The convolution of functions $f(t)$ and $g(t)$ is defined to be

$$
(f * g)(t)=\int_{0}^{t} f(t-u) g(u) d u
$$

(The asterisk $*$ does not mean ordinary multiplication: it is a new operation, convolution, defined by the integral on the right side.)

Properties of convolution:

- $f * g=g * f$
- $(f * g) * h=f *(g * h)$
- $f * 0=0=0 * f$ (but note that $f * 1 \neq f$)
- $\delta * f=f=f * \delta$
- and most importantly for our purposes, Theorem 27.7 in Tenenbaum-Pollard says that if $\mathcal{L}(f(t))=F(s)$ and $\mathcal{L}(g(t))=G(s)$, then

$$
\mathcal{L}((f * g)(t))=F(s) G(s) .
$$

1. Compute the convolution of $e^{-2 t}$ and $e^{-3 t}$.
2. Compute the convolution of $e^{a t}$ and $e^{b t}$ for any nonzero constants a and b.
3. Compute the convolution of e^{-t} and 1 .
4. Compute the convolution of e^{-t} and t.
5. Compute the convolution of e^{-t} and t^{2}.
6. Compute the convolution of e^{-t} and $\cos t$.
7. Compute the convolution of e^{-t} and $\sin t$.
8. Compute the convolution of $\cos 2 t$ and $\sin t$.
9. Compute the convolution of $\cos 2 t$ and $\sin 2 t$.

In class we will discuss this method for solving an initial value problem: given

$$
a y^{\prime \prime}+b y^{\prime}+c y=g(t), \quad y(0)=y_{0}, y^{\prime}(0)=y_{1}
$$

let $e(t)$ be the unit impulse response function: $e(t)$ is the solution to

$$
a y^{\prime \prime}+b y^{\prime}+c y=\delta(t), \quad y(0)=0, y^{\prime}(0)=0 .
$$

Then $e(t)=\mathcal{L}^{-1}\left(\frac{1}{a s^{2}+b s+c}\right)$.

For the original initial value problem, the state-free solution y_{s} is the solution to

$$
a y^{\prime \prime}+b y^{\prime}+c y=g(t), \quad y(0)=0, y^{\prime}(0)=0 .
$$

(That is, the same equation but with zero initial conditions.) The input-free solution y_{i} is the solution to

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, \quad y(0)=y_{0}, \quad y^{\prime}(0)=y_{1} .
$$

(That is, the associated homogeneous equation but with the same initial conditions.) Then the state-free solution is the convolution

$$
y_{s}=e(t) * g(t),
$$

and the input-free solution is

$$
y_{i}=a y_{0} e^{\prime}(t)+\left(a y_{1}+b y_{0}\right) e(t) .
$$

The function $y_{s}+y_{i}$ is the solution to the original initial value problem.
Use this to solve these initial value problems:
10. $y^{\prime \prime}+y=2, y(0)=0, y^{\prime}(0)=1$
11. $y^{\prime \prime}+y=e^{t}, y(0)=0, y^{\prime}(0)=0$
12. $y^{\prime \prime}+y=g(t), y(0)=0, y^{\prime}(0)=1$ (answer will involve $\left.g(t)\right)$
13. $y^{\prime \prime}-5 y^{\prime}+4 y=g(t), y(0)=1, y^{\prime}(0)=-1$
14. $y^{\prime \prime}+4 y^{\prime}+3 y=g(t), y(0)=0, y^{\prime}(0)=0$
15. $y^{\prime \prime}+2 y^{\prime}+2 y=g(t), y(0)=1, y^{\prime}(0)=-2$

