The convolution of functions f(t) and g(t) is defined to be

$$(f * g)(t) = \int_0^t f(t - u)g(u) \, du.$$

(The asterisk * does not mean ordinary multiplication: it is a new operation, convolution, defined by the integral on the right side.)

Properties of convolution:

- f * g = g * f
- (f * g) * h = f * (g * h)
- f * 0 = 0 = 0 * f (but note that $f * 1 \neq f$)
- $\delta * f = f = f * \delta$
- and most importantly for our purposes, Theorem 27.7 in Tenenbaum-Pollard says that if $\mathcal{L}(f(t)) = F(s)$ and $\mathcal{L}(g(t)) = G(s)$, then

$$\mathcal{L}\left((f*g)(t)\right) = F(s)G(s).$$

- 1. Compute the convolution of e^{-2t} and e^{-3t} .
- 2. Compute the convolution of e^{at} and e^{bt} for any nonzero constants a and b.
- 3. Compute the convolution of e^{-t} and 1.
- 4. Compute the convolution of e^{-t} and t.
- 5. Compute the convolution of e^{-t} and t^2 .
- 6. Compute the convolution of e^{-t} and $\cos t$.
- 7. Compute the convolution of e^{-t} and $\sin t$.
- 8. Compute the convolution of $\cos 2t$ and $\sin t$.
- 9. Compute the convolution of $\cos 2t$ and $\sin 2t$.
- In class we will discuss this method for solving an initial value problem: given

 $ay'' + by' + cy = g(t), \quad y(0) = y_0, \ y'(0) = y_1,$

let e(t) be the unit impulse response function: e(t) is the solution to

$$ay'' + by' + cy = \delta(t), \quad y(0) = 0, \ y'(0) = 0.$$

Then $e(t) = \mathcal{L}^{-1}\left(\frac{1}{as^2 + bs + c}\right).$

For the original initial value problem, the state-free solution y_s is the solution to

$$ay'' + by' + cy = g(t), \quad y(0) = 0, \ y'(0) = 0.$$

(That is, the same equation but with zero initial conditions.) The *input-free solution* y_i is the solution to

$$ay'' + by' + cy = 0$$
, $y(0) = y_0$, $y'(0) = y_1$.

(That is, the associated homogeneous equation but with the same initial conditions.) Then the state-free solution is the convolution

$$y_s = e(t) * g(t),$$

and the input-free solution is

$$y_i = ay_0 e'(t) + (ay_1 + by_0)e(t)$$

The function $y_s + y_i$ is the solution to the original initial value problem.

Use this to solve these initial value problems:

10.
$$y'' + y = 2, y(0) = 0, y'(0) = 1$$

11. $y'' + y = e^t, y(0) = 0, y'(0) = 0$
12. $y'' + y = g(t), y(0) = 0, y'(0) = 1$ (answer will involve $g(t)$)
13. $y'' - 5y' + 4y = g(t), y(0) = 1, y'(0) = -1$
14. $y'' + 4y' + 3y = g(t), y(0) = 0, y'(0) = 0$
15. $y'' + 2y' + 2y = g(t), y(0) = 1, y'(0) = -2$