for which

2RKN < ǫ .

where R is as in the previous lemma.

We claim that |xn − xm| < ǫ for all n,m ≥ N . To see this, note first that by definition of R,

|xn−N − x0| ≤ R and |xm−N − x0| ≤ R .

Hence, by the triangle inequality, |xn−N − xm−N | ≤ 2R. Now observe that

xn = (f ◦ f ◦ · · · ◦ f
︸ ︷︷ ︸

N

)(xn−N ) and xm = (f ◦ f ◦ · · · ◦ f
︸ ︷︷ ︸

N

)(xm−N ) .

Therefore
|xm − xn| ≤ KN |xm−N − xn−N | ≤ 2RKN < ǫ ,

which is what we needed to prove.
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Example 10. Fix a number c > 1 and suppose that {xn} is a sequence defined inductively by

x1 = 1, xn+1 =
√
c+ xn. Then I claim that lim

n→∞
xn =

1 +
√
1 + 4c

2
.

Consider the function f : [0,∞) → [0,∞) defined by f(x) =
√
c+ x. Then f ′(x) = 1

2
√
c+x

. Since

c > 1, for all x > 0 we have |f ′(x)| < 1/2. Therefore f is a contraction, so it has a unique fixed
point. By Theorem 5, the sequence {xn} converges to the fixed point. Furthermore, the fixed point
is the number x∞ so that f(x∞) = x∞:

√
c+ x∞ = x∞.

Solving for x∞ yields x∞ = 1+
√
1+4c

2
.
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