1 Preliminaries

If $f(t)$ is defined on the interval $[0, \infty)$, then its Laplace transform is defined to be

$$
F(s)=\mathcal{L}(f(t))=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

as long as this integral is defined and converges. In particular, if f is of exponential order and is piecewise continuous, the Laplace transform of $f(t)$ will be defined.

- f is of exponential order if there are constants M and c so that

$$
|f(t)| \leq M e^{c t} .
$$

Since the integral $\int_{0}^{\infty} e^{-s t} M e^{c t} d t$ converges if $s>c$, then by a comparison test (like (11.7.2) in Salas-Hille-Etgen), the integral defining the Laplace transform of $f(t)$ will converge.

- f is piecewise continuous if over each interval $[0, b], f(t)$ has only finitely many discontinuities, and at each point a in $[0, b]$, both of the limits

$$
\lim _{t \rightarrow a^{-}} f(t) \text { and } \lim _{t \rightarrow a^{+}} f(t)
$$

exist - they need not be equal, but they must exist. (At the endpoints 0 and b, the appropriate one-sided limits must exist.)

2 Step functions

Define $u(t)$ to be the function

$$
u(t)= \begin{cases}0 & \text { if } t<0 \\ 1 & \text { if } t \geq 0\end{cases}
$$

Then $u(t)$ is called the step function, or sometimes the Heaviside step function: it jumps from 0 to 1 at $t=0$. Note that for any number $a>0$, the graph of the function $u(t-a)$ is the same as the graph of $u(t)$, but translated right by $a: u(t-a)$ jumps from 0 to 1 at $t=a$.

Example 1. We can use the step function to write formulas for functions which are defined piecewise: if $g(t)$ is defined as

$$
g(t)= \begin{cases}L(t) & \text { if } t<a \\ R(t) & \text { if } t \geq a\end{cases}
$$

then

$$
g(t)=L(t)+[R(t)-L(t)] u(t-a) .
$$

Why? If $t<a$, then the step function $u(t-a)$ is zero, so this turns into $L(t)$. If $t \geq a$, then the step function equals 1 , so the $L(t)$ terms cancel and we are left with $R(t)$. We can get similar expressions for functions defined in three or more separate pieces.

Example 2. Express the function

$$
g(t)= \begin{cases}t & \text { if } t<1 \\ t^{2} & \text { if } 1 \leq t<3 \\ t^{3} & \text { if } t \geq 3\end{cases}
$$

using the step function.
We will work from left to right on the real line. When $t<1$, the expression t is correct, but it's not right for $t \geq 1$. Between 1 and 3 , we have to subtract t and add t^{2}. We can do this by adding an appropriate function multiplied by $u(t-1)$, and in particular, this expression is correct when $t<3$:

$$
t+u(t-1)\left[t^{2}-t\right] .
$$

Finally, when $t \geq 3$, we need to subtract t^{2} and add t^{3}, so we get this formula for $g(t)$:

$$
g(t)=t+u(t-1)\left[t^{2}-t\right]+u(t-3)\left[t^{3}-t^{2}\right] .
$$

Proposition 3. The Laplace transform of $u(t-a)$ is $e^{-a s} / s$. If $f(t)$ is a function with Laplace transform $F(s)$, then

$$
\mathcal{L}(u(t-a) f(t-a))=e^{-a s} F(s) .
$$

Proof. The integral defining the Laplace transform is

$$
\mathcal{L}(u(t-a) f(t-a))=\int_{0}^{\infty} e^{-s t} u(t-a) f(t-a) d t=\int_{a}^{\infty} e^{-s t} f(t-a) d t .
$$

(The second equality is by the definition of the step function.) Now make a change of variables: let $w=t-a$. When $t=a, w=0$, and when $t=\infty, w=\infty$, so the integral becomes

$$
\int_{0}^{\infty} e^{-s(w+a)} f(w) d w=\int_{0}^{\infty} e^{-s w} e^{-s a} f(w) d w=e^{-s a} \int_{0}^{\infty} e^{-s w} f(w) d w=e^{-s a} \mathcal{L}(f(t))
$$

Example 4. $\mathcal{L}\left(u(t-3)(t-3)^{2}\right)=e^{-3 s} \frac{2!}{s^{3}}$.

By the way, since the Laplace transform is defined in terms of an integral, the behavior at the discontinuities of piecewise-defined functions is not important. For example, the following functions will have the same Laplace transform:

$$
g(t)=\left\{\begin{array}{ll}
0 & \text { if } t<1, \\
t & \text { if } t \geq 1,
\end{array} \quad h(t)= \begin{cases}0 & \text { if } t \leq 1 \\
t & \text { if } t>1\end{cases}\right.
$$

Exercises 5. (a) Suppose $f(t)$ is some function. In terms of the graph of $f(t)$, what does the function $u(t-a) f(t-a)$ look like?
(b) Compute $\mathcal{L}(u(t-2))$.
(c) Compute $\mathcal{L}(u(t-2) \sin (t-2))$.

Example 6. What is the Laplace transform of the function $g(t)$ defined by

$$
g(t)= \begin{cases}0 & \text { when } t<1 \\ t-1 & \text { when } t \geq 1\end{cases}
$$

To answer this, we need to write $g(t)$ in terms of the step function, but that's easy here: $g(t)=$ $u(t-1)(t-1)$. So in the notation of Proposition 3, we could write this as $g(t)=u(t-1) f(t-1)$, where $f(t)=t$. So by the proposition,

$$
\mathcal{L}(g(t))=e^{-s} \mathcal{L}(t)=e^{-s} \frac{1}{s^{2}} .
$$

Example 7. Suppose that $g(t)$ is the function defined by

$$
g(t)= \begin{cases}t & \text { if } t<1 \\ t^{2} & \text { if } 1 \leq t<3 \\ t^{3} & \text { if } t \geq 3\end{cases}
$$

What is $\mathcal{L}(g(t))$?
In Example 2 we found an expression for $g(t)$ in terms of step functions:

$$
g(t)=t+u(t-1)\left(t^{2}-t\right)+u(t-3)\left(t^{3}-t^{2}\right) .
$$

Unfortunately, this isn't in the right form to apply the proposition, because the terms don't look like $u(t-a) f(t-a)$ for some function f. Let's look at the summands: the first summand is just t, and we can compute its Laplace transform: it's just $1 / s^{2}$. The second summand is $u(t-1)\left(t^{2}-t\right)$, and so we need to write $t^{2}-t$ as a function of $t-1$: we want a function f so that $f(t-1)=t^{2}-t$. If we make the substitution $x=t-1$, then $t=x+1$, and this becomes $f(x)=(x+1)^{2}-(x+1)=x^{2}+x$. This is our formula for $f: f(x)=x^{2}+x$, and so $f(t)=t^{2}+t$.
Similarly, the third summand is $u(t-3)\left(t^{3}-t^{2}\right)$, and so we want to write $t^{3}-t^{2}$ as $f_{2}(t-3)$ for some function f_{2}. We want $f_{2}(t-3)=t^{3}-t^{2}$, so letting $x=t-3$, we get $f_{2}(x)=(x+3)^{3}-(x+3)^{2}=$ $x^{3}+8 x^{2}+21 x+18$.

Now we can compute the Laplace transform of $g(t)$:

$$
\begin{aligned}
\mathcal{L}(g(t)) & =\mathcal{L}\left(t+u(t-1) f(t-1)+u(t-3) f_{2}(t-3)\right) \\
& =\mathcal{L}(t)+\mathcal{L}(u(t-1) f(t-1))+\mathcal{L}\left(u(t-3) f_{2}(t-3)\right) \\
& =\frac{1}{s^{2}}+e^{-s} \mathcal{L}(f(t))+e^{-3 s} \mathcal{L}\left(f_{2}(t)\right) \\
& =\frac{1}{s^{2}}+e^{-s} \mathcal{L}\left(t^{2}+t\right)+e^{-3 s} \mathcal{L}\left(t^{3}+8 t^{2}+21 t+18\right) \\
& =\frac{1}{s^{2}}+e^{-s}\left(\frac{2}{s^{3}}+\frac{1}{s^{2}}\right)+e^{-3 s}\left(\frac{3!}{s^{4}}+\frac{8 \cdot 2!}{s^{3}}+\frac{21}{s^{2}}+\frac{18}{s}\right) .
\end{aligned}
$$

Example 8. Suppose that $g(t)$ is defined by

$$
g(t)= \begin{cases}t & \text { when } 0 \leq t<2 \\ 0 & \text { when } t \geq 2\end{cases}
$$

Solve the initial value problem

$$
y^{\prime \prime}+4 y=g(t), \quad y(0)=0, y^{\prime}(0)=0 .
$$

I would like to use Laplace transforms, and to compute the Laplace transform of $g(t)$, I need to write $g(t)$ using step functions. When computing the Laplace transform of a function $g(t)$, what happens when $t<0$ is irrelevant - the integral starts at $t=0-$ so I can write $g(t)$ like this:

$$
g(t)=t+u(t-2)(-t)=t+u(t-2)(-(t-2)-2) .
$$

So if $f(t)=-t-2$, then $g(t)=t+u(t-2) f(t-2)$. Now we're ready to go: let $Y=\mathcal{L}(y)$, and then because of the initial conditions, $\mathcal{L}\left(y^{\prime}\right)=s Y$ and $\mathcal{L}\left(y^{\prime \prime}\right)=s^{2} Y$. When I apply the Laplace transform to the differential equation, I get

$$
\left(s^{2}+4\right) Y=\mathcal{L}(t+u(t-2) f(t-2))=\frac{1}{s^{2}}+e^{-2 s}\left(-\frac{1}{s^{2}}-\frac{2}{s}\right) .
$$

Therefore

$$
\begin{aligned}
Y & =\left(1-e^{-2 s}\right) \frac{1}{s^{2}\left(s^{2}+4\right)}-2 e^{-2 s} \frac{1}{s\left(s^{2}+4\right)} \\
& =\left(1-e^{-2 s}\right)\left(\frac{1 / 4}{s^{2}}+\frac{-1 / 4}{s^{2}+4}\right)-2 e^{-2 s}\left(\frac{1 / 4}{s}+\frac{-s / 4}{s^{2}+4}\right) \\
& =\left(\frac{1 / 4}{s^{2}}+\frac{-1 / 4}{s^{2}+4}\right)+e^{-2 s}\left(-\frac{1 / 4}{s^{2}}+\frac{1 / 4}{s^{2}+4}-\frac{1 / 2}{s}+\frac{s / 2}{s^{2}+4}\right) .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
y & =\mathcal{L}^{-1}\left(\frac{1 / 4}{s^{2}}+\frac{-1 / 4}{s^{2}+4}\right)+\mathcal{L}^{-1}\left(e^{-2 s}\left(-\frac{1 / 4}{s^{2}}+\frac{1 / 4}{s^{2}+4}-\frac{1 / 2}{s}+\frac{s / 2}{s^{2}+4}\right)\right) \\
& =\frac{1}{4} t-\frac{1}{8} \sin 2 t+u(t-2) f(t-2)
\end{aligned}
$$

where

$$
\begin{aligned}
f(t) & =\mathcal{L}^{-1}\left(-\frac{1 / 4}{s^{2}}+\frac{1 / 4}{s^{2}+4}-\frac{1 / 2}{s}+\frac{s / 2}{s^{2}+4}\right) \\
& =-\frac{1}{4} t+\frac{1}{8} \sin 2 t-\frac{1}{2}+\frac{1}{2} \cos 2 t
\end{aligned}
$$

So

$$
\begin{aligned}
y(t) & =\frac{1}{4} t-\frac{1}{8} \sin 2 t+u(t-2)\left(-\frac{1}{4}(t-2)+\frac{1}{8} \sin 2(t-2)-\frac{1}{2}+\frac{1}{2} \cos 2(t-2)\right) \\
& =\frac{1}{4} t-\frac{1}{8} \sin 2 t+u(t-2)\left(-\frac{1}{4} t+\frac{1}{8} \sin 2(t-2)+\frac{1}{2} \cos 2(t-2)\right)
\end{aligned}
$$

We can also write this as a piecewise-defined function:

$$
y(t)= \begin{cases}\frac{1}{4} t-\frac{1}{8} \sin 2 t & \text { if } t<2, \\ -\frac{1}{8} \sin 2 t+\frac{1}{8} \sin 2(t-2)+\frac{1}{2} \cos 2(t-2) & \text { if } t \geq 2\end{cases}
$$

You can check that this function is continuous and twice differentiable for all $t \geq 0$. (The only interesting point is $t=2$.) Here's a graph:

Example 9. Suppose that $g(t)$ is defined by

$$
g(t)= \begin{cases}100 \sin 40 t & \text { when } 0 \leq t<7 \\ 0 & \text { when } t \geq 7\end{cases}
$$

Solve the initial value problem

$$
y^{\prime \prime}+3 y^{\prime}+2 y=g(t), \quad y(0)=0, \quad y^{\prime}(0)=0 .
$$

I'm going to skip the details and just reproduce the solution and its graph; we'll discuss some interpretations of this example in class:

$$
y= \begin{cases}-2.49 e^{-2 t}+2.50 e^{-t}-0.0622 \sin (40 t)-0.00467 \cos (40 t), & \text { if } 0 \leq t<7, \\ -2.25 e^{-2(t-7)}+2.28 e^{-(t-7)}, & \text { if } t \geq 7\end{cases}
$$

Exercises 10. Solve the initial value problems

$$
y^{\prime \prime}+y=f(t), \quad y(0)=0, \quad y^{\prime}(0)=0,
$$

where $f(t)$ is as given in each of the following pictures.
(a)

(b)

(c)

(d)

3 The Dirac δ-function

Proposition 11. (a) Let ϵ be a positive number and consider the function $f_{\epsilon}(t)$ defined by

$$
f_{\epsilon}(t)= \begin{cases}1 / \epsilon & \text { if } 0 \leq t \leq \epsilon, \\ 0 & \text { if } t>\epsilon .\end{cases}
$$

Then

$$
\mathcal{L}\left(f_{\epsilon}(t)\right)=\frac{1-e^{s \epsilon}}{s \epsilon}
$$

(b) "Define" the Dirac delta function $\delta(t)$ to be

$$
\delta(t)=\lim _{\epsilon \rightarrow 0^{+}} f_{\epsilon}(t) .
$$

Then $\delta(t)=0$ except when $t=0$, and it has the following properties with respect to integration: for any function $f(t)$,

$$
\int_{-\infty}^{\infty} \delta(t) d t=1, \quad \int_{-\infty}^{\infty} \delta(t) f(t) d t=f(0)
$$

Therefore for any positive number a, we have $\mathcal{L}(\delta(t-a))=e^{-a s}$.
The Dirac delta function models an instantaneous force applied to a system, like hitting a mass with a hammer.

Now, $\delta(t)$ is not actually a function: the limit defining it doesn't exist when $t=0$, for one thing. If there were a way to define it, then properties of integrals show that if $g(t)$ is any function with $g(t)=0$ whenever $t \neq 0$, then $\int_{a}^{b} g(t)=0$ for any a and b. Instead, $\delta(t)$ is what is called a generalized function or distribution, and although it isn't a function, it can be treated like one in many ways. Really its defining property is that for any function $f(t)$,

$$
\int_{-\infty}^{\infty} \delta(t) f(t) d t=f(0)
$$

Example 12. Solve the initial value problem

$$
y^{\prime \prime}+2 y^{\prime}+2 y=\delta(t-1), \quad y(0)=0, y^{\prime}(0)=0 .
$$

We apply the Laplace transform. If $Y=\mathcal{L}(y)$, then $\mathcal{L}\left(y^{\prime}\right)=s Y$ and $\mathcal{L}\left(y^{\prime \prime}\right)=s^{2} Y$, and the equation becomes

$$
\left(s^{2}+2 s+2\right) Y=e^{-s}, \quad \text { so } \quad Y=e^{-s} \frac{1}{s^{2}+2 s+2}
$$

We complete the square and write this as

$$
Y=e^{-s} \frac{1}{s^{2}+2 s+2}=e^{-s} \frac{1}{(s+1)^{2}+1} .
$$

Therefore

$$
y=\mathcal{L}^{-1}(Y)=u(t-1) f(t-1)
$$

where

$$
f(t)=\mathcal{L}^{-1}\left(\frac{1}{(s+1)^{2}+1}\right)=e^{-t} \sin t
$$

So

$$
y(t)=u(t-1) e^{-(t-1)} \sin (t-1)
$$

or

$$
y(t)= \begin{cases}0 & \text { if } t<1 \\ e^{-(t-1)} \sin (t-1) & \text { if } t \geq 1\end{cases}
$$

Note that this function is continuous everywhere, but it is not differentiable at $t=1$. This is not surprising, because $t=1$ is when the delta function is applied - this example models what happens in a damped spring system when you hit the mass with a hammer.

Exercises 13. (a) Solve the initial value problem

$$
y^{\prime \prime}+3 y^{\prime}+2 y=\delta(t-1), \quad y(0)=0, y^{\prime}(0)=0
$$

(b) Consider the initial value problem

$$
y^{\prime \prime}+4 y=\delta(t)+c \delta(t-\pi), \quad y(0)=0, y^{\prime}(0)=0
$$

where c is a constant. What should c be so that the solution stops completely at time π ? That is, what should c be so that the solution has the form

$$
y= \begin{cases}? ? ? & \text { if } 0 \leq t<\pi \\ 0 & \text { if } t \geq \pi ?\end{cases}
$$

